Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Advances in spatial analog optical computing devices

Zhou Yi Chen Rui Chen Wen-Jie Ma Yun-Gui

Citation:

Advances in spatial analog optical computing devices

Zhou Yi, Chen Rui, Chen Wen-Jie, Ma Yun-Gui
PDF
HTML
Get Citation
  • Spatial analog optical computing devices possess the capability of high-throughput, real-time and low-energy information processing. Optical metamaterials, which are ultracompact in structure and possess powerful ability to control the light, can be utilized to establish miniatured and integrated spatial analog optical computing devices. The methods of designing the spatial analog optical computing devices could be mainly classified as two kinds—4F system method and Green’s function method. The 4F system method requires two Fourier transform lenses and a spatial frequency filter, where the actual computing procedure is performed in the spatial domain. The 4F system is usually bulky and complicated. The Green’s function method directly leverages the nonlocal response of the carefully tailored optical materials to implement analog computing procedure in the spatial frequency domain and its structure is compact without extra Fourier transform components. Research advances in spatial analog optical computing devices by using these two methods for the last few years are introduced in this paper. These researches could be classified as differentiators, integrators, equation solvers and spatial frequency filters according to the standard of computing functions. The approaches to designing these devices are further demonstrated. Then, computing devices which could realize spatial analog first-order difference by use of the spin-orbit interaction proposed recently are introduced. Finally, application fields and study prospects of spatial analog optical computing devices are discussed and summarized.
      Corresponding author: Ma Yun-Gui, yungui@zju.edu.cn
    [1]

    Goodman J W 2005 Introduction to Fourier Optics (3rd Ed.). (Englewood: Roberts & Company Publishers)

    [2]

    Staude I, Schilling J 2017 Nat. Photonics 11 274Google Scholar

    [3]

    Aieta F, Kats M A, Genevet P, Capasso F 2015 Science 347 1342Google Scholar

    [4]

    Zheng G, Mühlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S 2015 Nat. Nanotech. 10 308Google Scholar

    [5]

    Liu S, Vabishchevich P P, Vaskin A, Reno J L, Keeler G A, Sinclair M B, Staude I, Brener I 2018 Nat. Commun. 9 2507Google Scholar

    [6]

    Silva A, Monticone F, Castaldi G, Galdi V, Alù A, Engheta N 2014 Science 343 160Google Scholar

    [7]

    Pors A, Nielsen M G, Bozhevolnyi S I 2015 Nano Lett. 15 791Google Scholar

    [8]

    Zhu T, Zhou Y, Lou Y, Ye H, Qiu M, Ruan Z, Fan S 2017 Nat. Commun. 8 15391Google Scholar

    [9]

    Estakhri N M, Edwards B, Engheta N 2019 Science 363 1333Google Scholar

    [10]

    Sajjad A R, Arik K, Khavasi A, Kavehvash Z 2015 Opt. Lett. 40 5239Google Scholar

    [11]

    Chen H, An D, Li Z, Zhao X 2017 Opt. Express 25 26417Google Scholar

    [12]

    Wang Z, Li T, Soman A, Mao D, Kananen T, Gu T 2019 Nat. Commun. 10 3547Google Scholar

    [13]

    Wu Y, Zhuang Z, Deng L, Liu Y A, Xue Q, Ghassemlooy Z 2018 Plasmonics 13 599Google Scholar

    [14]

    Chizari A, Sajjad A R Jamali M V, Salehi J A 2016 Opt. Lett. 41 3451Google Scholar

    [15]

    Dai C L, Zhao Z G, Li X L, Yang H W 2016 Phys. Lett. A 380 3942Google Scholar

    [16]

    Sajjad A R, Chizari A, Dorche A E, Jamali M V, Salehi J A 2017 Opt. Lett. 42 1197Google Scholar

    [17]

    Zhang W X, Qu C, Zhang X D 2016 J. Opt. 18 075102Google Scholar

    [18]

    Kwon H, Sounas D, Cordaro A, Polman A, Alù A 2018 Phys. Rev. Lett. 121 173004Google Scholar

    [19]

    Momeni A, Rajabalipanah H, Abdolali A, Achouri K 2019 Phys. Rev. Appl. 11 064042Google Scholar

    [20]

    Wang H W, Guo C, Zhao Z X, Fan S H 2020 ACS Photonics 7 338Google Scholar

    [21]

    Doskolovich L L, Bykov D A, Bezus E A, Soifer V A 2014 Opt. Lett. 39 1278Google Scholar

    [22]

    Ruan Z C 2015 Opt. Lett. 40 601Google Scholar

    [23]

    Youssefi A, Zangeneh-Nejad F, Sajjad A R, Khavasi A 2016 Opt. Lett. 41 3467Google Scholar

    [24]

    Bezus E A, Doskolovich L L, Bykov D A, Soifer V A 2018 Opt. Express 26 25156Google Scholar

    [25]

    Bykov D A, Doskolovich L L, Morozov A A, Podlipnov V V, Bezus E A, Verma P, Soifer V A 2018 Opt. Express 26 10997Google Scholar

    [26]

    Dong Z W, Si J N, Yu X Y, Deng X X 2018 Appl. Phys. Lett. 112 181102Google Scholar

    [27]

    Fang Y S, Ruan Z C 2018 Opt. Lett. 43 5893Google Scholar

    [28]

    Zangeneh-Nejad F, Khavasi A, Rejaei B 2018 Opt. Commun. 407 338Google Scholar

    [29]

    Zhang J, Ying Q, Ruan Z 2019 Opt. Lett. 44 4511Google Scholar

    [30]

    Zhou Y, Wu W, Chen R, Chen W, Chen R, Ma Y 2020 Adv. Opt. Mater. 8 1901523Google Scholar

    [31]

    Zhou Y, Chen R, Chen W, Chen R P, Ma Y 2020 Opt. Commun. 458 124674Google Scholar

    [32]

    Guo C, Xiao M, Minkov M, Shi Y, Fan S 2018 Optica 5 251Google Scholar

    [33]

    Hwang Y, Davis T J, Lin J, Yuan X C 2018 Opt. Express 26 7368Google Scholar

    [34]

    Saba A, Tavakol M R, Karimi-Khoozani P, Khavasi A 2018 IEEE Photonics Technol. Lett. 30 853Google Scholar

    [35]

    Zhou Y, Zheng H, Kravchenko I I, Valentine J 2020 Nat. Photonics 14 316Google Scholar

    [36]

    Bykov D A, Doskolovich L L, Bezus E A, Soifer V A 2014 Opt. Express 22 25084Google Scholar

    [37]

    Fang Y, Lou Y, Ruan Z 2017 Opt. Lett. 42 3840Google Scholar

    [38]

    Wu W, Jiang W, Yang J, Gong S, Ma Y 2017 Opt. Lett. 42 5270Google Scholar

    [39]

    Golovastikov N V, Bykov D A, Doskolovich L L, Bezus E A 2015 Opt. Commun. 338 457Google Scholar

    [40]

    Zangeneh-Nejad F, Khavasi A 2017 Opt. Lett. 42 1954Google Scholar

    [41]

    Abdolali A, Momeni A, Rajabalipanah H, Achouri K 2019 New J. Phys. 21 113048Google Scholar

    [42]

    Guo C, Xiao M, Minkov M, Shi Y, Fan S 2018 J. Opt. Soc. Am. A 35 1685Google Scholar

    [43]

    Roberts A, Gómez D E, Davis T J 2018 J. Opt. Soc. Am. A 35 1575Google Scholar

    [44]

    Davis T J, Eftekhari F, Gómez D E, Roberts A 2019 Phys. Rev. Lett. 123 013901Google Scholar

    [45]

    Zhu T F, Lou Y J, Zhou Y H, Zhang J H, Huang J Y, Li Y, Luo H L, Wen S C, Zhu S Y, Gong Q H, Qiu M, Ruan Z C 2019 Phys. Rev. Appl. 11 034043Google Scholar

    [46]

    Zhu T F, Huang J Y, Ruan Z C 2020 Adv. Photonics 2 016001Google Scholar

    [47]

    He S, Zhou J, Chen S, Shu W, Luo H, Wen S 2020 APL Photonics 5 036105Google Scholar

    [48]

    He S, Zhou J, Chen S, Shu W, Luo H, Wen S 2020 Opt. Lett. 45 877Google Scholar

    [49]

    Zhou J, Qian H, Chen C F, Zhao J, Li G, Wu Q, Luo H, Wen S, Liu Z 2019 Proc. Natl. Acad. Sci. U. S. A. 116 11137Google Scholar

    [50]

    谢智强, 贺炎亮, 王佩佩, 苏明样, 陈学钰, 杨博, 刘俊敏, 周新星, 李瑛, 陈书青, 范滇元 2020 物理学报 69 014101Google Scholar

    Xie Z Q, He Y L, Wang P P, Su M Y, Chen X Y, Yang B, Liu J M, Zhou X X, Li Y, Chen S Q, Fan D Y 2020 Acta Phys. Sin. 69 014101Google Scholar

    [51]

    Folland T G, Fali A, White S T, et al. 2018 Nat. Commun. 9 4371Google Scholar

    [52]

    Tian J, Luo H, Yang Y, Ding F, Qu Y, Zhao D, Qiu M, Bozhevolnyi S I 2019 Nat. Commun. 10 396Google Scholar

    [53]

    Wen D, Yue F, Li G, et al. 2015 Nat. Commun. 6 8241Google Scholar

    [54]

    Maguid E, Yulevich I, Veksler D, Kleiner V, Brongersma M L, Hasman E 2016 Science 352 1202Google Scholar

  • 图 1  利用4F系统法设计的超构材料空域模拟光学计算器件示意图[6]

    Figure 1.  Metamaterial spatial analog optical computing device designed by 4F system method[6].

    图 2  利用4F系统法设计的超构材料空域模拟光学计算器件 (a), (b) MIM等离激元超构表面和对应反射强度分布[7]; (c), (d) 树枝状等离激元超构表面和对应反射强度分布[11]; (e), (f) SOI片上超构表面结构和对应一阶微分器[12]; (g), (h) 硅超构表面ODE、IDE求解器和对应电场仿真结果[16]

    Figure 2.  Metamaterial spatial analog optical computing devices designed by 4F system method: (a), (b) MIM plasmon metasurface and corresponding reflective intensity distribution[7]; (c), (d) dendritic plasmon metasurface and corresponding reflective intensity distribution[11]; (e), (f) schematic of unit cell of SOI-based on-chip metasurface and corresponding first-order differentiator[12]; (g), (h) ODE and IDE solvers based on silicon metasurfaces and corresponding electric field simulation results[16].

    图 3  基于平板或多层膜的空域模拟一阶微分器 (a) PSBG微分器和对应传递函数[21]; (b) 工作在Brewster角的介质平板微分器和对应传递函数[23]; (c) 基于SPP的微分器和边缘检测实验结果[8]

    Figure 3.  Spatial analog first-order differentiator based on plates and multilayer films: (a) PSBG differentiator and corresponding transfer function[21]; (b) dielectric plate differentiator working at Brewster’s angle and corresponding transfer function[23]; (c) SPP-based differentiator and experimental results of edge detection[8].

    图 4  基于光栅和普通超构材料的空域模拟一阶微分器 (a) 基于全介质光栅的微分器和边缘检测实验结果[26]; (b) 基于结构对称性破缺SRR的微分器和对应传递函数[18]; (c) 介质-金属超构表面微分器和边缘检测实验结果[30]

    Figure 4.  Grating/metamaterial-based spatial analog first-order differentiator: (a) Differentiator based on all-dielectric grating and experimental results of edge detection[26]; (b) differentiator based on structure-symmetry-broken SRRs and corresponding transfer function[18]; (c) dielectric-metal metasurface differentiator and experimental results of edge detection[30].

    图 5  超构材料空域模拟二阶微分器 (a) 光栅石墨烯复合微分器和对应传递函数幅度[37]; (b) 基于等离激元电路的微分器和对应交叉偏振散射强度随入射角度的函数关系[33]; (c) 基于光子晶体的微分器和对应传递函数幅度[32]

    Figure 5.  Metamaterial spatial analog second-order differentiator: (a) On-grating graphene differentiator and magnitude of corresponding transfer function[37]; (b) differentiator based on plasmonic circuit and corresponding cross-polarized scattering intensity as function of incident angle[33]; (c) differentiator based on photonic crystal slab and magnitude of corresponding transfer function[32].

    图 6  多层膜空域模拟一阶积分器[40] (a) 积分器结构示意图; (b) 对应传递函数

    Figure 6.  Multilayer spatial analog first-order integrator[40]: (a) Schematic of integrator; (b) corresponding transfer function.

    图 7  利用格林函数法设计的超构材料空域模拟方程求解器[9] (a) 结构示意图; (b) 端口3激发的电场分布仿真结果

    Figure 7.  Metamaterial spatial analog equation solver using Green’s function[9]: (a) Schematic diagram; (b) simulation result of electric field distribution when excited at Port 3.

    图 8  基于SHEL的一阶微分器 (a) 介质平板微分器和边缘检测实验结果[45]; (b) PB相位超构表面微分器和边缘检测实验结果[49]

    Figure 8.  SHEL-based first-order differentiator: (a) Dielectric plate differentiator and experimental results of edge detection[45]; (b) differentiator based on PB-phase metasurface and experimental results of edge detection[49].

  • [1]

    Goodman J W 2005 Introduction to Fourier Optics (3rd Ed.). (Englewood: Roberts & Company Publishers)

    [2]

    Staude I, Schilling J 2017 Nat. Photonics 11 274Google Scholar

    [3]

    Aieta F, Kats M A, Genevet P, Capasso F 2015 Science 347 1342Google Scholar

    [4]

    Zheng G, Mühlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S 2015 Nat. Nanotech. 10 308Google Scholar

    [5]

    Liu S, Vabishchevich P P, Vaskin A, Reno J L, Keeler G A, Sinclair M B, Staude I, Brener I 2018 Nat. Commun. 9 2507Google Scholar

    [6]

    Silva A, Monticone F, Castaldi G, Galdi V, Alù A, Engheta N 2014 Science 343 160Google Scholar

    [7]

    Pors A, Nielsen M G, Bozhevolnyi S I 2015 Nano Lett. 15 791Google Scholar

    [8]

    Zhu T, Zhou Y, Lou Y, Ye H, Qiu M, Ruan Z, Fan S 2017 Nat. Commun. 8 15391Google Scholar

    [9]

    Estakhri N M, Edwards B, Engheta N 2019 Science 363 1333Google Scholar

    [10]

    Sajjad A R, Arik K, Khavasi A, Kavehvash Z 2015 Opt. Lett. 40 5239Google Scholar

    [11]

    Chen H, An D, Li Z, Zhao X 2017 Opt. Express 25 26417Google Scholar

    [12]

    Wang Z, Li T, Soman A, Mao D, Kananen T, Gu T 2019 Nat. Commun. 10 3547Google Scholar

    [13]

    Wu Y, Zhuang Z, Deng L, Liu Y A, Xue Q, Ghassemlooy Z 2018 Plasmonics 13 599Google Scholar

    [14]

    Chizari A, Sajjad A R Jamali M V, Salehi J A 2016 Opt. Lett. 41 3451Google Scholar

    [15]

    Dai C L, Zhao Z G, Li X L, Yang H W 2016 Phys. Lett. A 380 3942Google Scholar

    [16]

    Sajjad A R, Chizari A, Dorche A E, Jamali M V, Salehi J A 2017 Opt. Lett. 42 1197Google Scholar

    [17]

    Zhang W X, Qu C, Zhang X D 2016 J. Opt. 18 075102Google Scholar

    [18]

    Kwon H, Sounas D, Cordaro A, Polman A, Alù A 2018 Phys. Rev. Lett. 121 173004Google Scholar

    [19]

    Momeni A, Rajabalipanah H, Abdolali A, Achouri K 2019 Phys. Rev. Appl. 11 064042Google Scholar

    [20]

    Wang H W, Guo C, Zhao Z X, Fan S H 2020 ACS Photonics 7 338Google Scholar

    [21]

    Doskolovich L L, Bykov D A, Bezus E A, Soifer V A 2014 Opt. Lett. 39 1278Google Scholar

    [22]

    Ruan Z C 2015 Opt. Lett. 40 601Google Scholar

    [23]

    Youssefi A, Zangeneh-Nejad F, Sajjad A R, Khavasi A 2016 Opt. Lett. 41 3467Google Scholar

    [24]

    Bezus E A, Doskolovich L L, Bykov D A, Soifer V A 2018 Opt. Express 26 25156Google Scholar

    [25]

    Bykov D A, Doskolovich L L, Morozov A A, Podlipnov V V, Bezus E A, Verma P, Soifer V A 2018 Opt. Express 26 10997Google Scholar

    [26]

    Dong Z W, Si J N, Yu X Y, Deng X X 2018 Appl. Phys. Lett. 112 181102Google Scholar

    [27]

    Fang Y S, Ruan Z C 2018 Opt. Lett. 43 5893Google Scholar

    [28]

    Zangeneh-Nejad F, Khavasi A, Rejaei B 2018 Opt. Commun. 407 338Google Scholar

    [29]

    Zhang J, Ying Q, Ruan Z 2019 Opt. Lett. 44 4511Google Scholar

    [30]

    Zhou Y, Wu W, Chen R, Chen W, Chen R, Ma Y 2020 Adv. Opt. Mater. 8 1901523Google Scholar

    [31]

    Zhou Y, Chen R, Chen W, Chen R P, Ma Y 2020 Opt. Commun. 458 124674Google Scholar

    [32]

    Guo C, Xiao M, Minkov M, Shi Y, Fan S 2018 Optica 5 251Google Scholar

    [33]

    Hwang Y, Davis T J, Lin J, Yuan X C 2018 Opt. Express 26 7368Google Scholar

    [34]

    Saba A, Tavakol M R, Karimi-Khoozani P, Khavasi A 2018 IEEE Photonics Technol. Lett. 30 853Google Scholar

    [35]

    Zhou Y, Zheng H, Kravchenko I I, Valentine J 2020 Nat. Photonics 14 316Google Scholar

    [36]

    Bykov D A, Doskolovich L L, Bezus E A, Soifer V A 2014 Opt. Express 22 25084Google Scholar

    [37]

    Fang Y, Lou Y, Ruan Z 2017 Opt. Lett. 42 3840Google Scholar

    [38]

    Wu W, Jiang W, Yang J, Gong S, Ma Y 2017 Opt. Lett. 42 5270Google Scholar

    [39]

    Golovastikov N V, Bykov D A, Doskolovich L L, Bezus E A 2015 Opt. Commun. 338 457Google Scholar

    [40]

    Zangeneh-Nejad F, Khavasi A 2017 Opt. Lett. 42 1954Google Scholar

    [41]

    Abdolali A, Momeni A, Rajabalipanah H, Achouri K 2019 New J. Phys. 21 113048Google Scholar

    [42]

    Guo C, Xiao M, Minkov M, Shi Y, Fan S 2018 J. Opt. Soc. Am. A 35 1685Google Scholar

    [43]

    Roberts A, Gómez D E, Davis T J 2018 J. Opt. Soc. Am. A 35 1575Google Scholar

    [44]

    Davis T J, Eftekhari F, Gómez D E, Roberts A 2019 Phys. Rev. Lett. 123 013901Google Scholar

    [45]

    Zhu T F, Lou Y J, Zhou Y H, Zhang J H, Huang J Y, Li Y, Luo H L, Wen S C, Zhu S Y, Gong Q H, Qiu M, Ruan Z C 2019 Phys. Rev. Appl. 11 034043Google Scholar

    [46]

    Zhu T F, Huang J Y, Ruan Z C 2020 Adv. Photonics 2 016001Google Scholar

    [47]

    He S, Zhou J, Chen S, Shu W, Luo H, Wen S 2020 APL Photonics 5 036105Google Scholar

    [48]

    He S, Zhou J, Chen S, Shu W, Luo H, Wen S 2020 Opt. Lett. 45 877Google Scholar

    [49]

    Zhou J, Qian H, Chen C F, Zhao J, Li G, Wu Q, Luo H, Wen S, Liu Z 2019 Proc. Natl. Acad. Sci. U. S. A. 116 11137Google Scholar

    [50]

    谢智强, 贺炎亮, 王佩佩, 苏明样, 陈学钰, 杨博, 刘俊敏, 周新星, 李瑛, 陈书青, 范滇元 2020 物理学报 69 014101Google Scholar

    Xie Z Q, He Y L, Wang P P, Su M Y, Chen X Y, Yang B, Liu J M, Zhou X X, Li Y, Chen S Q, Fan D Y 2020 Acta Phys. Sin. 69 014101Google Scholar

    [51]

    Folland T G, Fali A, White S T, et al. 2018 Nat. Commun. 9 4371Google Scholar

    [52]

    Tian J, Luo H, Yang Y, Ding F, Qu Y, Zhao D, Qiu M, Bozhevolnyi S I 2019 Nat. Commun. 10 396Google Scholar

    [53]

    Wen D, Yue F, Li G, et al. 2015 Nat. Commun. 6 8241Google Scholar

    [54]

    Maguid E, Yulevich I, Veksler D, Kleiner V, Brongersma M L, Hasman E 2016 Science 352 1202Google Scholar

  • [1] Chen Le-Di, Fan Ren-Hao, Liu Yu, Tang Gong-Hui, Ma Zhong-Li, Peng Ru-Wen, Wang Mu. Broadband modulation of terahertz wave polarization states with flexible metamaterial. Acta Physica Sinica, 2022, 71(18): 187802. doi: 10.7498/aps.71.20220801
    [2] Lin Yue-Chai, Liu Fang, Huang Yi-Dong. Cherenkov radiation based on metamaterials. Acta Physica Sinica, 2020, 69(15): 154103. doi: 10.7498/aps.69.20200260
    [3] Wang Chen-Chao, Wu Tai-Quan, Wang Xin-Yan, Jiang Ying. Structure of NO dimer multilayer on Rh(111). Acta Physica Sinica, 2017, 66(2): 026301. doi: 10.7498/aps.66.026301
    [4] Ma Xiao-Liang, Li Xiong, Guo Ying-Hui, Zhao Ze-Yu, Luo Xian-Gang. Meta-antenna: principle, device and application. Acta Physica Sinica, 2017, 66(14): 147802. doi: 10.7498/aps.66.147802
    [5] Deng Jun-Hong, Li Gui-Xin. Nonlinear photonic metasurfaces. Acta Physica Sinica, 2017, 66(14): 147803. doi: 10.7498/aps.66.147803
    [6] Long Yang, Ren Jie, Jiang Hai-Tao, Sun Yong, Chen Hong. Quantum spin Hall effect in metamaterials. Acta Physica Sinica, 2017, 66(22): 227803. doi: 10.7498/aps.66.227803
    [7] Jiang Ping, Si Dao-Wei, Zhu Hui-Wen, Li Pei-Gang, Wang Shun-Li, Cui Can, Tang Wei-Hua. Optical and electrical characterization of (BiFeO3)25/(La0.7Sr0.3MnO3)25 multilayered thin films. Acta Physica Sinica, 2011, 60(11): 117203. doi: 10.7498/aps.60.117203
    [8] Chen Chang-Zhao, Cai Chuan-Bing, Liu Zhi-Yong, Ying Li-Liang, Gao Bo, Liu Jin-Lei, Lu Yu-Ming. On epitaxial structure and flux pinning of NdBa2Cu3O7-δ/YBa2Cu3O7-δ superconducting multilayers. Acta Physica Sinica, 2008, 57(7): 4371-4378. doi: 10.7498/aps.57.4371
    [9] Zhai Zhong-Hai, Teng Jiao, Li Bao-He, Wang Li-Jin, Yu Guang-Hua, Zhu Feng-Wu. Exchange bias with perpendicular anisotropy in (Pt/Co)n/FeMn multilayers. Acta Physica Sinica, 2006, 55(4): 2064-2068. doi: 10.7498/aps.55.2064
    [10] Wang Wen-Jing, Yuan Hui-Min, Jiang Shan, Xiao Shu-Qin, Yan Shi-Shen. Transverse giant magneto-impedance effect in FeCuCrVSiB single layered and multilayered films. Acta Physica Sinica, 2006, 55(11): 6108-6112. doi: 10.7498/aps.55.6108
    [11] Wei Xiang-Jun, Xu Qing, Wang Tian-Min, Jia Quan-Jie, Wang Huan-Hua, Feng Song-Lin. Microstructure of TiNi shape memory alloy films made of sputter-deposited Ni/Ti multilayers. Acta Physica Sinica, 2006, 55(3): 1508-1511. doi: 10.7498/aps.55.1508
    [12] Hwang Pol, Li Bao-He, Yang Tao, Zhai Zhong-Hai, Zhu Feng-Wu. Correlation among magnetic properties, perpendicular magnetic recording properti es and microstructure of[Co8585Cr1515/Pt]2020 multilayers. Acta Physica Sinica, 2005, 54(4): 1841-1846. doi: 10.7498/aps.54.1841
    [13] Chen Wei-Ping, Xiao Shu-Qin, Wang Wen-Jing, Jiang Shan, Liu Yi-Hua. Study on the giant magnetoimpedance effect of FeCuCrVSiB multilayered films. Acta Physica Sinica, 2005, 54(6): 2929-2933. doi: 10.7498/aps.54.2929
    [14] Qiao Feng, Huang Xin-Fan, Zhu Da, Ma Zhong-Yuan, Zou HeCheng, Sui Yan-Ping, Li Wei, Zhou Xiao-Hui, Chen Kun-Ji. NcSi/SiO2 multilayer prepared by the method of laser constrained crystallization. Acta Physica Sinica, 2004, 53(12): 4303-4307. doi: 10.7498/aps.53.4303
    [15] Wang Hong-Chang, Wang Zhan-Shan, Li Fo-Sheng, Qin Shu-Ji, Du Yun, Wang Li, Zhang Zhong, Chen Ling-Yan. Analysis of the reflective performance of EUV multilayer under the influence of capping layer. Acta Physica Sinica, 2004, 53(7): 2368-2372. doi: 10.7498/aps.53.2368
    [16] Wen Xiao-Wen, Li Guo-Jun, Qiu Gao-Xin, Li Yong-Ping, Ding Lei, Sui Zhan. One-dimensional magneto optical multi-layer film isolator with multi-defect. Acta Physica Sinica, 2004, 53(10): 3571-3576. doi: 10.7498/aps.53.3571
    [17] Zhou Xun, Liang Bing-Qing, Wang Hai, Zhang Zhen-Rong, Chen Liang-Yao, Wang Yin-Jun. A study on magnetic and magneto-optical properties of PdMn/Co multilayers. Acta Physica Sinica, 2003, 52(10): 2616-2621. doi: 10.7498/aps.52.2616
    [18] Xu Run, Shen Ming-Rong, Ge Shui-Bing. . Acta Physica Sinica, 2002, 51(5): 1139-1143. doi: 10.7498/aps.51.1139
    [19] LIANG BING-QING, CHEN XI, ZHOU XUN, LIU HONG, WANG HAI, TANG YUN-JUN, WANG YIN-JUN, WANG SONG-YOU, CHEN LIANG-YAO. MAGNETO-OPTICAL PROPERTIES OF Pt1-xMnx/Co MULTILAYERS. Acta Physica Sinica, 2000, 49(10): 2059-2065. doi: 10.7498/aps.49.2059
    [20] ZHOU YUN-SONG, CHEN JIN-CHANG, LIN DUO-LIANG. MAGNETIC BEHAVIOUR OF ISING MULTILAYERS. Acta Physica Sinica, 2000, 49(12): 2477-2481. doi: 10.7498/aps.49.2477
Metrics
  • Abstract views:  11221
  • PDF Downloads:  398
  • Cited By: 0
Publishing process
  • Received Date:  25 February 2020
  • Accepted Date:  23 March 2020
  • Available Online:  12 May 2020
  • Published Online:  05 August 2020

/

返回文章
返回