Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Scatterings and wavefront manipulations of surface plasmon polaritons

Guan Fu-Xin Dong Shao-Hua He Qiong Xiao Shi-Yi Sun Shu-Lin Zhou Lei

Citation:

Scatterings and wavefront manipulations of surface plasmon polaritons

Guan Fu-Xin, Dong Shao-Hua, He Qiong, Xiao Shi-Yi, Sun Shu-Lin, Zhou Lei
PDF
HTML
Get Citation
  • Surface plasmon polaritons (SPPs) have found many important applications in on-chip signal transportation, enhanced nonlinear/Raman effect, biological/chemical sensing, super resolution imaging, etc. In these applications, the near-field propagation and far-field scattering of SPPs play a vital role. However, there has been strong desire to understand these physical effects. In this paper, we first briefly review the history and progress of SPPs. Next, we mainly focus on the near-field propagation and far-field scattering of SPPs, including their fundamental theories and practical applications. Finally, we review several different approaches to manipulating the near-field wavefronts of SPPs. These researches offer us a more in-depth understanding and the ability to more strongly control the scattering characteristics of SPPs, which may promote the scientific researches and practical applications of SPPs in the future.
      Corresponding author: Sun Shu-Lin, sls@fudan.edu.cn ; Zhou Lei, phzhou@fudan.edu.cn
    [1]

    Raether H 1988 Springer 111 1Google Scholar

    [2]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824Google Scholar

    [3]

    Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667Google Scholar

    [4]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534Google Scholar

    [5]

    Huang K C Y, Seo M K, Sarmiento T, Huo Y, Harris J S, Brongersma M L 2014 Nat. Photonics 8 244Google Scholar

    [6]

    Choo H, Kim M K, Staffaroni M, Seok T J, Bokor J, Cabrini S, Schuck P J, Wu M C, Yablonovitch E 2012 Nat. Photonics 6 838Google Scholar

    [7]

    Atwater H A, Polman A 2010 Nat. Mater. 9 205Google Scholar

    [8]

    Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J, Van Duyne R P 2008 Nat. Mater. 7 442Google Scholar

    [9]

    Hutter E, Fendler J H 2004 Adv. Mater. 16 1685Google Scholar

    [10]

    Mühlschlegel P, Eisler H J, Martin O J F, Hecht B, Pohl D W 2005 Science 308 1607Google Scholar

    [11]

    Beeck O, Ritchie AW 1950 Discuss. Faraday Soc. 8 159Google Scholar

    [12]

    Pendry J B, Martin-Moreno L, Garcia-Vidal F J 2004 Science 305 847Google Scholar

    [13]

    Hibbins A P, Evans B R, Sambles J R 2005 Science 308 670Google Scholar

    [14]

    Maier S A, Andrews S R, Martín-Moreno L, García-Vidal F J 2006 Phys. Rev. Lett. 97 176805Google Scholar

    [15]

    Sun S, He Q, Xiao S, Xu Q, Li X, Zhou L 2012 Nat. Mater. 11 426Google Scholar

    [16]

    Elser J, Podolskiy V A 2008 Phys. Rev. Lett. 100 066402Google Scholar

    [17]

    Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G, Zhang X 2009 Nature 461 629Google Scholar

    [18]

    Chang C M, Tseng M L, Cheng B H, Chu C H, Ho Y Z, Huang H W, Lan Y C, Huang D W, Liu A Q, Tsai D P 2013 Adv. Mater. 25 1118Google Scholar

    [19]

    Quinten M, Leitner A, Krenn J R, Aussenegg F R 1998 Opt. Lett. 23 1331Google Scholar

    [20]

    Brongersma M L, Hartman J W, Atwater H A 2000 Phys. Rev. B 62 16356Google Scholar

    [21]

    Maier S A, Brongersma M L, Kik P G, Meltzer S, Requicha A A G, Atwater H A 2001 Adv. Mater. 13 1501Google Scholar

    [22]

    Law M, Sirbuly D J, Johnson J C, Goldberger J, Saykally R J, Yang P 2004 Science 305 1269Google Scholar

    [23]

    Ditlbacher H, Hohenau A, Wagner D, Kreibig U, Rogers M, Hofer F, Aussenegg F R, Krenn J R 2005 Phys. Rev. Lett. 95 257403Google Scholar

    [24]

    Yin L, Vlasko-Vlasov V K, Pearson J, Hiller J M, Hua J, Welp U, Brown D E, Kimball C W 2005 Nano. Lett. 5 1399Google Scholar

    [25]

    Wei H, Wang Z, Tian X, Käll M, Xu H 2011 Nat. Commun. 2 387Google Scholar

    [26]

    Zia R, Schuller J A, Chandran A, Brongersma M L 2006 Mater. Today 9 20Google Scholar

    [27]

    Ekmel Ozbay 2006 Science 311 189Google Scholar

    [28]

    Lal S, Link S, Halas N J 2007 Nat. Photonics 1 641Google Scholar

    [29]

    Ebbesen T W, Genet C, Bozhevolnyi S I 2008 Phys. Today 61 44Google Scholar

    [30]

    Volkov V S, Bozhevolnyi S I, Rodrigo S G, Martín-Moreno L, García-Vidal F J, Devaux E, Ebbesen T W 2009 Nano Lett. 9 1278Google Scholar

    [31]

    Verhagen E, Spasenović M, Polman A, Kuipers L 2009 Phys. Rev. Lett. 102 203904Google Scholar

    [32]

    Gramotnev D K, Bozhevolnyi S I 2010 Nat. Photonics 4 83Google Scholar

    [33]

    Stegeman G I, Maradudin A A, Rahman T S 1981 Phys. Rev. B 23 2576Google Scholar

    [34]

    Stegeman G I, Glass N E, Maradudin A A, Shen T P, Wallis R F 1983 Opt. Lett. 8 626Google Scholar

    [35]

    Kocabaş Ş E, Veronis G, Miller D A B, Fan S 2008 IEEE 14 1462Google Scholar

    [36]

    Oulton R F, Pile D F P, Liu Y, Zhang X 2007 Phys. Rev. B 76 035408Google Scholar

    [37]

    Chaves A J, Amorim B, Bludov Y V., Gonçalves P A D, Peres N M R 2018 Phys. Rev. B 97 035434Google Scholar

    [38]

    Guan F, Sun S, Ma S, Fang Z, Zhu B. Li X, He Q, Xiao S, Zhou L 2018 J. Phys. Condens. Matter 30 114002Google Scholar

    [39]

    Hao J, Zhou L 2008 Phys. Rev. B 77 094201Google Scholar

    [40]

    Tang S, Zhu B, Jia M, He Q, Sun S, Mei Y, Zhou L 2015 Phys. Rev. B 91 174201Google Scholar

    [41]

    Li J, Zhou L, Chan C T, Sheng P 2003 Phys. Rev. Lett. 90 083901Google Scholar

    [42]

    Hessel A, Oliner A A 1965 Appl. Opt. 4 1275Google Scholar

    [43]

    Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y, Ebbesen T W 2006 Nature 440 508Google Scholar

    [44]

    Stockman M I 2006 Nano Lett. 6 2604Google Scholar

    [45]

    Liu Y, Zentgraf T, Bartal G, Zhang X 2010 Nano Lett. 10 1991Google Scholar

    [46]

    Miyu O, Kato J, Kawata S 2011 Science 332 218Google Scholar

    [47]

    Yu L, Lin D, Chen Y, Chang Y, Huang K, Liaw J, Yeh J, Liu J, Yeh C, Lee C 2005 Phys. Rev. B 71 041405(R)Google Scholar

    [48]

    Kim S, Lim Y, Kim H, Park J, Lee B 2008 Appl. Phys. Lett. 92 013103Google Scholar

    [49]

    Kumar M S, Piao X, Koo S, Yu S, Park N 2010 Opt. Express 18 8800Google Scholar

    [50]

    Zhang S, Gu C, Xu H 2014 Small 10 4264Google Scholar

    [51]

    Jiang Q, Bao Y, Lin F, Zhu X, Zhang S, Fang Z 2018 Adv. Funct. Mater. 28 1705503Google Scholar

    [52]

    Maradudin A A, Visscher W M 1985 Z. Phys. B: Condens. Matter 60 215Google Scholar

    [53]

    Shchegrov A, Novikov I, Maradudin A 1997 Phys. Rev. Lett. 78 4269Google Scholar

    [54]

    Sanchez-Gil J A, Maradudin A A 1999 Phys. Rev. B 60 8359Google Scholar

    [55]

    Evlyukhin A B, Bozhevolnyi S I 2015 Phys. Rev. B 92 245419Google Scholar

    [56]

    Nikitin A Y, López-Tejeira F, Martín-Moreno L 2007 Phys. Rev. B 75 035129Google Scholar

    [57]

    Brucoli G, Martín-Moreno L. 2011 Phys. Rev. B 83 045422Google Scholar

    [58]

    Al-Bader S, Jamid H 2007 Phys. Rev. B 76 235410Google Scholar

    [59]

    Guan F, Sun S, Xiao S, He Q, Zhou L 2019 Sci. Bull. 64 802Google Scholar

    [60]

    Grüner G 1988 Rev. Mod. Phys. 60 1129Google Scholar

    [61]

    Zhou L, Huang X, Chan C T 2005 Photonics Nanostruct. 3 100Google Scholar

    [62]

    Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X 2011 Nature 474 64Google Scholar

    [63]

    Ju L, Geng B, Horng J, et al. 2011 Nat. Nanotechnol. 6 630Google Scholar

    [64]

    Vakil A, Engheta N 2011 Science 332 1291Google Scholar

    [65]

    Grigorenko A N, Polini M, Novoselov K S 2012 Nat. Photonics 6 749Google Scholar

    [66]

    Hohenau A, Krenn J R, Stepanov A L, Drezet A, Ditlbacher H, Steinberger B, Leitner A, Aussenegg F R 2005 Opt. Lett. 30 893Google Scholar

    [67]

    Devaux E, Laluet J Y, Stein B, Genet C, Ebbesen T, Weeber J C, Dereux A 2010 Opt. Express 18 20610Google Scholar

    [68]

    Radko I P, Eylyukhin A B, Boltasseva A, Bozhevolnyi S I 2008 Opt. Express 16 3924Google Scholar

    [69]

    Ditlbacher H, Krenn J R, Schider G, Leitner A, Aussenegg F R 2002 Appl. Phys. Lett. 81 1762Google Scholar

    [70]

    Drezet A, Stepanov A L, Ditlbacher H, Hohenau A, Steinberger B, Aussenegg F R, Leitner A, Krenn J R 2005 Appl. Phys. Lett. 86 074104Google Scholar

    [71]

    Randhawa S, González M U, Renger J, Enoch S, Quidant R 2010 Opt. Express 18 14496Google Scholar

    [72]

    Chen Y G, Chen Y H, Li Z Y 2014 Opt. Lett. 39 339Google Scholar

    [73]

    Li L, Li T, Wang S M, Zhang C, Zhu S N 2011 Phys. Rev. Lett. 107 126804Google Scholar

    [74]

    Li L, Li T, Wang S M, Zhu S N 2013 Phys. Rev. Lett. 110 046807Google Scholar

    [75]

    Yu N, Genevet P, Kats M, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [76]

    Sun S, He Q, Hao J, Xiao S, Zhou L 2019 Adv. Opt. Photonics 11 380Google Scholar

    [77]

    He Q, Sun S, Xiao S, Zhou L 2018 Adv. Opt. Mater. 6 1800415Google Scholar

    [78]

    Qu C, Ma S, Hao J, Qiu M, Li X, Xiao S, Miao Z, Dai N, He Q, Sun S, Zhou L 2015 Phys. Rev. Lett. 115 235503Google Scholar

    [79]

    Miao Z, Wu Q, Li X, He Q, Ding K, An Z, Zhang Y, Zhou L 2015 Phys. Rev. X 5 041027Google Scholar

    [80]

    Sun S, Yang K, Wang C, et al. 2012 Nano Lett. 12 6223Google Scholar

    [81]

    Khorasaninejad M, Chen W T, Devlin R C, Oh J, Zhu A Y, Capasso F 2016 Science 352 1190Google Scholar

    [82]

    Li X, Xiao S, Cai B, He Q, Cui T J, Zhou L 2012 Opt. Lett. 37 4940Google Scholar

    [83]

    Sun W, He Q, Sun S, Zhou L 2016 Light Sci. Appl. 5 e16003Google Scholar

    [84]

    Duan J, Guo H, Dong S, Cai T, Luo W, Liang Z, He Q, Zhou L, Sun S 2017 Sci. Rep. 7 1354Google Scholar

    [85]

    Luo W, Xiao S, He Q, Sun S, Zhou L 2015 Adv. Opt. Mater. 3 1102Google Scholar

    [86]

    Chen W, Yang K, Wang C, Huang Y, Sun G, Chiang I, Liao C, Hsu W, Lin H, Sun S, Zhou L, Liu A, Tsai D 2014 Nano Lett. 14 225Google Scholar

    [87]

    Wang Z, Dong S, Luo W, Jia M, Liang Z, He Q, Sun S, Zhou L 2018 Appl. Phys. Lett. 112 191901Google Scholar

    [88]

    Jia M, Wang Z, Li H, Wang X, Luo W, Sun S, Zhang Y, He Q, Zhou L 2019 Light Sci. Appl. 8 16Google Scholar

    [89]

    Dong S, Zhang Y, Guo H, Duan J, Guan F, He Q, Zhao H, Zhou L, Sun S 2018 Phys. Rev. Appl. 9 014032Google Scholar

    [90]

    Dong S, Wang Z, Guo H, Guan F, Li X, He Q, Zhao H, Zhou L, Sun S 2018 Eurphys. Lett. 122 67002Google Scholar

    [91]

    Garcia-Vidal F J, Martín-Moreno L, Pendry J B 2005 J. Opt. A: Pure Appl. Opt. 7 S97Google Scholar

    [92]

    Zhou L, Chan C T 2004 Appl. Phys. Lett. 84 1444Google Scholar

    [93]

    Jiang S C, Xiong X, Hu Y S, Jiang S W, Hu Y H, Xu D H, Peng R, Wang M 2015 Phys. Rev. B 91 125421Google Scholar

    [94]

    Decker M, Staude I, Falkner M, Dominguez J, Neshev D N, Brener I, Pertsch T, Kivshar Y 2015 Adv. Opt. Mater. 3 813Google Scholar

    [95]

    Bruggeman D A G 1935 Ann. Phys. 24 636Google Scholar

    [96]

    Rytov S 1956 Sov. Phys. JETP-USSR 2 466

    [97]

    Sun S, Huang X, Zhou L 2007 Phys. Rev. E 75 066602Google Scholar

  • 图 1  (a) SPPs的复杂散射效应; (b) SPPs遇到金属表面缺陷时的散射效应; (c) SPPs的反射和折射效应[16]; (d) 亚波长等离激元纳米激光器[17]; (e) SPPs的三维远场聚焦效应[18]

    Figure 1.  (a) Complex scattering effects of SPPs; (b) scattering effect of SPPs striking a defect on the plasmonic metal; (c) reflection and refraction effects of SPPs[16]; (d) subwavelength plasmonic nano-laser[17]; (e) three-dimensional far-field focusing effect of SPPs[18].

    图 2  (a) SPPs在介质波导中的传输及辐射[22]; (b) SPPs聚焦装置[24]

    Figure 2.  (a) Propagation and radiation of SPPs inside a dielectric waveguide[22]; (b) anano-device for SPPs focusing[24].

    图 3  (a), (b)等离激元金属/真空对接系统(上下为完美电导体边界)中的表面等离极化激元反射谱[33]; (c), (d) 等离激元波导对接系统中的SPPs反射系数[35]; (e), (f) 金属/介质开放体系中的SPPs的散射系数(R, T, S)[36]

    Figure 3.  (a), (b) SPPs reflectance spectrum of a plasmonic metal/vacuum junction system surrounded by perfect electric conductors[33]; (c), (d) SPPs reflection coefficients of a plasmonic waveguide junction[35]; (e), (f) scattering coefficients $ (R, T, S) $ of SPPs inside a jointed metal/dielectric open system[36].

    图 4  (a) 周期性等离激元体对接结构; 特定等离激元周期结构中的(b) SPPs和散射模式以及(c)倏逝波模式的色散关系[38]

    Figure 4.  (a) Periodic plasmonic junction system; dispersion relations of (b) SPPs and scattering modes, and (c) evanescent modes inside a typical plasmonic superlattice[38].

    图 5  (a) 等离激元波导对接体系; (b), (c) 不同金属和不同介质对接的波导体系中SPPs的反射率谱线; (d) 开放式等离激元对接体系; (e) 反射率的变化谱线; (f) 体系中存在一阶波导模式时的场分布[38]

    Figure 5.  (a) Plasmonic waveguide junction system; (b), (c) SPPs reflectance spectra in a waveguide junction system with different metals or dielectrics; (d) an open plasmonic junction system; (e) SPPs reflection amplitude as function of periodicity P in such system; (f) field distributions inside such plasmonic system with the first-order scattering modes appearing[38].

    图 6  (a) 等离激元体Y型分流器和Mach-Zehnder干涉仪[43]; (b) 基于纳米薄膜的SPPs全反射[44]; (c) SPPs的180°转向效应[45]

    Figure 6.  (a) Plasmonic Y-splitter and Mach-Zehnder interferometer[43]; (b) total reflection of SPPs based on a nano-layer system[44]; (c) 180° bending effect of SPPs[45].

    图 7  (a) SPPs彩色全息术; (b) 重建的三色苹果全息图像[46]; (c), (d) SPPs远场聚焦[49]

    Figure 7.  (a) Colorful holography of SPPs; (b) reconstructed image of 3D colorful apple[46]; (c), (d) far-field focusing of SPPs[49].

    图 8  (a) 半无限大等离激元体金属对接系统; (b) 远场散射强度随着散射角度$\varphi $$\sqrt {\left| {{\varepsilon _2}} \right|} $的变化; (c) 特定等离激元对接体系中的远场散射角分布[59]

    Figure 8.  (a) Semi-infinite plasmonic metal junction system; (b) scattering far-field intensity as function of $\varphi $ and $\sqrt {\left| {{\varepsilon _2}} \right|} $; (c) scattering far-field angular distribution of SPPs in a typical plasmonic junction system[59].

    图 9  (a) 理想的半无限大二维等离激元体系统; (d) 半无限大人工金属网栅结构; (b), (e)相应体系中的SPPs的色散关系; (c), (f) 相应体系中的SPPs散射远场角谱分布[59]

    Figure 9.  (a) An ideal semi-infinite 2D plasmonic system; (d) a semi-infinite artificial metallic mesh structure; (b), (e) dispersion relations and (c), (f) scattering far-field angular distributions of SPPs in two plasmonic systems[59].

    图 10  (a), (b) 利用不同形状的介质光学器件来调控SPPs的波前[66,67]; (c) 利用纳米颗粒阵列实现SPPs折射[68]

    Figure 10.  (a), (b) SPPs wavefront manipulations with dielectric optical elements of different shapes[66,67]; (c) refraction of SPPs with nanoparticle array[68].

    图 11  基于(a)纳米颗粒阵列[69]和(b)介质光栅[71]的SPPs布拉格反射; (c) SPPs全息[72]; (d) SPPs的艾里光束激发[73]

    Figure 11.  Bragg reflections based on (a) nanoparticle array[69] and (b) dielectric grating[71]; (c) SPP holography[72]; (d) SPPs Airy beam generation[73].

    图 12  (a) 真实的超构表面结构及(b)其对SPPs的反射系数[89]

    Figure 12.  (a) Practical metasurface and (b) corresponding SPPs reflection coefficients[89].

    图 13  (a) 超构表面样品; (b), (c) 模拟和(d) 实验验证SPPs异常反射[89]

    Figure 13.  (a) Metasurface sample and (b), (c) numerical / (d) experimental verifications of SPPs anomalous reflection[89].

    图 14  超构表面实现(a) SPPs贝塞尔光束激发和(b)SPPs聚焦效应[89]

    Figure 14.  Metasurfaces for (a) SPPs Bessel beam generation and (b) SPPs focusing[89].

  • [1]

    Raether H 1988 Springer 111 1Google Scholar

    [2]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824Google Scholar

    [3]

    Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667Google Scholar

    [4]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534Google Scholar

    [5]

    Huang K C Y, Seo M K, Sarmiento T, Huo Y, Harris J S, Brongersma M L 2014 Nat. Photonics 8 244Google Scholar

    [6]

    Choo H, Kim M K, Staffaroni M, Seok T J, Bokor J, Cabrini S, Schuck P J, Wu M C, Yablonovitch E 2012 Nat. Photonics 6 838Google Scholar

    [7]

    Atwater H A, Polman A 2010 Nat. Mater. 9 205Google Scholar

    [8]

    Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J, Van Duyne R P 2008 Nat. Mater. 7 442Google Scholar

    [9]

    Hutter E, Fendler J H 2004 Adv. Mater. 16 1685Google Scholar

    [10]

    Mühlschlegel P, Eisler H J, Martin O J F, Hecht B, Pohl D W 2005 Science 308 1607Google Scholar

    [11]

    Beeck O, Ritchie AW 1950 Discuss. Faraday Soc. 8 159Google Scholar

    [12]

    Pendry J B, Martin-Moreno L, Garcia-Vidal F J 2004 Science 305 847Google Scholar

    [13]

    Hibbins A P, Evans B R, Sambles J R 2005 Science 308 670Google Scholar

    [14]

    Maier S A, Andrews S R, Martín-Moreno L, García-Vidal F J 2006 Phys. Rev. Lett. 97 176805Google Scholar

    [15]

    Sun S, He Q, Xiao S, Xu Q, Li X, Zhou L 2012 Nat. Mater. 11 426Google Scholar

    [16]

    Elser J, Podolskiy V A 2008 Phys. Rev. Lett. 100 066402Google Scholar

    [17]

    Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G, Zhang X 2009 Nature 461 629Google Scholar

    [18]

    Chang C M, Tseng M L, Cheng B H, Chu C H, Ho Y Z, Huang H W, Lan Y C, Huang D W, Liu A Q, Tsai D P 2013 Adv. Mater. 25 1118Google Scholar

    [19]

    Quinten M, Leitner A, Krenn J R, Aussenegg F R 1998 Opt. Lett. 23 1331Google Scholar

    [20]

    Brongersma M L, Hartman J W, Atwater H A 2000 Phys. Rev. B 62 16356Google Scholar

    [21]

    Maier S A, Brongersma M L, Kik P G, Meltzer S, Requicha A A G, Atwater H A 2001 Adv. Mater. 13 1501Google Scholar

    [22]

    Law M, Sirbuly D J, Johnson J C, Goldberger J, Saykally R J, Yang P 2004 Science 305 1269Google Scholar

    [23]

    Ditlbacher H, Hohenau A, Wagner D, Kreibig U, Rogers M, Hofer F, Aussenegg F R, Krenn J R 2005 Phys. Rev. Lett. 95 257403Google Scholar

    [24]

    Yin L, Vlasko-Vlasov V K, Pearson J, Hiller J M, Hua J, Welp U, Brown D E, Kimball C W 2005 Nano. Lett. 5 1399Google Scholar

    [25]

    Wei H, Wang Z, Tian X, Käll M, Xu H 2011 Nat. Commun. 2 387Google Scholar

    [26]

    Zia R, Schuller J A, Chandran A, Brongersma M L 2006 Mater. Today 9 20Google Scholar

    [27]

    Ekmel Ozbay 2006 Science 311 189Google Scholar

    [28]

    Lal S, Link S, Halas N J 2007 Nat. Photonics 1 641Google Scholar

    [29]

    Ebbesen T W, Genet C, Bozhevolnyi S I 2008 Phys. Today 61 44Google Scholar

    [30]

    Volkov V S, Bozhevolnyi S I, Rodrigo S G, Martín-Moreno L, García-Vidal F J, Devaux E, Ebbesen T W 2009 Nano Lett. 9 1278Google Scholar

    [31]

    Verhagen E, Spasenović M, Polman A, Kuipers L 2009 Phys. Rev. Lett. 102 203904Google Scholar

    [32]

    Gramotnev D K, Bozhevolnyi S I 2010 Nat. Photonics 4 83Google Scholar

    [33]

    Stegeman G I, Maradudin A A, Rahman T S 1981 Phys. Rev. B 23 2576Google Scholar

    [34]

    Stegeman G I, Glass N E, Maradudin A A, Shen T P, Wallis R F 1983 Opt. Lett. 8 626Google Scholar

    [35]

    Kocabaş Ş E, Veronis G, Miller D A B, Fan S 2008 IEEE 14 1462Google Scholar

    [36]

    Oulton R F, Pile D F P, Liu Y, Zhang X 2007 Phys. Rev. B 76 035408Google Scholar

    [37]

    Chaves A J, Amorim B, Bludov Y V., Gonçalves P A D, Peres N M R 2018 Phys. Rev. B 97 035434Google Scholar

    [38]

    Guan F, Sun S, Ma S, Fang Z, Zhu B. Li X, He Q, Xiao S, Zhou L 2018 J. Phys. Condens. Matter 30 114002Google Scholar

    [39]

    Hao J, Zhou L 2008 Phys. Rev. B 77 094201Google Scholar

    [40]

    Tang S, Zhu B, Jia M, He Q, Sun S, Mei Y, Zhou L 2015 Phys. Rev. B 91 174201Google Scholar

    [41]

    Li J, Zhou L, Chan C T, Sheng P 2003 Phys. Rev. Lett. 90 083901Google Scholar

    [42]

    Hessel A, Oliner A A 1965 Appl. Opt. 4 1275Google Scholar

    [43]

    Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y, Ebbesen T W 2006 Nature 440 508Google Scholar

    [44]

    Stockman M I 2006 Nano Lett. 6 2604Google Scholar

    [45]

    Liu Y, Zentgraf T, Bartal G, Zhang X 2010 Nano Lett. 10 1991Google Scholar

    [46]

    Miyu O, Kato J, Kawata S 2011 Science 332 218Google Scholar

    [47]

    Yu L, Lin D, Chen Y, Chang Y, Huang K, Liaw J, Yeh J, Liu J, Yeh C, Lee C 2005 Phys. Rev. B 71 041405(R)Google Scholar

    [48]

    Kim S, Lim Y, Kim H, Park J, Lee B 2008 Appl. Phys. Lett. 92 013103Google Scholar

    [49]

    Kumar M S, Piao X, Koo S, Yu S, Park N 2010 Opt. Express 18 8800Google Scholar

    [50]

    Zhang S, Gu C, Xu H 2014 Small 10 4264Google Scholar

    [51]

    Jiang Q, Bao Y, Lin F, Zhu X, Zhang S, Fang Z 2018 Adv. Funct. Mater. 28 1705503Google Scholar

    [52]

    Maradudin A A, Visscher W M 1985 Z. Phys. B: Condens. Matter 60 215Google Scholar

    [53]

    Shchegrov A, Novikov I, Maradudin A 1997 Phys. Rev. Lett. 78 4269Google Scholar

    [54]

    Sanchez-Gil J A, Maradudin A A 1999 Phys. Rev. B 60 8359Google Scholar

    [55]

    Evlyukhin A B, Bozhevolnyi S I 2015 Phys. Rev. B 92 245419Google Scholar

    [56]

    Nikitin A Y, López-Tejeira F, Martín-Moreno L 2007 Phys. Rev. B 75 035129Google Scholar

    [57]

    Brucoli G, Martín-Moreno L. 2011 Phys. Rev. B 83 045422Google Scholar

    [58]

    Al-Bader S, Jamid H 2007 Phys. Rev. B 76 235410Google Scholar

    [59]

    Guan F, Sun S, Xiao S, He Q, Zhou L 2019 Sci. Bull. 64 802Google Scholar

    [60]

    Grüner G 1988 Rev. Mod. Phys. 60 1129Google Scholar

    [61]

    Zhou L, Huang X, Chan C T 2005 Photonics Nanostruct. 3 100Google Scholar

    [62]

    Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X 2011 Nature 474 64Google Scholar

    [63]

    Ju L, Geng B, Horng J, et al. 2011 Nat. Nanotechnol. 6 630Google Scholar

    [64]

    Vakil A, Engheta N 2011 Science 332 1291Google Scholar

    [65]

    Grigorenko A N, Polini M, Novoselov K S 2012 Nat. Photonics 6 749Google Scholar

    [66]

    Hohenau A, Krenn J R, Stepanov A L, Drezet A, Ditlbacher H, Steinberger B, Leitner A, Aussenegg F R 2005 Opt. Lett. 30 893Google Scholar

    [67]

    Devaux E, Laluet J Y, Stein B, Genet C, Ebbesen T, Weeber J C, Dereux A 2010 Opt. Express 18 20610Google Scholar

    [68]

    Radko I P, Eylyukhin A B, Boltasseva A, Bozhevolnyi S I 2008 Opt. Express 16 3924Google Scholar

    [69]

    Ditlbacher H, Krenn J R, Schider G, Leitner A, Aussenegg F R 2002 Appl. Phys. Lett. 81 1762Google Scholar

    [70]

    Drezet A, Stepanov A L, Ditlbacher H, Hohenau A, Steinberger B, Aussenegg F R, Leitner A, Krenn J R 2005 Appl. Phys. Lett. 86 074104Google Scholar

    [71]

    Randhawa S, González M U, Renger J, Enoch S, Quidant R 2010 Opt. Express 18 14496Google Scholar

    [72]

    Chen Y G, Chen Y H, Li Z Y 2014 Opt. Lett. 39 339Google Scholar

    [73]

    Li L, Li T, Wang S M, Zhang C, Zhu S N 2011 Phys. Rev. Lett. 107 126804Google Scholar

    [74]

    Li L, Li T, Wang S M, Zhu S N 2013 Phys. Rev. Lett. 110 046807Google Scholar

    [75]

    Yu N, Genevet P, Kats M, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [76]

    Sun S, He Q, Hao J, Xiao S, Zhou L 2019 Adv. Opt. Photonics 11 380Google Scholar

    [77]

    He Q, Sun S, Xiao S, Zhou L 2018 Adv. Opt. Mater. 6 1800415Google Scholar

    [78]

    Qu C, Ma S, Hao J, Qiu M, Li X, Xiao S, Miao Z, Dai N, He Q, Sun S, Zhou L 2015 Phys. Rev. Lett. 115 235503Google Scholar

    [79]

    Miao Z, Wu Q, Li X, He Q, Ding K, An Z, Zhang Y, Zhou L 2015 Phys. Rev. X 5 041027Google Scholar

    [80]

    Sun S, Yang K, Wang C, et al. 2012 Nano Lett. 12 6223Google Scholar

    [81]

    Khorasaninejad M, Chen W T, Devlin R C, Oh J, Zhu A Y, Capasso F 2016 Science 352 1190Google Scholar

    [82]

    Li X, Xiao S, Cai B, He Q, Cui T J, Zhou L 2012 Opt. Lett. 37 4940Google Scholar

    [83]

    Sun W, He Q, Sun S, Zhou L 2016 Light Sci. Appl. 5 e16003Google Scholar

    [84]

    Duan J, Guo H, Dong S, Cai T, Luo W, Liang Z, He Q, Zhou L, Sun S 2017 Sci. Rep. 7 1354Google Scholar

    [85]

    Luo W, Xiao S, He Q, Sun S, Zhou L 2015 Adv. Opt. Mater. 3 1102Google Scholar

    [86]

    Chen W, Yang K, Wang C, Huang Y, Sun G, Chiang I, Liao C, Hsu W, Lin H, Sun S, Zhou L, Liu A, Tsai D 2014 Nano Lett. 14 225Google Scholar

    [87]

    Wang Z, Dong S, Luo W, Jia M, Liang Z, He Q, Sun S, Zhou L 2018 Appl. Phys. Lett. 112 191901Google Scholar

    [88]

    Jia M, Wang Z, Li H, Wang X, Luo W, Sun S, Zhang Y, He Q, Zhou L 2019 Light Sci. Appl. 8 16Google Scholar

    [89]

    Dong S, Zhang Y, Guo H, Duan J, Guan F, He Q, Zhao H, Zhou L, Sun S 2018 Phys. Rev. Appl. 9 014032Google Scholar

    [90]

    Dong S, Wang Z, Guo H, Guan F, Li X, He Q, Zhao H, Zhou L, Sun S 2018 Eurphys. Lett. 122 67002Google Scholar

    [91]

    Garcia-Vidal F J, Martín-Moreno L, Pendry J B 2005 J. Opt. A: Pure Appl. Opt. 7 S97Google Scholar

    [92]

    Zhou L, Chan C T 2004 Appl. Phys. Lett. 84 1444Google Scholar

    [93]

    Jiang S C, Xiong X, Hu Y S, Jiang S W, Hu Y H, Xu D H, Peng R, Wang M 2015 Phys. Rev. B 91 125421Google Scholar

    [94]

    Decker M, Staude I, Falkner M, Dominguez J, Neshev D N, Brener I, Pertsch T, Kivshar Y 2015 Adv. Opt. Mater. 3 813Google Scholar

    [95]

    Bruggeman D A G 1935 Ann. Phys. 24 636Google Scholar

    [96]

    Rytov S 1956 Sov. Phys. JETP-USSR 2 466

    [97]

    Sun S, Huang X, Zhou L 2007 Phys. Rev. E 75 066602Google Scholar

  • [1] Liu Hui-Gang, Zhang Xiang-Yu, Nan Xue-Ying, Zhao Er-Gang, Liu Hai-Tao. All-dielectric metasurface two-parameter sensor based on quasi-bound states in continuum. Acta Physica Sinica, 2024, 73(4): 047802. doi: 10.7498/aps.73.20231514
    [2] Nong Jie, Zhang Yi-Yi, Wei Xue-Ling, Jiang Xin-Peng, Li Ning, Wang Dong-Ying, Xiao Si-Yang, Chen Hong-Ting, Zhang Zhen-Rong, Yang Jun-Bo. Research on realizing high permeability and laser stealth compatibility in visible light band with dielectric/metal/dielectric film system. Acta Physica Sinica, 2023, 72(17): 177802. doi: 10.7498/aps.72.20230855
    [3] Gu Xin, Zhang Hui-Fang, Li Ming-Yu, Chen Jun-Ya, He Ying. Theoretical analysis of tunable double plasmon induced transparency in three-ellipse-shaped resonator coupled waveguide. Acta Physica Sinica, 2022, 71(24): 247301. doi: 10.7498/aps.71.20221365
    [4] Qin Zhao-Fu, Chen Hao, Hu Tao-Zheng, Chen Zhuo, Wang Zhen-Lin. Fundamental wave and second-harmonic focusing based on guided wave-driven phase-change materials metasurfaces. Acta Physica Sinica, 2022, 71(3): 034208. doi: 10.7498/aps.71.20211596
    [5] Fundamental wave and second-harmonic focusing based on guided wave-driven phase-change materials metasurfaces. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211596
    [6] Wang Mei-Ou, Xiao Qian, Jin Xia, Cao Yan-Yan, Xu Ya-Dong. Mid-infrared large-angle high-efficiency retroreflector based on subwavelenght metallic metagrating. Acta Physica Sinica, 2020, 69(1): 014211. doi: 10.7498/aps.69.20191144
    [7] Wang Shuai, Deng Zi-Lan, Wang Fa-Qiang, Wang Xiao-Lei, Li Xiang-Ping. Role of optical angular momentum in enhanced transmission process of plasmonic coaxial nanoring aperture. Acta Physica Sinica, 2019, 68(7): 077801. doi: 10.7498/aps.68.20182017
    [8] Xu Jin, Li Rong-Qiang, Jiang Xiao-Ping, Wang Shen-Yun, Han Tian-Cheng. Ultra-wideband linear polarization converter based on square split ring. Acta Physica Sinica, 2019, 68(11): 117801. doi: 10.7498/aps.68.20190267
    [9] Yang Jiu-Long, Yuan Qing-Chen, Chen Run-Feng, Fang Han-Lin, Xiao Fa-Jun, Li Jun-Tao, Jiang Bi-Qiang, Zhao Jian-Lin, Gan Xue-Tao. Enhanced third-harmonic generation in silicon metasurface. Acta Physica Sinica, 2019, 68(21): 214207. doi: 10.7498/aps.68.20190789
    [10] Qi Yun-Ping, Zhang Xue-Wei, Zhou Pei-Yang, Hu Bing-Bing, Wang Xiang-Xian. Refractive index sensor and filter of metal-insulator-metal waveguide based on ring resonator embedded by cross structure. Acta Physica Sinica, 2018, 67(19): 197301. doi: 10.7498/aps.67.20180758
    [11] Qi Yun-Ping, Zhou Pei-Yang, Zhang Xue-Wei, Yan Chun-Man, Wang Xiang-Xian. Enhanced optical transmission by exciting hybrid states of Tamm and surface plasmon polaritons in single slit with multi-pair groove nanostructure. Acta Physica Sinica, 2018, 67(10): 107104. doi: 10.7498/aps.67.20180117
    [12] Wang Wei, Gao She-Sheng, Meng Yang. Transmission characteristics of surface plasmon polaritons in -shaped resonator. Acta Physica Sinica, 2017, 66(1): 017301. doi: 10.7498/aps.66.017301
    [13] Pu Ming-Bo, Wang Chang-Tao, Wang Yan-Qin, Luo Xian-Gang. Subwavelength electromagnetics below the diffraction limit. Acta Physica Sinica, 2017, 66(14): 144101. doi: 10.7498/aps.66.144101
    [14] Deng Jun-Hong, Li Gui-Xin. Nonlinear photonic metasurfaces. Acta Physica Sinica, 2017, 66(14): 147803. doi: 10.7498/aps.66.147803
    [15] Zhang Yong-Yuan, Luo Li-Na, Zhang Zhong-Yue. Surface plasmon polaritons splitting properties of silver cross nanowires. Acta Physica Sinica, 2015, 64(9): 097303. doi: 10.7498/aps.64.097303
    [16] Luo Song, Fu Tong, Zhang Zhong-Yue. Fano resonance in sliver circular gap embedded with a sliver nanorod. Acta Physica Sinica, 2013, 62(14): 147303. doi: 10.7498/aps.62.147303
    [17] Qin Yan, Cao Wei, Zhang Zhong-Yue. Enhanced optical transmission through metallic slits embedded with rectangular cavities. Acta Physica Sinica, 2013, 62(12): 127302. doi: 10.7498/aps.62.127302
    [18] Zhang Zhi-Dong, Zhao Ya-Nan, Lu Dong, Xiong Zu-Hong, Zhang Zhong-Yue. Numerical investigation of the metal-insulator-metal waveguide filter based on the arc-shaped resonator. Acta Physica Sinica, 2012, 61(18): 187301. doi: 10.7498/aps.61.187301
    [19] Chen Yuan-Yuan, Zou Ren-Hua, Song Gang, Zhang Kai, Yu Li, Zhao Yu-Fang, Xiao Jing-Hua. The polarization characteristics of the excitation and emission of surface plasmon polarization in the Ag nanowires. Acta Physica Sinica, 2012, 61(24): 247301. doi: 10.7498/aps.61.247301
    [20] Miao Jiang-Ping, Wu Zong-Han, Sun Cheng-Xiu, Sun Yue-Ming. The self-consistent theoretical study of the effect of surface plasmon and polariton on electronic transport. Acta Physica Sinica, 2004, 53(8): 2728-2733. doi: 10.7498/aps.53.2728
Metrics
  • Abstract views:  13712
  • PDF Downloads:  669
  • Cited By: 0
Publishing process
  • Received Date:  26 April 2020
  • Accepted Date:  28 May 2020
  • Available Online:  15 June 2020
  • Published Online:  05 August 2020

/

返回文章
返回