Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mid-infrared large-angle high-efficiency retroreflector based on subwavelenght metallic metagrating

Wang Mei-Ou Xiao Qian Jin Xia Cao Yan-Yan Xu Ya-Dong

Citation:

Mid-infrared large-angle high-efficiency retroreflector based on subwavelenght metallic metagrating

Wang Mei-Ou, Xiao Qian, Jin Xia, Cao Yan-Yan, Xu Ya-Dong
PDF
HTML
Get Citation
  • How to effectively control the refraction, reflection, propagation and wavefront of dynamic waves or light has become one of hot research points in the field of optics. In the past few years, the concept of phase gradient metasurface has been proposed: it introduces a gradient of the phase discontinuity covering the entire angle 2π along the interface to provide an effective wave vector $\kappa $ and completely control the direction of outing wave. Therefore, the metasurface can possess many novel optical applications, such as holograms, metalenses, photonic spin Hall effect, etc. In this work, we design a simplified reflection-type optical metagrating. The results demonstrate that the metagrating can achive the function of two-channel retroreflection, that is, redirecting the incident wave back toward the source, with a nearly perfect conversion efficiency.The metagrating designed in this paper contains only two sub-cells with π reflection phase difference in period. The working wavelength (λ) of metagrating is fixed at 3 μm. The two sub-cells are filled with an impedance matching material (their material relative refractive indexes are n1 = 1 and n2 = 1.5 respectively and their thickness is d = 1.5 μm.).The period length range is 1.5 μm ≤ p ≤ 3 μm(considering reducing the reflection order). When the incident angle is ${\theta _{\rm{i}}}= \pm \arcsin [\lambda /(2p)]$, the absolute values of the incident angle and the reflected angle are equal, and then retroreflection occurs. When the wavelength is greater than the period ($\lambda \geqslant p$), the angle of retroreflection can be adjusted to any value ($\left| {{\theta _{\rm{i}}}} \right| \geqslant {\rm{3}}{{\rm{0}}^ \circ }$) by adjusting the period p. In this work, COMSOL MULTIPHYSICS software is used to simulate the retroreflection reflectivity and field pattern of the designed metagrating. The results verify the two-channel retroreflection property of the metagrating. In addition,as the angle of incidence changes from 30° to 60°, the efficiency of retroreflection at any incident angle can reach to more than 95%. When the incident angle is 75.4°, the metagrating still has an efficiency of 80% retroreflection. Therefore, the metagrating also achieves the function of high-efficiency retroreflection at a large-angle. Comparing with multiple sub-cells’ metasurface, the simplified metagrating with two sub-cells enables a similar function of retroreflection, but has many potential advantages, and can play an important role in high-efficiency sensing, imaging and communication.
      Corresponding author: Jin Xia, xjin@suda.edu.cn ; Cao Yan-Yan, yycao@stu.suda.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11974010) and the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province, China (Grant No. 16KJB140013)
    [1]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [2]

    Kildishev A V, Boltasseva A, Shalaev V M 2013 Science 339 1232009Google Scholar

    [3]

    Yu N, Capasso F 2014 Nat. Mater. 13 139Google Scholar

    [4]

    Zhao Y, Liu X, Alù A 2014 J. Opt. 16 123001Google Scholar

    [5]

    Xu Y, Fu Y, Chen H 2016 Nat. Rev. Mater. 1 16067Google Scholar

    [6]

    Shi H Y, Zhang A X, Chen J Z, Wang J F, Xia S, Xu Z 2016 Chin. Phys. B 25 078105Google Scholar

    [7]

    Zhao J, Yang X, Dai J Y, Cheng Q, Li X, Qi N H, Ke J C, Bai G D, Liu S, Jin S, Alù A, Cui T J 2018 Natl. Sci. Rev. 6 231

    [8]

    Xu Y, Gu C, Hou B, Lai Y, Li J, Chen H 2013 Nat. Commun. 4 2561Google Scholar

    [9]

    Ni X, Ishii S, Kildishev A V, Shalaev V M 2013 Light Sci. Appl 2 e72

    [10]

    Yin X, Ye Z, Rho J, Wang Y, Zhang X 2013 Science 339 1405Google Scholar

    [11]

    Xu Y, Fu Y, Chen H 2015 Sci. Rep. 5 12219Google Scholar

    [12]

    Ra’di Y, Sounas D L, Alù A 2017 Phys. Rev. Lett. 119 067404Google Scholar

    [13]

    Chalabi H, Ra’di Y, Sounas D L, Alù A 2017 Phys. Rev. B 96 075432Google Scholar

    [14]

    Fu Y, Cao Y, Xu Y 2019 Appl. Phys. Lett. 114 053502Google Scholar

    [15]

    Qian E, Fu Y, Xu Y, Chen H 2016 Europhys. Lett. 114 34003Google Scholar

    [16]

    Ra’di Y, Alù A 2018 ACS Photonics 5 1779Google Scholar

    [17]

    Fu Y, Shen C, Cao Y, Gao L, Chen H, Chan C T, Cummer S A, Xu Y 2019 Nat. Commun. 10 2326Google Scholar

    [18]

    Ma Y, Ong C K, Tyc T, Leonhardt U 2009 Nat. Mater. 8 639Google Scholar

    [19]

    Jia Y, Wang J, Li Y, Pang Y, Yang J, Fan Y, Qu S 2017 AIP Adv. 7 105315Google Scholar

    [20]

    Yan L, Zhu W, Karim M F, Cai H, Gu A Y, Shen Z, Chong P H J, Kwong D L, Qiu C W, Liu A Q 2018 Adv. Mater. 30 e1802721Google Scholar

    [21]

    Lipuma D, Meric S, Gillard R 2013 Electron. Lett. 49 2

    [22]

    Zentgraf T, Liu Y, Mikkelsen M H, Valentine J, Zhang X 2011 Nat. Nanotechnol. 6 151Google Scholar

    [23]

    Nakagawa K, Sanada A 2017 ICMIM 978-1-5090-4354-5

    [24]

    Jiang W X, Bao D, Cui T J 2016 J. Opt. 18 044022Google Scholar

    [25]

    Fu Y, Li J, Xie Y, Shen C, Xu Y, Chen H, Cummer S A 2018 Phys. Rev. Mater. 2 105202Google Scholar

    [26]

    Song G, Cheng Q, Cui T J, Jing Y 2018 Phys. Rev. Mater. 2 065201Google Scholar

    [27]

    Shen C, Díaz-Rubio A, Li J, Cummer S A 2018 Appl. Phys. Lett. 112 183503Google Scholar

    [28]

    Shen C, Cummer S A 2018 Phys. Rev. Appl. 9 054009Google Scholar

    [29]

    Cao Y, Fu Y, Zhou Q, Ou X, Gao L, Chen H, Xu Y 2019 Phys. Rev. Appl. 12 024006Google Scholar

    [30]

    Zhang Z, Chu F, Guo Z, Fan J, Li G, Cheng W 2019 J. Lightwave Technol. 37 2820Google Scholar

  • 图 1  超构光栅的结构示意图 (a)逆向反射超构光栅的示意图, 其中红色和绿色箭头均表示回射, 蓝色箭头表示镜面反射; (b)超构光栅的结构单元示意图; (c)超构光栅入射和反射的等频图

    Figure 1.  The structute of the metagrating: (a) The schematic of the retroreflection metagrating, wherein red and green arrows indicate retroreflection and blue arrows indicate specular reflection; (b) the diagram of metagrating with two sub-cells; (c) the iso-frequency contours of the incident wave and reflection wave for the metagrating.

    图 2  设计的回射角为$ \pm {\rm{3}}{{\rm{0}}^ \circ }$时, 超构光栅的不同级次的反射效率以及高斯波入射到超构光栅的总磁场图 (a)超构光栅不同级次的反射效率随入射角度变化曲线; (b)高斯波入射到超构光栅, 双通道回射的总磁场图

    Figure 2.  The reflection efficiency of different orders and the total magnetic field pattern, while the designed retroreflection angle is $ \pm {\rm{3}}{{\rm{0}}^ \circ }$: (a) The reflection efficiency of different orders vary with incident angle; (b) the total magnetic field pattern of the two-channel retroreflector.

    图 3  设计的回射角为$ \pm {\rm{6}}{{\rm{0}}^ \circ }$时, 超构光栅的不同级次的反射效率以及高斯波入射到超构光栅的总磁场图 (a)超构光栅不同级次的反射效率随入射角度变化曲线; (b)高斯波入射到超构光栅, 双通道回射的总磁场图

    Figure 3.  The reflection efficiency of different orders and the total magnetic field pattern, while the designed retroreflection angle is $ \pm 6{{\rm{0}}^ \circ }$: (a) The reflection efficiency of different orders vary with incident angle; (b) the total magnetic field pattern of the two-channel retroreflector.

    图 4  逆向反射的效率和工作角度随周期长度的变化规律. 随$p$改变过程中, 金属槽的占空比和填充介质保持不变

    Figure 4.  The incident angle of retroreflection and retroreflectivity corresponding to different period lengths $p$. With the change of $p$, the duty cycle and filling medium of the metal slot remain unchanged.

  • [1]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [2]

    Kildishev A V, Boltasseva A, Shalaev V M 2013 Science 339 1232009Google Scholar

    [3]

    Yu N, Capasso F 2014 Nat. Mater. 13 139Google Scholar

    [4]

    Zhao Y, Liu X, Alù A 2014 J. Opt. 16 123001Google Scholar

    [5]

    Xu Y, Fu Y, Chen H 2016 Nat. Rev. Mater. 1 16067Google Scholar

    [6]

    Shi H Y, Zhang A X, Chen J Z, Wang J F, Xia S, Xu Z 2016 Chin. Phys. B 25 078105Google Scholar

    [7]

    Zhao J, Yang X, Dai J Y, Cheng Q, Li X, Qi N H, Ke J C, Bai G D, Liu S, Jin S, Alù A, Cui T J 2018 Natl. Sci. Rev. 6 231

    [8]

    Xu Y, Gu C, Hou B, Lai Y, Li J, Chen H 2013 Nat. Commun. 4 2561Google Scholar

    [9]

    Ni X, Ishii S, Kildishev A V, Shalaev V M 2013 Light Sci. Appl 2 e72

    [10]

    Yin X, Ye Z, Rho J, Wang Y, Zhang X 2013 Science 339 1405Google Scholar

    [11]

    Xu Y, Fu Y, Chen H 2015 Sci. Rep. 5 12219Google Scholar

    [12]

    Ra’di Y, Sounas D L, Alù A 2017 Phys. Rev. Lett. 119 067404Google Scholar

    [13]

    Chalabi H, Ra’di Y, Sounas D L, Alù A 2017 Phys. Rev. B 96 075432Google Scholar

    [14]

    Fu Y, Cao Y, Xu Y 2019 Appl. Phys. Lett. 114 053502Google Scholar

    [15]

    Qian E, Fu Y, Xu Y, Chen H 2016 Europhys. Lett. 114 34003Google Scholar

    [16]

    Ra’di Y, Alù A 2018 ACS Photonics 5 1779Google Scholar

    [17]

    Fu Y, Shen C, Cao Y, Gao L, Chen H, Chan C T, Cummer S A, Xu Y 2019 Nat. Commun. 10 2326Google Scholar

    [18]

    Ma Y, Ong C K, Tyc T, Leonhardt U 2009 Nat. Mater. 8 639Google Scholar

    [19]

    Jia Y, Wang J, Li Y, Pang Y, Yang J, Fan Y, Qu S 2017 AIP Adv. 7 105315Google Scholar

    [20]

    Yan L, Zhu W, Karim M F, Cai H, Gu A Y, Shen Z, Chong P H J, Kwong D L, Qiu C W, Liu A Q 2018 Adv. Mater. 30 e1802721Google Scholar

    [21]

    Lipuma D, Meric S, Gillard R 2013 Electron. Lett. 49 2

    [22]

    Zentgraf T, Liu Y, Mikkelsen M H, Valentine J, Zhang X 2011 Nat. Nanotechnol. 6 151Google Scholar

    [23]

    Nakagawa K, Sanada A 2017 ICMIM 978-1-5090-4354-5

    [24]

    Jiang W X, Bao D, Cui T J 2016 J. Opt. 18 044022Google Scholar

    [25]

    Fu Y, Li J, Xie Y, Shen C, Xu Y, Chen H, Cummer S A 2018 Phys. Rev. Mater. 2 105202Google Scholar

    [26]

    Song G, Cheng Q, Cui T J, Jing Y 2018 Phys. Rev. Mater. 2 065201Google Scholar

    [27]

    Shen C, Díaz-Rubio A, Li J, Cummer S A 2018 Appl. Phys. Lett. 112 183503Google Scholar

    [28]

    Shen C, Cummer S A 2018 Phys. Rev. Appl. 9 054009Google Scholar

    [29]

    Cao Y, Fu Y, Zhou Q, Ou X, Gao L, Chen H, Xu Y 2019 Phys. Rev. Appl. 12 024006Google Scholar

    [30]

    Zhang Z, Chu F, Guo Z, Fan J, Li G, Cheng W 2019 J. Lightwave Technol. 37 2820Google Scholar

  • [1] Liu Hui-Gang, Zhang Xiang-Yu, Nan Xue-Ying, Zhao Er-Gang, Liu Hai-Tao. All-dielectric metasurface two-parameter sensor based on quasi-bound states in continuum. Acta Physica Sinica, 2024, 73(4): 047802. doi: 10.7498/aps.73.20231514
    [2] Li Jia-Xiang, Wang Hui-Qin, Xu He-Qing, Zhang Hua, Feng Yan, Dong Mei-Tong. Reverse design of ultracompact micro-nano wavelength beam splitter based on quadratic programming algorithm. Acta Physica Sinica, 2023, 72(19): 194101. doi: 10.7498/aps.72.20230892
    [3] Zuo Yi-Wu, Tian Jing, Yang Qing, Hu Xiao, Jiang Yang. A low-frequency acoustic sensing scheme based on cladding mode of large-angle tilted fiber Bragg grating. Acta Physica Sinica, 2023, 72(12): 124304. doi: 10.7498/aps.72.20230067
    [4] Gao Yue, Yu Bo-Cheng, Guo Rui, Cao Yan-Yan, Xu Ya-Dong. Optical meta-cage based on phase gradient metagrating. Acta Physica Sinica, 2023, 72(2): 024209. doi: 10.7498/aps.72.20221696
    [5] Qin Zhao-Fu, Chen Hao, Hu Tao-Zheng, Chen Zhuo, Wang Zhen-Lin. Fundamental wave and second-harmonic focusing based on guided wave-driven phase-change materials metasurfaces. Acta Physica Sinica, 2022, 71(3): 034208. doi: 10.7498/aps.71.20211596
    [6] Feng Kui-Sheng, Li Na, Yang Huan-Huan. A novel low-RCS antenna array based on integration of electromagnetic metasurface and conventional antenna. Acta Physica Sinica, 2021, 70(19): 194101. doi: 10.7498/aps.70.20210746
    [7] Wang Ming-Zhao, Wang Shao-Jie, Xu He-Xiu. Reconfigurable linear polarization conversion based on spatial-order kirigami metasurfaces. Acta Physica Sinica, 2021, 70(15): 154101. doi: 10.7498/aps.70.20210188
    [8] Li Hai-Peng, Wu Xiao, Ding Hai-Yang, Xin Ke-Wei, Wang Guang-Ming. Wideband circularly-polarized bifunction devices employing composite metasurfaces. Acta Physica Sinica, 2021, 70(2): 027803. doi: 10.7498/aps.70.20201150
    [9] Zhang Na, Zhao Jian-Min, Chen Ke, Zhao Jun-Ming, Jiang Tian, Feng Yi-Jun. Independent dual-beam control based on programmable coding metasurface. Acta Physica Sinica, 2021, 70(17): 178102. doi: 10.7498/aps.70.20210344
    [10] Fundamental wave and second-harmonic focusing based on guided wave-driven phase-change materials metasurfaces. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211596
    [11] Lin Yue-Chai, Liu Fang, Huang Yi-Dong. Cherenkov radiation based on metamaterials. Acta Physica Sinica, 2020, 69(15): 154103. doi: 10.7498/aps.69.20200260
    [12] Guan Fu-Xin, Dong Shao-Hua, He Qiong, Xiao Shi-Yi, Sun Shu-Lin, Zhou Lei. Scatterings and wavefront manipulations of surface plasmon polaritons. Acta Physica Sinica, 2020, 69(15): 157804. doi: 10.7498/aps.69.20200614
    [13] Xu Jin, Li Rong-Qiang, Jiang Xiao-Ping, Wang Shen-Yun, Han Tian-Cheng. Ultra-wideband linear polarization converter based on square split ring. Acta Physica Sinica, 2019, 68(11): 117801. doi: 10.7498/aps.68.20190267
    [14] Yang Jiu-Long, Yuan Qing-Chen, Chen Run-Feng, Fang Han-Lin, Xiao Fa-Jun, Li Jun-Tao, Jiang Bi-Qiang, Zhao Jian-Lin, Gan Xue-Tao. Enhanced third-harmonic generation in silicon metasurface. Acta Physica Sinica, 2019, 68(21): 214207. doi: 10.7498/aps.68.20190789
    [15] Ma Xiao-Liang, Li Xiong, Guo Ying-Hui, Zhao Ze-Yu, Luo Xian-Gang. Meta-antenna: principle, device and application. Acta Physica Sinica, 2017, 66(14): 147802. doi: 10.7498/aps.66.147802
    [16] Pu Ming-Bo, Wang Chang-Tao, Wang Yan-Qin, Luo Xian-Gang. Subwavelength electromagnetics below the diffraction limit. Acta Physica Sinica, 2017, 66(14): 144101. doi: 10.7498/aps.66.144101
    [17] Deng Jun-Hong, Li Gui-Xin. Nonlinear photonic metasurfaces. Acta Physica Sinica, 2017, 66(14): 147803. doi: 10.7498/aps.66.147803
    [18] Li Yong-Feng, Zhang Jie-Qiu, Qu Shao-Bo, Wang Jia-Fu, Wu Xiang, Xu Zhuo, Zhang An-Xue. Circularly polarized wave reflection focusing metasurfaces. Acta Physica Sinica, 2015, 64(12): 124102. doi: 10.7498/aps.64.124102
    [19] Liu Tong-Jun, Xi Xiang, Ling Yong-Hong, Sun Ya-Li, Li Zhi-Wei, Huang Li-Rong. Polarization-insensitive and broad-angle gradient metasurface with high-efficiency anomalous reflection. Acta Physica Sinica, 2015, 64(23): 237802. doi: 10.7498/aps.64.237802
    [20] HE ZHONG-QING, HOU XIAO-YUAN, DING XUN-MIN. SURFACE RECONSTRUCTION OF GaSb(lOO). Acta Physica Sinica, 1992, 41(8): 1315-1321. doi: 10.7498/aps.41.1315
Metrics
  • Abstract views:  7712
  • PDF Downloads:  169
  • Cited By: 0
Publishing process
  • Received Date:  26 July 2019
  • Accepted Date:  03 October 2019
  • Available Online:  07 December 2019
  • Published Online:  05 January 2020

/

返回文章
返回