-
We report the enhanced third-harmonic generation (THG) from a silicon metasurface consisting of an array of L-shaped nanoresonators. The L-shaped nanoresonator is designed as a small cuboid with a notch cut from one corner. And 16 × 15 L-shaped nanoresonators are arranged into an array with a square lattice. In order to fabricate the structure, a 600-nm-thick silicon layer is first deposited on a 500-μm-thick sapphire substrate, which is then patterned into the metasurface structure by using electron beam lithography and inductively coupled plasma dry etching process. To evaluate the linear optical property of the fabricated metasurface, a continuous-wave narrow band laser with a tunable wavelength range of 1530−1560 nm is employed to measure the transmission and reflection spectrum. The measurement results show a Fano resonance at a wavelength of 1548 nm when the incident laser is linearly polarized along the long arm of the L-shaped nanoresonator. Pumping at the resonant wavelength, the metasurface shows significant polarization sensitivity for the transmitted light and the reflected light. To excite the THG signal from the metasurface, a femtosecond pulsed laser with a tunable wavelength range of 1540−1560 nm is then employed as the pump. Strong THG signal is observed when the laser wavelength is tuned on the resonant wavelength (1548 nm), indicating a conversion efficiency of ~ 3×10–7. By comparing the THG signals triggered on- and off-resonance, an enhancement factor of 220 is extracted, which is attributed to the field-enhancement of the Fano resonance. The resonance enhanced THG signal also has polarization-dependence with an extinction ratio of 15 dB. These experimental results are verified well by numerical simulations based on a finite-element technique, including the Fano resonance and the enhanced THG process. By combining the numerically calculated electrical field of the resonant mode and the calculation of nonlinear polarizations, the resonance enhanced THG as well as its polarization-dependence are confirmed numerically. The realized strongly enhanced THG from the silicon metasurface promises to extend their linear optical functionalities into nonlinear regime.
-
Keywords:
- metasurface /
- third-harmonic generation /
- silicon
[1] Priolo F, Gregorkiewicz T, Galli M, Krauss T F 2014 Nat. Nanotechnol. 9 19Google Scholar
[2] Koos C, Vorreau P, Vallaitis T, Dumon P, Bogaerts W, Baets R, Esembeson B, Biaggio I, Michinobu T, Diederich F, Freude W, Leuthold J 2009 Nat. Photon. 3 216Google Scholar
[3] Ji H, Pu M, Hu H, Galili M, Oxenlowe L K, Yvind K, Hvam J M, Jeppesen P 2011 J. Lightwave Technol. 29 426Google Scholar
[4] Rong H, Jones R, Liu A, Cohen O, Hak D, Fang A, Paniccia M 2005 Nature 433 725Google Scholar
[5] Foster M A, Turner A C, Sharping J E, Schmidt B S, Lipson M, Gaeta A L 2006 Nature 441 960Google Scholar
[6] Chen S, Rahmani M, Li K F, Miroshnichenko A, Zentgraf T, Li G, Neshev D, Zhang S 2018 ACS Photonics 5 1671Google Scholar
[7] Boyd R, Fischer G 2001 Nonlinear Optical Materials (Oxford: Elsevier) p6237
[8] Jung Y, Tong L, Tanaudommongkon A, Cheng J X, Yang C 2009 Nano Lett. 9 2440Google Scholar
[9] Wiecha P R, Arbouet A, Kallel H, Periwal P, Baron T, Paillard V 2015 Phys. Rev. B 91 121416Google Scholar
[10] Soljačić M, Joannopoulos J D 2004 Nat. Mater. 3 211Google Scholar
[11] Bravo-Abad J, Rodriguez A, Bermel P, Johnson S G, Joannopoulos J D, Soljačić M 2007 Opt. Express 15 16161Google Scholar
[12] Martemyanov M G, Kim E M, Dolgova T V, Fedyanin A A, Aktsipetrov O A, Marowsky G 2004 Phys. Rev. B 70 073311Google Scholar
[13] Campione S, Liu S, Basilio L I, Warne L K, Langston W L, Luk T S, Wendt J R, Reno J L, Keeler G A, Brener I, Sinclair M B 2016 ACS Photonics 3 2362Google Scholar
[14] Yan J H, Liu P, Lin Z Y, Wang H, Chen H J, Wang C X, Yang G W 2015 Nat. Commun. 6 7042Google Scholar
[15] Wang L, Kruk S, Koshelev K, Kravchenko I, Luther-Davies B, Kivshar Y 2018 Nano Lett. 18 3978Google Scholar
[16] Markovich D, Baryshnikova K, Shalin A, Samusev A, Krasnok A, Belov P, Ginzburg P 2016 Sci. Rep. 6 22546Google Scholar
[17] Albella P, Shibanuma T, Maier S A 2015 Sci. Rep. 5 18322
[18] Yuan Q, Fang L, Fang H, Li J, Wang T, Jie W, Zhao J, Gan X 2019 arXiv: 1904.06027[physics.optics]
[19] Boltasseva A, Atwater H A 2011 Science 331 290Google Scholar
[20] Staude I, Schilling J 2017 Nat. Photon. 11 274Google Scholar
[21] Bar-David J, Levy U 2019 Nano Lett. 19 1044Google Scholar
[22] Khorasaninejad M, Aieta F, Kanhaiya P, Kats M A, Genevet P, Rousso D, Capasso F 2015 Nano Lett. 15 5358Google Scholar
[23] West P R, Stewart J L, Kildishev A V, Shalaev V M, Shkunov V V, Strohkendl F, Zakharenkov Y A, Dodds R K, Byren R 2014 Opt. Express 22 26212Google Scholar
[24] Chong K E, Staude I, James A, Dominguez J, Liu S, Campione S, Subramania G S, Luk T S, Decker M, Neshev D N, Brener I, Kivshar Y S 2015 Nano Lett. 15 5369Google Scholar
[25] Mie G 1908 Ann. Phys.-Berlin 330 377Google Scholar
[26] Wynne J J 1969 Phys. Rev. 178 1295Google Scholar
[27] Jha S S, Bloembergen N 1968 Phys. Rev. 171 891Google Scholar
[28] Yang Z J, Jiang R, Zhuo X, Xie Y M, Wang J, Lin H Q 2017 Phys. Rep. 701 1Google Scholar
-
图 2 (a)超构表面在1530−1560 nm范围内的反射和透射光谱(T, 透射谱; R, 反射谱); (b)抽运波长与共振波长(1548 nm)重合时产生的THG信号峰; (c) THG信号相对于抽运光的功率依赖性; (d) THG强度分布的空间扫描; (e)不同抽运波长下THG信号的光谱演化, 插图为对谱线进行归一化后的结果; (f)对(e)中所有THG信号谱线进行能量积分的结果
Figure 2. (a) Reflection and transmission spectra of the metasurface in the wavelength range of 1530−1560 nm (T, transmission spectrum; R, reflection spectrum); (b) THG signal peak when the pump wavelength coincides with the resonant wavelength at 1548 nm; (c) power dependence of THG intensity; (d) spatial scanning of THG intensity distribution; (e) spectra of THG signals pumped with different wavelengths, and the inset shows the result of normalizing each line; (f) integral results for all THG spectra shown in panel (e).
图 3 (a)左图为超构表面电场在x-y平面内分布情况的数值模拟, 右图为单共振单元横向的电场分量(右上)和纵向的磁场分量(右下); (b)样品各向异性透射谱的数值模拟; (c)透射、反射信号以及THG信号强度的数值计算结果
Figure 3. (a) Numerical simulation of the distribution of electric field of the metasurface in the x-y plane; (b) numerical simulation of the anisotropic transmission spectra of the sample; (c) numerical simulation of reflection (R), transmission (T) spectra and intensity of THG signals.
图 4 (a)方位示意图; (b)实验测量透射/反射信号的偏振依赖性; (c)实验测量THG信号强度对抽运光的偏振依赖性; (d) THG 信号的偏振检测
Figure 4. (a) Orientation illustrated in the metasurface; (b) experimental measurement of polarization dependence of transmitted and reflected signals; (c) experimental measurement of the polarization dependence of THG signal intensity on pump light; (d) polarization detection of THG signals.
-
[1] Priolo F, Gregorkiewicz T, Galli M, Krauss T F 2014 Nat. Nanotechnol. 9 19Google Scholar
[2] Koos C, Vorreau P, Vallaitis T, Dumon P, Bogaerts W, Baets R, Esembeson B, Biaggio I, Michinobu T, Diederich F, Freude W, Leuthold J 2009 Nat. Photon. 3 216Google Scholar
[3] Ji H, Pu M, Hu H, Galili M, Oxenlowe L K, Yvind K, Hvam J M, Jeppesen P 2011 J. Lightwave Technol. 29 426Google Scholar
[4] Rong H, Jones R, Liu A, Cohen O, Hak D, Fang A, Paniccia M 2005 Nature 433 725Google Scholar
[5] Foster M A, Turner A C, Sharping J E, Schmidt B S, Lipson M, Gaeta A L 2006 Nature 441 960Google Scholar
[6] Chen S, Rahmani M, Li K F, Miroshnichenko A, Zentgraf T, Li G, Neshev D, Zhang S 2018 ACS Photonics 5 1671Google Scholar
[7] Boyd R, Fischer G 2001 Nonlinear Optical Materials (Oxford: Elsevier) p6237
[8] Jung Y, Tong L, Tanaudommongkon A, Cheng J X, Yang C 2009 Nano Lett. 9 2440Google Scholar
[9] Wiecha P R, Arbouet A, Kallel H, Periwal P, Baron T, Paillard V 2015 Phys. Rev. B 91 121416Google Scholar
[10] Soljačić M, Joannopoulos J D 2004 Nat. Mater. 3 211Google Scholar
[11] Bravo-Abad J, Rodriguez A, Bermel P, Johnson S G, Joannopoulos J D, Soljačić M 2007 Opt. Express 15 16161Google Scholar
[12] Martemyanov M G, Kim E M, Dolgova T V, Fedyanin A A, Aktsipetrov O A, Marowsky G 2004 Phys. Rev. B 70 073311Google Scholar
[13] Campione S, Liu S, Basilio L I, Warne L K, Langston W L, Luk T S, Wendt J R, Reno J L, Keeler G A, Brener I, Sinclair M B 2016 ACS Photonics 3 2362Google Scholar
[14] Yan J H, Liu P, Lin Z Y, Wang H, Chen H J, Wang C X, Yang G W 2015 Nat. Commun. 6 7042Google Scholar
[15] Wang L, Kruk S, Koshelev K, Kravchenko I, Luther-Davies B, Kivshar Y 2018 Nano Lett. 18 3978Google Scholar
[16] Markovich D, Baryshnikova K, Shalin A, Samusev A, Krasnok A, Belov P, Ginzburg P 2016 Sci. Rep. 6 22546Google Scholar
[17] Albella P, Shibanuma T, Maier S A 2015 Sci. Rep. 5 18322
[18] Yuan Q, Fang L, Fang H, Li J, Wang T, Jie W, Zhao J, Gan X 2019 arXiv: 1904.06027[physics.optics]
[19] Boltasseva A, Atwater H A 2011 Science 331 290Google Scholar
[20] Staude I, Schilling J 2017 Nat. Photon. 11 274Google Scholar
[21] Bar-David J, Levy U 2019 Nano Lett. 19 1044Google Scholar
[22] Khorasaninejad M, Aieta F, Kanhaiya P, Kats M A, Genevet P, Rousso D, Capasso F 2015 Nano Lett. 15 5358Google Scholar
[23] West P R, Stewart J L, Kildishev A V, Shalaev V M, Shkunov V V, Strohkendl F, Zakharenkov Y A, Dodds R K, Byren R 2014 Opt. Express 22 26212Google Scholar
[24] Chong K E, Staude I, James A, Dominguez J, Liu S, Campione S, Subramania G S, Luk T S, Decker M, Neshev D N, Brener I, Kivshar Y S 2015 Nano Lett. 15 5369Google Scholar
[25] Mie G 1908 Ann. Phys.-Berlin 330 377Google Scholar
[26] Wynne J J 1969 Phys. Rev. 178 1295Google Scholar
[27] Jha S S, Bloembergen N 1968 Phys. Rev. 171 891Google Scholar
[28] Yang Z J, Jiang R, Zhuo X, Xie Y M, Wang J, Lin H Q 2017 Phys. Rep. 701 1Google Scholar
Catalog
Metrics
- Abstract views: 10428
- PDF Downloads: 289
- Cited By: 0