Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Spiral spectrum analysis and application ofcoherent synthetic vortex beams

Peng Yi-Ming Xue Yu Xiao Guang-Zong Yu Tao Xie Wen-Ke Xia Hui Liu Shuang Chen Xin Chen Fang-Lin Sun Xue-Cheng

Citation:

Spiral spectrum analysis and application ofcoherent synthetic vortex beams

Peng Yi-Ming, Xue Yu, Xiao Guang-Zong, Yu Tao, Xie Wen-Ke, Xia Hui, Liu Shuang, Chen Xin, Chen Fang-Lin, Sun Xue-Cheng
PDF
HTML
Get Citation
  • The vortex beam is a ring-shaped beam whose center intensity or axial intensity is zero in the propagation direction and whose phase has a spiral rising or falling gradient distribution, which is also called a dark hollow beam. Vortex beams have important applications in free-space optical communication, optical micromanipulation, quantum information processing, optical measurement, super-resolution imaging, laser processing, and material processing. In recent years, with the in-depth research on vortex beams, the application requirements for high-power vortex beams also increase. High-power and high-quality vortex beam can be obtained by coherent combining technology. However, the spiral spectrum characteristics of the vortex beam generated by coherent combining technology need further exploring. In this paper, based on the theory of spectral analysis, we derive the position and magnitude of the spiral phase spectral component of the coherent synthetic vortex beam. The numerical results verify the correctness of the theoretical derivation. Based on the above spectral analysis theory, the mode purity of the target synthesis topology charge can be used as the evaluation function to evaluate quality and optimize the parameters for the coherent synthetic vortex beam, and then to quantitatively guide the coherent synthesis of the vortex beam. The results show that with the increase of the number of sub-beams and the radius of the beam waist of the source plane, the reduction of the radius of the bundle ring and the mode purity of the target synthesis topology charge can be improved, and then we can obtain the high-quality vortex beam. This is consistent with the conclusion obtained by using traditional evaluation functions such as power in the bucket. The spiral spectrum analysis of the coherent synthetic vortex beam not only makes up for the lack of evaluation of the spiral phase synthesis effect by the traditional evaluation function, but also has certain reference significance for understanding the nature of the coherent synthesis technique.
      Corresponding author: Xie Wen-Ke, wenkexiedan@163.com
    • Funds: Project supported by the Equipment Pre-research Field Fund, China (Grant No. 6140415020311), the Hunan Provincial Key Laboratory of High Energy Laser Technology Fund, China (Grant No. GNJGJS04), and the Hunan Engineering Research Center of Optoelectronic Inertial Technology, China (Grant No. HN-NUDT1908)
    [1]

    Liu P S, Yang H J, Rong J, Wang G, Yan Y M 2010 Opt. Laser Technol. 42 99Google Scholar

    [2]

    Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y X, Yue Y, Dolinar S, Tur M, Willner A E 2012 Nat. Photonics 6 488Google Scholar

    [3]

    Zhu J, Zhu K C, Tang H Q, Xia H 2017 J. Mod. Opt. 64 1915

    [4]

    Cheng S B, Tao S H 2016 J. Optics-Uk 18 105603Google Scholar

    [5]

    Cheng S B, Tao S H, Zhou C H, Wu L 2015 J. Optics-Uk 17 105613Google Scholar

    [6]

    Xiao G Z, Yang K Y, Luo H, Chen X L, Xiong W 2016 IEEE Photonics J. 8 6100108Google Scholar

    [7]

    Vaziri A, Pan J W, Jennewein T, Weihs G, Zeilinger A 2003 Phys. Rev. Lett. 91 227902Google Scholar

    [8]

    Lavery M P J, Speirits F C, Barnett S M, Padgett M J 2013 Science 341 537Google Scholar

    [9]

    Tamburini F, Anzolin G, Umbriaco G, Bianchini A, Barbieri C 2006 Phys. Rev. Lett. 97 163903Google Scholar

    [10]

    Allegre O J, Jin Y, Perrie W, Ouyang J, Fearon E, Edwardson S P, Dearden G 2013 Opt. Express 21 21198Google Scholar

    [11]

    Cheng S B, Tao S H, Zhang X Y, Ma W Z 2016 IEEE Photonics J. 8 6100407Google Scholar

    [12]

    Tao S H, Yu W X 2015 Opt. Express 23 1052Google Scholar

    [13]

    Zhu K C, Li S X, Tang Y, Yu Y, Tang H Q 2012 J. Opt. Soc. Am. A 29 251Google Scholar

    [14]

    齐晓庆, 高春清, 刘义东 2010 物理学报 59 264Google Scholar

    Qi X Q, Gao C Q, Liu Y D 2010 Acta Phys. Sin. 59 264Google Scholar

    [15]

    Algorri J F, Urruchi V, Garcia-Camara B, Sanchez-Pena J M 2014 IEEE Electron Device Lett. 35 856Google Scholar

    [16]

    Kumar A, Vaity P, Bhatt J, Singh R P 2013 J. Mod. Opt. 60 1696Google Scholar

    [17]

    Brzobohaty O, Cizmar T, Zemanek P 2008 Opt. Express 16 12688Google Scholar

    [18]

    朱开成, 唐慧琴, 郑小娟, 唐英 2014 物理学报 63 104210Google Scholar

    Zhu K C, Tang H Q, Zheng X J, Tang Y 2014 Acta Phys. Sin. 63 104210Google Scholar

    [19]

    Yu T, Xia H, Fan Z H, Xie W K, Zhang P, Liu J S, Chen X, Chu X X 2019 Opt. Commun. 436 14Google Scholar

    [20]

    Xie W K, Zhang P, Wang H, Chu X X 2018 Opt. Commun. 427 288Google Scholar

    [21]

    Fu Y Q, Feng G Y, Zhang D Y, Chen J G, Zhou S H 2010 Optik 121 452Google Scholar

    [22]

    Xiong W, Xiao G Z, Han X, Zhou J H, Chen X L, Luo H 2017 Opt. Express 25 9449Google Scholar

    [23]

    Ishaaya A A, Eckhouse V, Shimshi L, Davidson N, Friesem A A 2005 Opt. Express 13 2722Google Scholar

    [24]

    于涛, 夏辉, 樊志华, 谢文科, 张盼, 刘俊圣, 陈欣 2018 物理学报 67 134203Google Scholar

    Yu T, Xia H, Fan Z H, Xie W K, Zhang P, Liu J S, Chen X 2018 Acta Phys. Sin. 67 134203Google Scholar

  • 图 1  M = 12, n = 2, R = 1.2 mm, w0 = 0.24 mm时的高斯光束阵列 (a)源平面空间分布; (b)源平面相位分布; (c)传输 2 m后合成涡旋光束强度分布; (d)传输2 m后合成涡旋光束相位分布; (e)标准2阶BG涡旋光束强度分布; (f)标准2阶BG涡旋光束相位分布

    Figure 1.  Gaussian beam array with M = 12, n = 2, R = 1.2 mm, w0 = 0.24 mm: (a) Source plane spatial distribution; (b) source plane phase distribution; (c) light field distribution of synthetic vortex beam after 2 m transmission; (d) phase distribution of synthetic vortex beam after 2 m transmission; (e) light field distribution of standard 2nd order BG vortex beam; (f) phase distribution of standard 2nd order BG vortex beam.

    图 2  z = 10 m处相干合成涡旋光束的(a)强度分布和(b)光束相位分布; 螺旋谐波重建的(c)强度分布和(d)相位分布

    Figure 2.  Target plane at z = 10 m: (a) Light field distribution of coherent synthetic vortex beam; (b) phase distribution of coherent synthetic vortex beam; (c) light field distribution of spiral harmonic reconstruction light field; (d) phase distribution of spiral harmonic reconstruction light field.

    图 3  相干合成涡旋光束螺旋谱分布及大小(其中n = 1, z = 10 m, w0 = 0.2 mm, R = 2.1 mm) (a) M = 8; (b) M = 12; (c) M = 16

    Figure 3.  Coherent synthetic vortex beam spiral spectrum distribution and size (n = 1, z = 10 m, w0 = 0.2 mm, R = 2.1 mm): (a) M = 8; (b) M = 12; (c) M = 16.

    图 4  相干合成BG涡旋光束(n = 1, z = 10 m, w0 = 0.2 mm, R = 2.1 mm) (a) M = 8时强度分布; (b) M = 16时强度分布; (c) M = 8时相位分布; (d) M = 16时相位分布; (e) M = 8时螺旋谱分布; (f) M = 16时螺旋谱分布

    Figure 4.  Coherently synthesized BG vortex beam (n = 1, z = 10 m, w0 = 0.2 mm, R = 2.1 mm): (a) M = 8, light intensity distribution; (b) M =16, light intensity distribution; (c) M = 8, phase distribution; (d) M = 16, phase distribution; (e) M = 8, spiral distribution; (f) M = 16, spiral distribution.

    图 5  不同阶合成涡旋光束拓扑荷模式纯度Pl随子光束数量M的变化趋势(w0 = 0.2 mm, R = 2.1 mm, z = 10 m)

    Figure 5.  Variation trend of the spectral purity Pl of the different order synthetic vortex beams with the number of sub-beams M (w0 = 0.2 mm, R = 2.1 mm, z = 10 m).

    图 6  相干合成BG涡旋光束(n = 1, z = 10 m, M = 12, R = 2.1 mm) (a) w0 = 0.15 mm时强度分布; (b) w0 = 0.3 mm时强度分布; (c) w0 = 0.15 mm时相位分布; (d) w0 = 0.3 mm时相位分布; (e) w0 = 0.15 mm时螺旋谱分布; (f) w0 = 0.3 mm时螺旋谱分布

    Figure 6.  Coherently synthesized BG vortex beam (n = 1, z = 10 m, M = 12, R = 2.1 mm): (a) w0 = 0.15 mm, light intensity distribution; (b) w0 = 0.3 mm, light intensity distribution; (c) w0 = 0.15 mm, phase distribution; (d) w0 = 0.3 mm, phase distribution; (e) w0 = 0.15 mm, spiral distribution; (f) w0 = 0.3 mm, spiral distribution.

    图 7  不同阶合成涡旋光束拓扑荷模式纯度Pl随子光束束腰半径w0的变化(M = 12, R = 2.1 mm, z = 10 m)

    Figure 7.  Variation trend of the spectral purity Pl of the different order synthetic vortex beams with sub beam waist radius w0 (M = 12, R = 2.1 mm, z = 10 m).

    图 8  相干合成BG涡旋光束(n = 1, z = 10 m, M = 12, w0 = 0.2 mm) (a) R = 1 mm时强度分布; (b) R = 2.2 mm时强度分布; (c) R = 1 mm时相位分布; (d) R = 2.2 mm时相位分布; (e) R = 1 mm时螺旋谱分布; (f) R = 2.2 mm时螺旋谱分布

    Figure 8.  Coherently synthesized BG vortex beam (n = 1, z = 10 m, M = 12, w0 = 0.2 mm): (a) R = 1 mm, light intensity distribution; (b) R = 2.2 mm, light intensity distribution; (c) R = 1 mm, phase distribution; (d) R = 2.2 mm, phase distribution; (e) R = 1 mm, spiral distribution; (f) R = 2.2 mm, spiral distribution.

    图 9  不同阶合成涡旋光束拓扑荷模式纯度Pl随组束环半径R的变化(M = 12, w0 = 0.2 mm, z = 10 m)

    Figure 9.  Variation trend of the spectral purity Pl of the different order synthetic vortex beams with beam ring radius R (M = 12, w0 = 0.2 mm, z = 10 m).

  • [1]

    Liu P S, Yang H J, Rong J, Wang G, Yan Y M 2010 Opt. Laser Technol. 42 99Google Scholar

    [2]

    Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y X, Yue Y, Dolinar S, Tur M, Willner A E 2012 Nat. Photonics 6 488Google Scholar

    [3]

    Zhu J, Zhu K C, Tang H Q, Xia H 2017 J. Mod. Opt. 64 1915

    [4]

    Cheng S B, Tao S H 2016 J. Optics-Uk 18 105603Google Scholar

    [5]

    Cheng S B, Tao S H, Zhou C H, Wu L 2015 J. Optics-Uk 17 105613Google Scholar

    [6]

    Xiao G Z, Yang K Y, Luo H, Chen X L, Xiong W 2016 IEEE Photonics J. 8 6100108Google Scholar

    [7]

    Vaziri A, Pan J W, Jennewein T, Weihs G, Zeilinger A 2003 Phys. Rev. Lett. 91 227902Google Scholar

    [8]

    Lavery M P J, Speirits F C, Barnett S M, Padgett M J 2013 Science 341 537Google Scholar

    [9]

    Tamburini F, Anzolin G, Umbriaco G, Bianchini A, Barbieri C 2006 Phys. Rev. Lett. 97 163903Google Scholar

    [10]

    Allegre O J, Jin Y, Perrie W, Ouyang J, Fearon E, Edwardson S P, Dearden G 2013 Opt. Express 21 21198Google Scholar

    [11]

    Cheng S B, Tao S H, Zhang X Y, Ma W Z 2016 IEEE Photonics J. 8 6100407Google Scholar

    [12]

    Tao S H, Yu W X 2015 Opt. Express 23 1052Google Scholar

    [13]

    Zhu K C, Li S X, Tang Y, Yu Y, Tang H Q 2012 J. Opt. Soc. Am. A 29 251Google Scholar

    [14]

    齐晓庆, 高春清, 刘义东 2010 物理学报 59 264Google Scholar

    Qi X Q, Gao C Q, Liu Y D 2010 Acta Phys. Sin. 59 264Google Scholar

    [15]

    Algorri J F, Urruchi V, Garcia-Camara B, Sanchez-Pena J M 2014 IEEE Electron Device Lett. 35 856Google Scholar

    [16]

    Kumar A, Vaity P, Bhatt J, Singh R P 2013 J. Mod. Opt. 60 1696Google Scholar

    [17]

    Brzobohaty O, Cizmar T, Zemanek P 2008 Opt. Express 16 12688Google Scholar

    [18]

    朱开成, 唐慧琴, 郑小娟, 唐英 2014 物理学报 63 104210Google Scholar

    Zhu K C, Tang H Q, Zheng X J, Tang Y 2014 Acta Phys. Sin. 63 104210Google Scholar

    [19]

    Yu T, Xia H, Fan Z H, Xie W K, Zhang P, Liu J S, Chen X, Chu X X 2019 Opt. Commun. 436 14Google Scholar

    [20]

    Xie W K, Zhang P, Wang H, Chu X X 2018 Opt. Commun. 427 288Google Scholar

    [21]

    Fu Y Q, Feng G Y, Zhang D Y, Chen J G, Zhou S H 2010 Optik 121 452Google Scholar

    [22]

    Xiong W, Xiao G Z, Han X, Zhou J H, Chen X L, Luo H 2017 Opt. Express 25 9449Google Scholar

    [23]

    Ishaaya A A, Eckhouse V, Shimshi L, Davidson N, Friesem A A 2005 Opt. Express 13 2722Google Scholar

    [24]

    于涛, 夏辉, 樊志华, 谢文科, 张盼, 刘俊圣, 陈欣 2018 物理学报 67 134203Google Scholar

    Yu T, Xia H, Fan Z H, Xie W K, Zhang P, Liu J S, Chen X 2018 Acta Phys. Sin. 67 134203Google Scholar

  • [1] Hadiqa⋅ Abdugopur, Tan Le-Tao, Yu Tao, Xie Wen-Ke, Liu Jing, Shao Zheng-Zheng. Study of off-axis incident rotational speed measurement based on coherent synthetic vortex beams. Acta Physica Sinica, 2024, 73(16): 168701. doi: 10.7498/aps.73.20240655
    [2] Zhu Xue-Song, Liu Xing-Yu, Zhang Yan. Nonreciprocal transmission of vortex beam in double Laguerre-Gaussian rotational cavity system. Acta Physica Sinica, 2022, 71(15): 150701. doi: 10.7498/aps.71.20220191
    [3] Zhong Zhe-Qiang, Mu Jie, Wang Xiao, Zhang Bin. Analysis of coherent combination characteristics of beam array via tight focusing. Acta Physica Sinica, 2020, 69(9): 094204. doi: 10.7498/aps.69.20200034
    [4] Wu Wen-Bing, Sheng Zong-Qiang, Wu Hong-Wei. Design and application of flat spiral phase plate. Acta Physica Sinica, 2019, 68(5): 054102. doi: 10.7498/aps.68.20181677
    [5] Yu Tao, Xia Hui, Fan Zhi-Hua, Xie Wen-Ke, Zhang Pan, Liu Jun-Sheng, Chen Xin. Generation of Bessel-Gaussian vortex beam by combining technology. Acta Physica Sinica, 2018, 67(13): 134203. doi: 10.7498/aps.67.20180325
    [6] He Jie-Ling, Wei Ling, Yang Jin-Sheng, Li Xi-Qi, He Yi, Zhang Yu-Dong. Influence of pupil on the laser beam shaping system by pure phase modulation. Acta Physica Sinica, 2016, 65(4): 048701. doi: 10.7498/aps.65.048701
    [7] Shi Jian-Zhen, Yang Shen, Zou Ya-Qi, Ji Xian-Ming, Yin Jian-Ping. Generation of vortex beams by the four-step phase plates. Acta Physica Sinica, 2015, 64(18): 184202. doi: 10.7498/aps.64.184202
    [8] Wang Ya-Dong, Gan Xue-Tao, Ju Pei, Pang Yan, Yuan Lin-Guang, Zhao Jian-Lin. Control of topological structure in high-order optical vortices by use of noncanonical helical phase. Acta Physica Sinica, 2015, 64(3): 034204. doi: 10.7498/aps.64.034204
    [9] Wang Lin, Yuan Cao-Jin, Nie Shou-Ping, Li Chong-Guang, Zhang Hui-Li, Zhao Ying-Chun, Zhang Xiu-Ying, Feng Shao-Tong. Measuring topology charge of vortex beam using digital holography. Acta Physica Sinica, 2014, 63(24): 244202. doi: 10.7498/aps.63.244202
    [10] Huang Su-Juan, Gu Ting-Ting, Miao Zhuang, He Chao, Wang Ting-Yun. Experimental study on multiple-ring vortex beams. Acta Physica Sinica, 2014, 63(24): 244103. doi: 10.7498/aps.63.244103
    [11] Tan Yi, Li Xin-Yang. Influence of filling factor on far-field intensity distribution in coherent beam combination. Acta Physica Sinica, 2014, 63(9): 094202. doi: 10.7498/aps.63.094202
    [12] Geng Chao, Luo Wen, Tan Yi, Liu Hong-Mei, Mu Jin-Bo, Li Xin-Yang. Experimental study on coherent beam combination of fiber amplifiers using adaptive power-in-the-bucket cost function. Acta Physica Sinica, 2013, 62(22): 224202. doi: 10.7498/aps.62.224202
    [13] Ding Pan-Feng, Pu Ji-Xiong. Change of the off-center Laguerre-Gaussian vortex beam while propagation. Acta Physica Sinica, 2012, 61(6): 064103. doi: 10.7498/aps.61.064103
    [14] Li Jian-Long, Feng Guo-Ying, Zhou Shou-Huan, Li Wei. Study of the M2 factor for the single-aperture coherent laser beam synthesis system. Acta Physica Sinica, 2012, 61(9): 094206. doi: 10.7498/aps.61.094206
    [15] Feng Bo, Gan Xue-Tao, Liu Sheng, Zhao Jian-Lin. Transformation of multi-edge-dislocations to screw-dislocations in optical field. Acta Physica Sinica, 2011, 60(9): 094203. doi: 10.7498/aps.60.094203
    [16] Ding Pan-Feng, Pu Ji-Xiong. Propagation of Laguerre-Gaussian vortex beam. Acta Physica Sinica, 2011, 60(9): 094204. doi: 10.7498/aps.60.094204
    [17] Lian Tian-Hong, Wang Shi-Yu, Guo Zhen, Li Bing-Bin, Cai De-Fang, Wen Jian-Guo. A coherently combined laser beam for lidar. Acta Physica Sinica, 2011, 60(12): 124208. doi: 10.7498/aps.60.124208
    [18] Li Yang-Yue, Chen Zi-Yang, Liu Hui, Pu Ji-Xiong. Generation and interference of vortex beams. Acta Physica Sinica, 2010, 59(3): 1740-1748. doi: 10.7498/aps.59.1740
    [19] Han Wei-Tao, Hou Lan-Tian, Geng Peng-Cheng. Numerical and experimental study on coherent combining of double cladding multi-core photonic crystal fiber. Acta Physica Sinica, 2010, 59(10): 7091-7095. doi: 10.7498/aps.59.7091
    [20] Qi Xun-Jun, Lin Bin, Cao Xiang-Qun, Chen Yu-Qing. Study of modular transfer function-based optieal low-pass filter evaluation model and experiment. Acta Physica Sinica, 2008, 57(5): 2854-2859. doi: 10.7498/aps.57.2854
Metrics
  • Abstract views:  11255
  • PDF Downloads:  191
  • Cited By: 0
Publishing process
  • Received Date:  06 June 2019
  • Accepted Date:  08 July 2019
  • Available Online:  01 November 2019
  • Published Online:  05 November 2019

/

返回文章
返回