搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空域模拟光学计算器件的研究进展

周毅 陈瑞 陈雯洁 马云贵

引用本文:
Citation:

空域模拟光学计算器件的研究进展

周毅, 陈瑞, 陈雯洁, 马云贵

Advances in spatial analog optical computing devices

Zhou Yi, Chen Rui, Chen Wen-Jie, Ma Yun-Gui
PDF
HTML
导出引用
  • 空域模拟光学计算器件具备高通量、实时性和低能耗的信息处理能力. 光学超构材料结构紧凑、对光波具有强大调控能力, 可被用于构建小型化、集成化的空域模拟光学计算器件. 目前空域模拟光学计算器件的研究根据设计方法主要分为4F系统法和格林函数法两类. 4F系统法需要两个傅里叶变换透镜和一个空间频率滤波器, 实际模拟计算过程是在空域完成的, 结构较为庞大复杂. 格林函数法直接利用特别设计的光学材料的非局域响应在空间频率域实现模拟计算过程, 不需要额外的傅里叶变换组件, 结构简单. 本文按照这两种设计方法介绍了近几年来空域模拟光学计算器件的研究进展, 根据计算功能又分为微分器、积分器、方程求解器和空间频率滤波器, 阐述了这些器件的设计方法. 其后介绍了新近提出的利用自旋轨道耦合作用实现空域模拟一阶微分的计算器件. 最后对空域模拟光学计算器件应用场景和研究前景进行了讨论和分析.
    Spatial analog optical computing devices possess the capability of high-throughput, real-time and low-energy information processing. Optical metamaterials, which are ultracompact in structure and possess powerful ability to control the light, can be utilized to establish miniatured and integrated spatial analog optical computing devices. The methods of designing the spatial analog optical computing devices could be mainly classified as two kinds—4F system method and Green’s function method. The 4F system method requires two Fourier transform lenses and a spatial frequency filter, where the actual computing procedure is performed in the spatial domain. The 4F system is usually bulky and complicated. The Green’s function method directly leverages the nonlocal response of the carefully tailored optical materials to implement analog computing procedure in the spatial frequency domain and its structure is compact without extra Fourier transform components. Research advances in spatial analog optical computing devices by using these two methods for the last few years are introduced in this paper. These researches could be classified as differentiators, integrators, equation solvers and spatial frequency filters according to the standard of computing functions. The approaches to designing these devices are further demonstrated. Then, computing devices which could realize spatial analog first-order difference by use of the spin-orbit interaction proposed recently are introduced. Finally, application fields and study prospects of spatial analog optical computing devices are discussed and summarized.
      通信作者: 马云贵, yungui@zju.edu.cn
    • 基金项目: 国家级-国家自然科学基金(61775195)
      Corresponding author: Ma Yun-Gui, yungui@zju.edu.cn
    [1]

    Goodman J W 2005 Introduction to Fourier Optics (3rd Ed.). (Englewood: Roberts & Company Publishers)

    [2]

    Staude I, Schilling J 2017 Nat. Photonics 11 274Google Scholar

    [3]

    Aieta F, Kats M A, Genevet P, Capasso F 2015 Science 347 1342Google Scholar

    [4]

    Zheng G, Mühlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S 2015 Nat. Nanotech. 10 308Google Scholar

    [5]

    Liu S, Vabishchevich P P, Vaskin A, Reno J L, Keeler G A, Sinclair M B, Staude I, Brener I 2018 Nat. Commun. 9 2507Google Scholar

    [6]

    Silva A, Monticone F, Castaldi G, Galdi V, Alù A, Engheta N 2014 Science 343 160Google Scholar

    [7]

    Pors A, Nielsen M G, Bozhevolnyi S I 2015 Nano Lett. 15 791Google Scholar

    [8]

    Zhu T, Zhou Y, Lou Y, Ye H, Qiu M, Ruan Z, Fan S 2017 Nat. Commun. 8 15391Google Scholar

    [9]

    Estakhri N M, Edwards B, Engheta N 2019 Science 363 1333Google Scholar

    [10]

    Sajjad A R, Arik K, Khavasi A, Kavehvash Z 2015 Opt. Lett. 40 5239Google Scholar

    [11]

    Chen H, An D, Li Z, Zhao X 2017 Opt. Express 25 26417Google Scholar

    [12]

    Wang Z, Li T, Soman A, Mao D, Kananen T, Gu T 2019 Nat. Commun. 10 3547Google Scholar

    [13]

    Wu Y, Zhuang Z, Deng L, Liu Y A, Xue Q, Ghassemlooy Z 2018 Plasmonics 13 599Google Scholar

    [14]

    Chizari A, Sajjad A R Jamali M V, Salehi J A 2016 Opt. Lett. 41 3451Google Scholar

    [15]

    Dai C L, Zhao Z G, Li X L, Yang H W 2016 Phys. Lett. A 380 3942Google Scholar

    [16]

    Sajjad A R, Chizari A, Dorche A E, Jamali M V, Salehi J A 2017 Opt. Lett. 42 1197Google Scholar

    [17]

    Zhang W X, Qu C, Zhang X D 2016 J. Opt. 18 075102Google Scholar

    [18]

    Kwon H, Sounas D, Cordaro A, Polman A, Alù A 2018 Phys. Rev. Lett. 121 173004Google Scholar

    [19]

    Momeni A, Rajabalipanah H, Abdolali A, Achouri K 2019 Phys. Rev. Appl. 11 064042Google Scholar

    [20]

    Wang H W, Guo C, Zhao Z X, Fan S H 2020 ACS Photonics 7 338Google Scholar

    [21]

    Doskolovich L L, Bykov D A, Bezus E A, Soifer V A 2014 Opt. Lett. 39 1278Google Scholar

    [22]

    Ruan Z C 2015 Opt. Lett. 40 601Google Scholar

    [23]

    Youssefi A, Zangeneh-Nejad F, Sajjad A R, Khavasi A 2016 Opt. Lett. 41 3467Google Scholar

    [24]

    Bezus E A, Doskolovich L L, Bykov D A, Soifer V A 2018 Opt. Express 26 25156Google Scholar

    [25]

    Bykov D A, Doskolovich L L, Morozov A A, Podlipnov V V, Bezus E A, Verma P, Soifer V A 2018 Opt. Express 26 10997Google Scholar

    [26]

    Dong Z W, Si J N, Yu X Y, Deng X X 2018 Appl. Phys. Lett. 112 181102Google Scholar

    [27]

    Fang Y S, Ruan Z C 2018 Opt. Lett. 43 5893Google Scholar

    [28]

    Zangeneh-Nejad F, Khavasi A, Rejaei B 2018 Opt. Commun. 407 338Google Scholar

    [29]

    Zhang J, Ying Q, Ruan Z 2019 Opt. Lett. 44 4511Google Scholar

    [30]

    Zhou Y, Wu W, Chen R, Chen W, Chen R, Ma Y 2020 Adv. Opt. Mater. 8 1901523Google Scholar

    [31]

    Zhou Y, Chen R, Chen W, Chen R P, Ma Y 2020 Opt. Commun. 458 124674Google Scholar

    [32]

    Guo C, Xiao M, Minkov M, Shi Y, Fan S 2018 Optica 5 251Google Scholar

    [33]

    Hwang Y, Davis T J, Lin J, Yuan X C 2018 Opt. Express 26 7368Google Scholar

    [34]

    Saba A, Tavakol M R, Karimi-Khoozani P, Khavasi A 2018 IEEE Photonics Technol. Lett. 30 853Google Scholar

    [35]

    Zhou Y, Zheng H, Kravchenko I I, Valentine J 2020 Nat. Photonics 14 316Google Scholar

    [36]

    Bykov D A, Doskolovich L L, Bezus E A, Soifer V A 2014 Opt. Express 22 25084Google Scholar

    [37]

    Fang Y, Lou Y, Ruan Z 2017 Opt. Lett. 42 3840Google Scholar

    [38]

    Wu W, Jiang W, Yang J, Gong S, Ma Y 2017 Opt. Lett. 42 5270Google Scholar

    [39]

    Golovastikov N V, Bykov D A, Doskolovich L L, Bezus E A 2015 Opt. Commun. 338 457Google Scholar

    [40]

    Zangeneh-Nejad F, Khavasi A 2017 Opt. Lett. 42 1954Google Scholar

    [41]

    Abdolali A, Momeni A, Rajabalipanah H, Achouri K 2019 New J. Phys. 21 113048Google Scholar

    [42]

    Guo C, Xiao M, Minkov M, Shi Y, Fan S 2018 J. Opt. Soc. Am. A 35 1685Google Scholar

    [43]

    Roberts A, Gómez D E, Davis T J 2018 J. Opt. Soc. Am. A 35 1575Google Scholar

    [44]

    Davis T J, Eftekhari F, Gómez D E, Roberts A 2019 Phys. Rev. Lett. 123 013901Google Scholar

    [45]

    Zhu T F, Lou Y J, Zhou Y H, Zhang J H, Huang J Y, Li Y, Luo H L, Wen S C, Zhu S Y, Gong Q H, Qiu M, Ruan Z C 2019 Phys. Rev. Appl. 11 034043Google Scholar

    [46]

    Zhu T F, Huang J Y, Ruan Z C 2020 Adv. Photonics 2 016001Google Scholar

    [47]

    He S, Zhou J, Chen S, Shu W, Luo H, Wen S 2020 APL Photonics 5 036105Google Scholar

    [48]

    He S, Zhou J, Chen S, Shu W, Luo H, Wen S 2020 Opt. Lett. 45 877Google Scholar

    [49]

    Zhou J, Qian H, Chen C F, Zhao J, Li G, Wu Q, Luo H, Wen S, Liu Z 2019 Proc. Natl. Acad. Sci. U. S. A. 116 11137Google Scholar

    [50]

    谢智强, 贺炎亮, 王佩佩, 苏明样, 陈学钰, 杨博, 刘俊敏, 周新星, 李瑛, 陈书青, 范滇元 2020 物理学报 69 014101Google Scholar

    Xie Z Q, He Y L, Wang P P, Su M Y, Chen X Y, Yang B, Liu J M, Zhou X X, Li Y, Chen S Q, Fan D Y 2020 Acta Phys. Sin. 69 014101Google Scholar

    [51]

    Folland T G, Fali A, White S T, et al. 2018 Nat. Commun. 9 4371Google Scholar

    [52]

    Tian J, Luo H, Yang Y, Ding F, Qu Y, Zhao D, Qiu M, Bozhevolnyi S I 2019 Nat. Commun. 10 396Google Scholar

    [53]

    Wen D, Yue F, Li G, et al. 2015 Nat. Commun. 6 8241Google Scholar

    [54]

    Maguid E, Yulevich I, Veksler D, Kleiner V, Brongersma M L, Hasman E 2016 Science 352 1202Google Scholar

  • 图 1  利用4F系统法设计的超构材料空域模拟光学计算器件示意图[6]

    Fig. 1.  Metamaterial spatial analog optical computing device designed by 4F system method[6].

    图 2  利用4F系统法设计的超构材料空域模拟光学计算器件 (a), (b) MIM等离激元超构表面和对应反射强度分布[7]; (c), (d) 树枝状等离激元超构表面和对应反射强度分布[11]; (e), (f) SOI片上超构表面结构和对应一阶微分器[12]; (g), (h) 硅超构表面ODE、IDE求解器和对应电场仿真结果[16]

    Fig. 2.  Metamaterial spatial analog optical computing devices designed by 4F system method: (a), (b) MIM plasmon metasurface and corresponding reflective intensity distribution[7]; (c), (d) dendritic plasmon metasurface and corresponding reflective intensity distribution[11]; (e), (f) schematic of unit cell of SOI-based on-chip metasurface and corresponding first-order differentiator[12]; (g), (h) ODE and IDE solvers based on silicon metasurfaces and corresponding electric field simulation results[16].

    图 3  基于平板或多层膜的空域模拟一阶微分器 (a) PSBG微分器和对应传递函数[21]; (b) 工作在Brewster角的介质平板微分器和对应传递函数[23]; (c) 基于SPP的微分器和边缘检测实验结果[8]

    Fig. 3.  Spatial analog first-order differentiator based on plates and multilayer films: (a) PSBG differentiator and corresponding transfer function[21]; (b) dielectric plate differentiator working at Brewster’s angle and corresponding transfer function[23]; (c) SPP-based differentiator and experimental results of edge detection[8].

    图 4  基于光栅和普通超构材料的空域模拟一阶微分器 (a) 基于全介质光栅的微分器和边缘检测实验结果[26]; (b) 基于结构对称性破缺SRR的微分器和对应传递函数[18]; (c) 介质-金属超构表面微分器和边缘检测实验结果[30]

    Fig. 4.  Grating/metamaterial-based spatial analog first-order differentiator: (a) Differentiator based on all-dielectric grating and experimental results of edge detection[26]; (b) differentiator based on structure-symmetry-broken SRRs and corresponding transfer function[18]; (c) dielectric-metal metasurface differentiator and experimental results of edge detection[30].

    图 5  超构材料空域模拟二阶微分器 (a) 光栅石墨烯复合微分器和对应传递函数幅度[37]; (b) 基于等离激元电路的微分器和对应交叉偏振散射强度随入射角度的函数关系[33]; (c) 基于光子晶体的微分器和对应传递函数幅度[32]

    Fig. 5.  Metamaterial spatial analog second-order differentiator: (a) On-grating graphene differentiator and magnitude of corresponding transfer function[37]; (b) differentiator based on plasmonic circuit and corresponding cross-polarized scattering intensity as function of incident angle[33]; (c) differentiator based on photonic crystal slab and magnitude of corresponding transfer function[32].

    图 6  多层膜空域模拟一阶积分器[40] (a) 积分器结构示意图; (b) 对应传递函数

    Fig. 6.  Multilayer spatial analog first-order integrator[40]: (a) Schematic of integrator; (b) corresponding transfer function.

    图 7  利用格林函数法设计的超构材料空域模拟方程求解器[9] (a) 结构示意图; (b) 端口3激发的电场分布仿真结果

    Fig. 7.  Metamaterial spatial analog equation solver using Green’s function[9]: (a) Schematic diagram; (b) simulation result of electric field distribution when excited at Port 3.

    图 8  基于SHEL的一阶微分器 (a) 介质平板微分器和边缘检测实验结果[45]; (b) PB相位超构表面微分器和边缘检测实验结果[49]

    Fig. 8.  SHEL-based first-order differentiator: (a) Dielectric plate differentiator and experimental results of edge detection[45]; (b) differentiator based on PB-phase metasurface and experimental results of edge detection[49].

  • [1]

    Goodman J W 2005 Introduction to Fourier Optics (3rd Ed.). (Englewood: Roberts & Company Publishers)

    [2]

    Staude I, Schilling J 2017 Nat. Photonics 11 274Google Scholar

    [3]

    Aieta F, Kats M A, Genevet P, Capasso F 2015 Science 347 1342Google Scholar

    [4]

    Zheng G, Mühlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S 2015 Nat. Nanotech. 10 308Google Scholar

    [5]

    Liu S, Vabishchevich P P, Vaskin A, Reno J L, Keeler G A, Sinclair M B, Staude I, Brener I 2018 Nat. Commun. 9 2507Google Scholar

    [6]

    Silva A, Monticone F, Castaldi G, Galdi V, Alù A, Engheta N 2014 Science 343 160Google Scholar

    [7]

    Pors A, Nielsen M G, Bozhevolnyi S I 2015 Nano Lett. 15 791Google Scholar

    [8]

    Zhu T, Zhou Y, Lou Y, Ye H, Qiu M, Ruan Z, Fan S 2017 Nat. Commun. 8 15391Google Scholar

    [9]

    Estakhri N M, Edwards B, Engheta N 2019 Science 363 1333Google Scholar

    [10]

    Sajjad A R, Arik K, Khavasi A, Kavehvash Z 2015 Opt. Lett. 40 5239Google Scholar

    [11]

    Chen H, An D, Li Z, Zhao X 2017 Opt. Express 25 26417Google Scholar

    [12]

    Wang Z, Li T, Soman A, Mao D, Kananen T, Gu T 2019 Nat. Commun. 10 3547Google Scholar

    [13]

    Wu Y, Zhuang Z, Deng L, Liu Y A, Xue Q, Ghassemlooy Z 2018 Plasmonics 13 599Google Scholar

    [14]

    Chizari A, Sajjad A R Jamali M V, Salehi J A 2016 Opt. Lett. 41 3451Google Scholar

    [15]

    Dai C L, Zhao Z G, Li X L, Yang H W 2016 Phys. Lett. A 380 3942Google Scholar

    [16]

    Sajjad A R, Chizari A, Dorche A E, Jamali M V, Salehi J A 2017 Opt. Lett. 42 1197Google Scholar

    [17]

    Zhang W X, Qu C, Zhang X D 2016 J. Opt. 18 075102Google Scholar

    [18]

    Kwon H, Sounas D, Cordaro A, Polman A, Alù A 2018 Phys. Rev. Lett. 121 173004Google Scholar

    [19]

    Momeni A, Rajabalipanah H, Abdolali A, Achouri K 2019 Phys. Rev. Appl. 11 064042Google Scholar

    [20]

    Wang H W, Guo C, Zhao Z X, Fan S H 2020 ACS Photonics 7 338Google Scholar

    [21]

    Doskolovich L L, Bykov D A, Bezus E A, Soifer V A 2014 Opt. Lett. 39 1278Google Scholar

    [22]

    Ruan Z C 2015 Opt. Lett. 40 601Google Scholar

    [23]

    Youssefi A, Zangeneh-Nejad F, Sajjad A R, Khavasi A 2016 Opt. Lett. 41 3467Google Scholar

    [24]

    Bezus E A, Doskolovich L L, Bykov D A, Soifer V A 2018 Opt. Express 26 25156Google Scholar

    [25]

    Bykov D A, Doskolovich L L, Morozov A A, Podlipnov V V, Bezus E A, Verma P, Soifer V A 2018 Opt. Express 26 10997Google Scholar

    [26]

    Dong Z W, Si J N, Yu X Y, Deng X X 2018 Appl. Phys. Lett. 112 181102Google Scholar

    [27]

    Fang Y S, Ruan Z C 2018 Opt. Lett. 43 5893Google Scholar

    [28]

    Zangeneh-Nejad F, Khavasi A, Rejaei B 2018 Opt. Commun. 407 338Google Scholar

    [29]

    Zhang J, Ying Q, Ruan Z 2019 Opt. Lett. 44 4511Google Scholar

    [30]

    Zhou Y, Wu W, Chen R, Chen W, Chen R, Ma Y 2020 Adv. Opt. Mater. 8 1901523Google Scholar

    [31]

    Zhou Y, Chen R, Chen W, Chen R P, Ma Y 2020 Opt. Commun. 458 124674Google Scholar

    [32]

    Guo C, Xiao M, Minkov M, Shi Y, Fan S 2018 Optica 5 251Google Scholar

    [33]

    Hwang Y, Davis T J, Lin J, Yuan X C 2018 Opt. Express 26 7368Google Scholar

    [34]

    Saba A, Tavakol M R, Karimi-Khoozani P, Khavasi A 2018 IEEE Photonics Technol. Lett. 30 853Google Scholar

    [35]

    Zhou Y, Zheng H, Kravchenko I I, Valentine J 2020 Nat. Photonics 14 316Google Scholar

    [36]

    Bykov D A, Doskolovich L L, Bezus E A, Soifer V A 2014 Opt. Express 22 25084Google Scholar

    [37]

    Fang Y, Lou Y, Ruan Z 2017 Opt. Lett. 42 3840Google Scholar

    [38]

    Wu W, Jiang W, Yang J, Gong S, Ma Y 2017 Opt. Lett. 42 5270Google Scholar

    [39]

    Golovastikov N V, Bykov D A, Doskolovich L L, Bezus E A 2015 Opt. Commun. 338 457Google Scholar

    [40]

    Zangeneh-Nejad F, Khavasi A 2017 Opt. Lett. 42 1954Google Scholar

    [41]

    Abdolali A, Momeni A, Rajabalipanah H, Achouri K 2019 New J. Phys. 21 113048Google Scholar

    [42]

    Guo C, Xiao M, Minkov M, Shi Y, Fan S 2018 J. Opt. Soc. Am. A 35 1685Google Scholar

    [43]

    Roberts A, Gómez D E, Davis T J 2018 J. Opt. Soc. Am. A 35 1575Google Scholar

    [44]

    Davis T J, Eftekhari F, Gómez D E, Roberts A 2019 Phys. Rev. Lett. 123 013901Google Scholar

    [45]

    Zhu T F, Lou Y J, Zhou Y H, Zhang J H, Huang J Y, Li Y, Luo H L, Wen S C, Zhu S Y, Gong Q H, Qiu M, Ruan Z C 2019 Phys. Rev. Appl. 11 034043Google Scholar

    [46]

    Zhu T F, Huang J Y, Ruan Z C 2020 Adv. Photonics 2 016001Google Scholar

    [47]

    He S, Zhou J, Chen S, Shu W, Luo H, Wen S 2020 APL Photonics 5 036105Google Scholar

    [48]

    He S, Zhou J, Chen S, Shu W, Luo H, Wen S 2020 Opt. Lett. 45 877Google Scholar

    [49]

    Zhou J, Qian H, Chen C F, Zhao J, Li G, Wu Q, Luo H, Wen S, Liu Z 2019 Proc. Natl. Acad. Sci. U. S. A. 116 11137Google Scholar

    [50]

    谢智强, 贺炎亮, 王佩佩, 苏明样, 陈学钰, 杨博, 刘俊敏, 周新星, 李瑛, 陈书青, 范滇元 2020 物理学报 69 014101Google Scholar

    Xie Z Q, He Y L, Wang P P, Su M Y, Chen X Y, Yang B, Liu J M, Zhou X X, Li Y, Chen S Q, Fan D Y 2020 Acta Phys. Sin. 69 014101Google Scholar

    [51]

    Folland T G, Fali A, White S T, et al. 2018 Nat. Commun. 9 4371Google Scholar

    [52]

    Tian J, Luo H, Yang Y, Ding F, Qu Y, Zhao D, Qiu M, Bozhevolnyi S I 2019 Nat. Commun. 10 396Google Scholar

    [53]

    Wen D, Yue F, Li G, et al. 2015 Nat. Commun. 6 8241Google Scholar

    [54]

    Maguid E, Yulevich I, Veksler D, Kleiner V, Brongersma M L, Hasman E 2016 Science 352 1202Google Scholar

  • [1] 陈乐迪, 范仁浩, 刘雨, 唐贡惠, 马中丽, 彭茹雯, 王牧. 基于柔性超构材料宽带调控太赫兹波的偏振态. 物理学报, 2022, 71(18): 187802. doi: 10.7498/aps.71.20220801
    [2] 林月钗, 刘仿, 黄翊东. 基于超构材料的Cherenkov辐射. 物理学报, 2020, 69(15): 154103. doi: 10.7498/aps.69.20200260
    [3] 汪辰超, 吴太权, 王新燕, 江影. Rh(111)表面NO分子对多层膜的原子结构. 物理学报, 2017, 66(2): 026301. doi: 10.7498/aps.66.026301
    [4] 马晓亮, 李雄, 郭迎辉, 赵泽宇, 罗先刚. 超构天线:原理、器件与应用. 物理学报, 2017, 66(14): 147802. doi: 10.7498/aps.66.147802
    [5] 邓俊鸿, 李贵新. 非线性光学超构表面. 物理学报, 2017, 66(14): 147803. doi: 10.7498/aps.66.147803
    [6] 龙洋, 任捷, 江海涛, 孙勇, 陈鸿. 超构材料中的光学量子自旋霍尔效应. 物理学报, 2017, 66(22): 227803. doi: 10.7498/aps.66.227803
    [7] 姜平, 司道伟, 朱晖文, 李培刚, 王顺利, 崔灿, 唐为华. (BiFeO3)25/(La0.7Sr0.3MnO3)25 多层膜的光学和电学性质. 物理学报, 2011, 60(11): 117203. doi: 10.7498/aps.60.117203
    [8] 陈昌兆, 蔡传兵, 刘志勇, 应利良, 高 波, 刘金磊, 鲁玉明. NdBa2Cu3O7-δ/YBa2Cu3O7-δ多层膜体系的外延结构和磁通钉扎的研究. 物理学报, 2008, 57(7): 4371-4378. doi: 10.7498/aps.57.4371
    [9] 翟中海, 滕 蛟, 李宝河, 王立锦, 于广华, 朱逢吾. 具有垂直各向异性(Pt/Co)n/FeMn多层膜的交换偏置. 物理学报, 2006, 55(4): 2064-2068. doi: 10.7498/aps.55.2064
    [10] 王文静, 袁慧敏, 姜 山, 萧淑琴, 颜世申. FeCuCrVSiB单层和多层膜的横向巨磁阻抗效应. 物理学报, 2006, 55(11): 6108-6112. doi: 10.7498/aps.55.6108
    [11] 魏向军, 徐 清, 王天民, 贾全杰, 王焕华, 冯松林. 周期性多层膜合金化制取的TiNi形状记忆薄膜的室温微结构特征. 物理学报, 2006, 55(3): 1508-1511. doi: 10.7498/aps.55.1508
    [12] 黄 阀, 李宝河, 杨 涛, 翟中海, 朱逢吾. 多层膜[Co85Cr15/Pt]20的磁性、垂直磁记录特性和微结构的关系. 物理学报, 2005, 54(4): 1841-1846. doi: 10.7498/aps.54.1841
    [13] 陈卫平, 萧淑琴, 王文静, 姜 山, 刘宜华. FeCuCrVSiB多层膜巨磁阻抗效应的研究. 物理学报, 2005, 54(6): 2929-2933. doi: 10.7498/aps.54.2929
    [14] 乔 峰, 黄信凡, 朱 达, 马忠元, 邹和成, 隋妍萍, 李 伟, 周晓辉, 陈坤基. 激光限制结晶技术制备nc-Si/SiO2多层膜. 物理学报, 2004, 53(12): 4303-4307. doi: 10.7498/aps.53.4303
    [15] 王洪昌, 王占山, 李佛生, 秦树基, 杜芸, 王利, 张众, 陈玲燕. 帽层对极紫外多层膜反射特性影响分析. 物理学报, 2004, 53(7): 2368-2372. doi: 10.7498/aps.53.2368
    [16] 温晓文, 李国俊, 仇高新, 李永平, 丁 磊, 隋 展. 多缺陷结构的一维磁光多层膜隔离器. 物理学报, 2004, 53(10): 3571-3576. doi: 10.7498/aps.53.3571
    [17] 周 勋, 梁冰青, 王 海, 张臻蓉, 陈良尧, 王荫君. PdMn/Co多层膜的磁性和磁光特性研究. 物理学报, 2003, 52(10): 2616-2621. doi: 10.7498/aps.52.2616
    [18] 徐润, 沈明荣, 葛水兵. 溶胶-凝胶法制备BaTiO3/SrTiO3多层膜的介电增强效应. 物理学报, 2002, 51(5): 1139-1143. doi: 10.7498/aps.51.1139
    [19] 梁冰青, 陈 熹, 周 勋, 刘 洪, 王 海, 唐云俊, 王荫君, 王松有, 陈良尧. PtMn/Co多层膜的磁光特性研究. 物理学报, 2000, 49(10): 2059-2065. doi: 10.7498/aps.49.2059
    [20] 周云松, 陈金昌, 林多梁. 多层伊辛膜的磁学性质. 物理学报, 2000, 49(12): 2477-2481. doi: 10.7498/aps.49.2477
计量
  • 文章访问数:  10924
  • PDF下载量:  392
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-25
  • 修回日期:  2020-03-23
  • 上网日期:  2020-05-12
  • 刊出日期:  2020-08-05

/

返回文章
返回