-
A simple and high sensitivity optical fiber relative humidity (RH) sensor based on Mach-Zehnder interferometer (MZI) is proposed and demonstrated in this paper. A single-mode fiber and a graded-index multimode fiber are connected by a fiber taper to form a section. Then an uncoated dispersion compensation fiber is sandwiched between two short sections of the graded-index multimode fiber.Therefore, a sensing structure is set up as a single-mode fiber-taper fiber-graded-index multimode fiber-dispersion compensation fiber-graded-index multimode fiber-taper laser-single-mode fiber. The taper fiber is used to augment the energy of the cladding mode. The two nodes of the graded-index multimode fiber can be looked as a mode coupler. Thus an MZI is constructed. Since the external RH change can make the transmission spectrum energy changed, we can obtain the RH by detecting the peak energy variation of the interference pattern induced by the evanescent-field interaction. The experimental results show that the peak energy changes linearly with surrounding relative humidity. Under the condition of 35%Rh-85%RH, the sensitivity of the sensor with a 20 mm dispersion compensation fiber is -0.0668 dB/%RH and the linearity is 0.995. Moreover, temperature response characteristics are investigated. Experimental results suggest that the transmission spectrum energy of the sensor is insensitive to temperature. With temperature increasing, the transmission spectrum presents obviously a red-shift, yet the peak energy of the monitoring point barely moves, which demonstrates its potential for measuring simultaneously RH and temperature. The proposed sensor has a small size and simple manufacturing process, which can make it widely used to measure RH.
-
Keywords:
- humidity sensors /
- dispersion compensation fiber /
- graded-index multimode fiber /
- Mach-Zehnder interferometer
[1] Kolpakov S A, Gordon N T, Mou C B, Zhou K M 2014 Sensors 14 3986
[2] Xu W, Huang W B, Huang X G, Yu C Y 2013 Opt. Fiber Technol. 19 583
[3] Xie W J, Yang M, Cheng Y, Li D, Zhang Y, Zhuang Z 2014 Opt. Fiber Technol. 20 314
[4] Sun H, Zhang X, Yuan L, Zhou L, Qiao X, Hu M 2014 IEEE Sens. J. 15 2891
[5] Su D, Qiao X G, Rong Q Z, Sun H, Zhang J, Bai Z Y, Du Y Y, Feng D Y, Wang Y P, Hu M L, Feng Z Y 2014 Opt. Commun. 311 107
[6] Lin Y, Gong Y, Wu Y, Wu H 2015 Photon. Sens. 5 60
[7] Kronenberg P, Rastogi P K, Giaccari P, Limberger H G 2002 Opt. Lett. 27 1385
[8] Shao M, Qiao X, Fu H, Zhao N, Liu Q, Gao H 2013 IEEE Sens. J. 13 2026
[9] Lokman A, Arof H, Harun S W, Harith Z, Rafaie H A, Nor R M 2016 IEEE Sens. J. 16 312
[10] Yu X J, Zhang J T, Chen X F, Liu S C 2014 Adv. Mater. Res. 981 616
[11] Shao M, Qiao X, Fu H W 2013 IEEE Sens. J. 13 2026
[12] Mather J, Semenova Y, Rajan G, Farrell G 2010 Electron. Lett. 46 1341
[13] Zhang Z F, Tao X M 2012 J. Lightwave Technol. 30 841
[14] Liu H F, Miao Y P, Liu B, Lin W, Zhang H, Song B B, Huang M G, Lin L 2015 IEEE Sens. J. 15 3424
[15] Mathew J, Semenova Y, Farrell G 2012 IEEE J. Sel. Top. Quantum Electron. 18 1553
[16] Zhang X K, Ye X Q, Chen Z D 2011 Acta Opt. Sin. 31 33 (in Chinese)[张小康, 叶晓靖, 陈志东 2011 光学学报 31 33]
[17] Zhang Y S, Qiao X G, Shao M, Fu H W, Zhao N 2015 Acta Photon. Sin. 44 115 (in Chinese)[张芸山, 乔学光, 邵敏, 傅海威, 李辉栋, 赵娜 2015 光子学报 44 115]
[18] Yeo T L, Sun T, Grattan K T V, Parry D, Lade R, Powell B D 2005 IEEE Sens. J. 5 1082
[19] Wu Q, Semenova Y L, Mathew J 2011 Opt. Lett. 36 1752
[20] Shao M, Qiao X G, Fu H W, Li H D, Zhao J L, Li Y A 2014 Opt. Laser Technol. 52 86
[21] Liu N, Hu M L, Sun H, Gang T T, Yang Z H, Rong Q Z, Qiao X G 2016 Opt. Commun. 367 1
[22] Yan X, Fu H W, Li H D, Qiao X G 2016 Chin. Opt. Lett. 14 030603
[23] Huan X F, Sheng D R, Cen K F, Zhou H 2007 Sensors Actuat. B: Chem. 127 518
-
[1] Kolpakov S A, Gordon N T, Mou C B, Zhou K M 2014 Sensors 14 3986
[2] Xu W, Huang W B, Huang X G, Yu C Y 2013 Opt. Fiber Technol. 19 583
[3] Xie W J, Yang M, Cheng Y, Li D, Zhang Y, Zhuang Z 2014 Opt. Fiber Technol. 20 314
[4] Sun H, Zhang X, Yuan L, Zhou L, Qiao X, Hu M 2014 IEEE Sens. J. 15 2891
[5] Su D, Qiao X G, Rong Q Z, Sun H, Zhang J, Bai Z Y, Du Y Y, Feng D Y, Wang Y P, Hu M L, Feng Z Y 2014 Opt. Commun. 311 107
[6] Lin Y, Gong Y, Wu Y, Wu H 2015 Photon. Sens. 5 60
[7] Kronenberg P, Rastogi P K, Giaccari P, Limberger H G 2002 Opt. Lett. 27 1385
[8] Shao M, Qiao X, Fu H, Zhao N, Liu Q, Gao H 2013 IEEE Sens. J. 13 2026
[9] Lokman A, Arof H, Harun S W, Harith Z, Rafaie H A, Nor R M 2016 IEEE Sens. J. 16 312
[10] Yu X J, Zhang J T, Chen X F, Liu S C 2014 Adv. Mater. Res. 981 616
[11] Shao M, Qiao X, Fu H W 2013 IEEE Sens. J. 13 2026
[12] Mather J, Semenova Y, Rajan G, Farrell G 2010 Electron. Lett. 46 1341
[13] Zhang Z F, Tao X M 2012 J. Lightwave Technol. 30 841
[14] Liu H F, Miao Y P, Liu B, Lin W, Zhang H, Song B B, Huang M G, Lin L 2015 IEEE Sens. J. 15 3424
[15] Mathew J, Semenova Y, Farrell G 2012 IEEE J. Sel. Top. Quantum Electron. 18 1553
[16] Zhang X K, Ye X Q, Chen Z D 2011 Acta Opt. Sin. 31 33 (in Chinese)[张小康, 叶晓靖, 陈志东 2011 光学学报 31 33]
[17] Zhang Y S, Qiao X G, Shao M, Fu H W, Zhao N 2015 Acta Photon. Sin. 44 115 (in Chinese)[张芸山, 乔学光, 邵敏, 傅海威, 李辉栋, 赵娜 2015 光子学报 44 115]
[18] Yeo T L, Sun T, Grattan K T V, Parry D, Lade R, Powell B D 2005 IEEE Sens. J. 5 1082
[19] Wu Q, Semenova Y L, Mathew J 2011 Opt. Lett. 36 1752
[20] Shao M, Qiao X G, Fu H W, Li H D, Zhao J L, Li Y A 2014 Opt. Laser Technol. 52 86
[21] Liu N, Hu M L, Sun H, Gang T T, Yang Z H, Rong Q Z, Qiao X G 2016 Opt. Commun. 367 1
[22] Yan X, Fu H W, Li H D, Qiao X G 2016 Chin. Opt. Lett. 14 030603
[23] Huan X F, Sheng D R, Cen K F, Zhou H 2007 Sensors Actuat. B: Chem. 127 518
Catalog
Metrics
- Abstract views: 6546
- PDF Downloads: 400
- Cited By: 0