Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Distributed optical fiber temperature sensor based on self-compensation of fitting attenuation difference

Ma Tian-Bing Zi Bao-Wei Guo Yong-Cun Ling Liu-Yi Huang You-Rui Jia Xiao-Fen

Citation:

Distributed optical fiber temperature sensor based on self-compensation of fitting attenuation difference

Ma Tian-Bing, Zi Bao-Wei, Guo Yong-Cun, Ling Liu-Yi, Huang You-Rui, Jia Xiao-Fen
PDF
HTML
Get Citation
  • The temperature error caused by the essential loss and the additional loss of Stokes light and anti-Stokes light widely exist in the distributed optical fiber temperature sensor (DTS). According to the temperature demodulation principle of the DTS, a method of fitting the attenuation difference between Stokes light and anti-Stokes light is proposed, which can realize the temperature self-compensation to reduce the temperature measurement error. Two parts at the different positions of the sensing fiber are regarded as the reference section and the temperature measuring section, respectively. The optical signal of the reference section is used as a parameter when demodulating the temperature and fitting the attenuation difference, and the attenuation difference between the Stokes light and the anti-Stokes light is multi-order fitted by the optical signal of the temperature measuring section, then the multi-order fitting results are used to demodulate the temperature for reducing the temperature error caused by the essential loss and additional loss of the Stokes light and anti-Stokes light, in order to implement the preliminary correction of the temperature. Three groups of the different measuring temperature values at the same position of the optical fiber as well as their corresponding signal values are taken in calculation for eliminating the Rayleigh noise, and the relationship of Rayleigh noise with fiber length and temperature are analyzed, and thus further calculating the Rayleigh noise based on the fitting attenuation difference. The influence of the multi-order attenuation difference on the error in temperature measurement and that on the elimination of the Rayleigh noise are compared with each other, and the Rayleigh noise error caused by the essential loss and additional loss of the Stokes light and anti-Stokes light are reduced, then the temperature is corrected again by eliminating the Rayleigh noise. The effect of the multi-order attenuation difference fitting result on the temperature measurement error and on the elimination of Rayleigh noise are analyzed and compared with each other, then the optimal fitting order is obtained. After fitting the additional error at the temperature measurement section that is caused by the additional loss at the reference section, the temperature compensation is carried out by the fitting result, then the final temperature correction is completed. The experimental results show that the temperature correction effect is best by using the first-order linear fitting results in a temperature range of 30-90 ℃, and the temperature measurement error is reduced from 10.50 ℃ to 0.90 ℃ after being corrected three times.
      Corresponding author: Ma Tian-Bing, dfmtb@163.com
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2016YFC060908)
    [1]

    Geng J S, Sun Q, Zhang Y C, Gong W Y, Du S 2018 J. Loss Prevent. Proc. 55 144Google Scholar

    [2]

    O'Keefe J M K, Neace E R, Hammond M L, Hower J C, Engle M A, East J, Geboy N J, Olea R A, Henke K R, Copley G C, Lemley E, Nally R S H, Hansen A E, Richardson A R, Satterwhite A B, Stracher G B, Radke L F, Smeltzer C, Romanek C, Blake D R, Schroeder P A, Emsbo-Mattingly S D, Stout S A 2018 Int. J. Coal Geol. 195 304Google Scholar

    [3]

    Dunnington L, Nakagawa M 2017 Environ. Pollut. 229 139Google Scholar

    [4]

    Mohalik N K, Lester E, Lowndes I S, Singh V K 2016 Carbon Manag. 7 317Google Scholar

    [5]

    Yan W J, Hu M, Liang J R, Wang D F, Wei Y L, Qin Y X 2016 Chin. Phys. B 25 040702Google Scholar

    [6]

    Wang Z L, Zhang S S, Chang J, Lü G P, Wang W J, Jiang S, Liu X Z, Liu X H, Luo S, Liu Y N 2014 Optik 125 1821Google Scholar

    [7]

    刘铁根, 于哲, 江俊峰, 刘琨, 张学智, 丁振扬, 王双, 胡浩丰, 韩群, 张红霞, 李志宏 2017 物理学报 66 070705Google Scholar

    Liu T G, Yu Z, Jiang J F, Liu K, Zhang X Z, Ding Z Y, Wang S, Hu H F, Han Q, Zhang H X, Li Z H 2017 Acta Phys. Sin. 66 070705Google Scholar

    [8]

    孙琪真, 刘德明, 王健 2007 物理学报 56 5903Google Scholar

    Sun Q Z, Liu D M, Wang J 2007 Acta Phys. Sin. 56 5903Google Scholar

    [9]

    饶云江 2017 物理学报 66 074207Google Scholar

    Rao Y J 2017 Acta Phys. Sin. 66 074207Google Scholar

    [10]

    Wen S Z, Xiong W C, Huang L P, Wang Z R, Zhang X B, He Z H 2018 Chin. Phys. B 27 090701Google Scholar

    [11]

    Bolognini G, Hartog A 2013 Opt. Fiber Technol. 19 678Google Scholar

    [12]

    王剑锋, 刘红林, 张淑琴, 余向东, 孙忠周, 金尚忠, 张在宣 2013 光谱学与光谱分析 33 865Google Scholar

    Wang J F, Liu H L, Zhang S Q, Yu X D, Sun Z Z, Jin S Z, Zhang Z X 2013 Spectrosc. Spect. Anal. 33 865Google Scholar

    [13]

    余向东, 张在宣, 祝海忠, 金尚忠, 刘红林, 王剑锋 2011 光子学报 40 1870Google Scholar

    Yu X D, Zhang Z X, Zhu H Z, Jin S Z, Liu H L, Wang J F 2011 Acta. Photon. Sin. 40 1870Google Scholar

    [14]

    He H L, Dyck M F, Horton R, Li M, Jin H J, Si B C 2018 Adv. Agron. 148 173Google Scholar

    [15]

    Chai Q, Luo Y, Ren J, Zhang J Z, Yang J, Yuan L B, Peng G D 2019 Opt. Eng. 58 072007

    [16]

    孙苗, 汤玉泉, 杨爽, 李俊, Culshaw B, 董凤忠 2015 光电子·激光 26 2070

    Sun M, Tang Y Q, Yang S, Li J, Culshaw B, Dong F Z 2015 J. Optoelectron. Laser 26 2070

    [17]

    Cao Y L, Yang F, Xu D, Ye Q, Cai H W, Fang Z J 2016 Chin. Phys. Lett. 33 050701Google Scholar

    [18]

    Yang C, Wang M, Tang M, Wu H, Zhao C, Liu T Q, Fu S N, Tong W J 2018 Appl. Opt. 57 6923Google Scholar

    [19]

    Shang C, Wu C Q, Li Z Y, Yang S S 2011 Chin. Phys. Lett. 28 094212Google Scholar

    [20]

    Liu Y P, Ma L, Yang C, Tong W J, He Z Y 2018 Opt. Express 26 20562Google Scholar

    [21]

    Hwang D, Yoon D J, Kwon I B, Seo D C, Chung Y J 2010 Opt. Express 18 9747Google Scholar

    [22]

    Suh K, Lee C 2008 Opt. Lett. 33 1845Google Scholar

    [23]

    Wang Z L, Zhang S S, Chang J, Lü P G, Wang W J, Jiang S, Liu X Z, Liu X H, Luo S, Sun B N, Liu Y N 2013 Opt. Quant. Electron. 45 1087Google Scholar

    [24]

    van de Giesen N, Steele-Dunne S C, Jansen J, Hoes O, Hausner M B, Tyler S, Selker J 2012 Sensors 12 5471Google Scholar

    [25]

    汤玉泉, 孙苗, 李俊, 杨爽, Culshaw B, 董凤忠 2015 光子学报 44 0506006Google Scholar

    Tang Y Q, Sun M, Li J, Yang S, Culshaw B, Dong F Z 2015 Acta. Photon. Sin. 44 0506006Google Scholar

    [26]

    Sun B N, Chang J, Lian J, Wang Z L, Lü G P, Liu X Z, Wang W J, Zhou S, Wei W, Jiang S, Liu Y N, Luo S, Liu X H, Liu Z, ZhangS S 2013 Opt. Commun. 306 117Google Scholar

    [27]

    Yin Y X, Wu Z F, Sun S W, Tian L, Wang X B, Wu Y D, Zhang D M 2019 Chin. Phys. B 28 074202Google Scholar

    [28]

    汤玉泉, 孙苗, 李俊, 杨爽, Culshaw B, 董凤忠 2015 光电子·激光 26 847

    Tang Y Q, Sun M, Li J, Yang S, Culshaw B, Dong F Z 2015 J. Optoelectron. Laser 26 847

    [29]

    Wang Z L, Chang J, Zhang S S, Luo S, Jia C W, Jiang S, Sun B N, Liu Y N, Wei W, Liu X H, Lü G P 2015 Optik 126 270Google Scholar

    [30]

    柴敬 2003 博士学位论文 (西安: 西安科技大学)

    Chai J 2003 Ph. D. Dissertation (Xi’an: Xi’an University of Science and Technology) (in Chinese)

    [31]

    Lin Q, Yaman F, Agrawal G P 2007 Phys. Rev. A 75 023803Google Scholar

    [32]

    Wang Z L, Chang J, Zhang S S, Sun B N, Jiang S, Luo S, Jia C W, Liu Y N, Liu X H, Lü G P, Liu X Z 2014 Opt. Quant. Electron. 46 821Google Scholar

  • 图 1  RDTS实验系统原理图

    Figure 1.  RDTS experimental system schematic.

    图 2  RDTS实验装置图

    Figure 2.  RDTS experimental device diagram.

    图 3  实验结果 (a) 20 ℃时光纤中的散射光信号; (b) 温度变化时的散射光信号; (c) Δα ≈ 0时的温度解调结果; (d)衰减差拟合结果

    Figure 3.  Experimental results: (a) Scattered light signal in fiber at 20 ℃; (b) scattered light signal when temperature changes; (c) temperature demodulation results of Δα ≈ 0; (d) fitting results of attenuation difference.

    图 4  温度修正后的测量结果 (a)初步修正后的测量值; (b)温度修正前后的测温误差

    Figure 4.  Temperature corrected measurement: (a) Preliminary corrected measurement; (b) temperature measurement error before and after temperature correction.

    图 5  温度最终修正后的测量结果 (a) 40 ℃和60 ℃时光纤中的瑞利噪声; (b)不同温度下的瑞利噪声; (c)引入Δα前后消除瑞利噪声的测量结果; (d)引入Δα前后消除瑞利噪声的温度误差

    Figure 5.  Temperature corrected final measurement results: (a) Rayleigh noise in fiber at 40 ℃ and 60 ℃; (b) rayleigh noise at different temperatures; (c) measurement results without Rayleigh noise before and after the introduction of Δα; (d) temperature error without Rayleigh noise before and after the introduction of Δα.

    图 6  各阶修正效果 (a)引入各阶拟合结果二次修正后的误差; (b)引入各阶结果后二次修正的温度增量

    Figure 6.  Temperature error after each order fitting: (a) The second correction error after introducing the fitting results of each order; (b) temperature increment for secondary correction after introduction of each order result.

    图 7  附加误差修正 (a)附加误差拟合曲线; (b)附加误差修正前后的测温误差

    Figure 7.  Additional error correction: (a) Additional error fitting result; (b) temperature error before and after additional error correction.

  • [1]

    Geng J S, Sun Q, Zhang Y C, Gong W Y, Du S 2018 J. Loss Prevent. Proc. 55 144Google Scholar

    [2]

    O'Keefe J M K, Neace E R, Hammond M L, Hower J C, Engle M A, East J, Geboy N J, Olea R A, Henke K R, Copley G C, Lemley E, Nally R S H, Hansen A E, Richardson A R, Satterwhite A B, Stracher G B, Radke L F, Smeltzer C, Romanek C, Blake D R, Schroeder P A, Emsbo-Mattingly S D, Stout S A 2018 Int. J. Coal Geol. 195 304Google Scholar

    [3]

    Dunnington L, Nakagawa M 2017 Environ. Pollut. 229 139Google Scholar

    [4]

    Mohalik N K, Lester E, Lowndes I S, Singh V K 2016 Carbon Manag. 7 317Google Scholar

    [5]

    Yan W J, Hu M, Liang J R, Wang D F, Wei Y L, Qin Y X 2016 Chin. Phys. B 25 040702Google Scholar

    [6]

    Wang Z L, Zhang S S, Chang J, Lü G P, Wang W J, Jiang S, Liu X Z, Liu X H, Luo S, Liu Y N 2014 Optik 125 1821Google Scholar

    [7]

    刘铁根, 于哲, 江俊峰, 刘琨, 张学智, 丁振扬, 王双, 胡浩丰, 韩群, 张红霞, 李志宏 2017 物理学报 66 070705Google Scholar

    Liu T G, Yu Z, Jiang J F, Liu K, Zhang X Z, Ding Z Y, Wang S, Hu H F, Han Q, Zhang H X, Li Z H 2017 Acta Phys. Sin. 66 070705Google Scholar

    [8]

    孙琪真, 刘德明, 王健 2007 物理学报 56 5903Google Scholar

    Sun Q Z, Liu D M, Wang J 2007 Acta Phys. Sin. 56 5903Google Scholar

    [9]

    饶云江 2017 物理学报 66 074207Google Scholar

    Rao Y J 2017 Acta Phys. Sin. 66 074207Google Scholar

    [10]

    Wen S Z, Xiong W C, Huang L P, Wang Z R, Zhang X B, He Z H 2018 Chin. Phys. B 27 090701Google Scholar

    [11]

    Bolognini G, Hartog A 2013 Opt. Fiber Technol. 19 678Google Scholar

    [12]

    王剑锋, 刘红林, 张淑琴, 余向东, 孙忠周, 金尚忠, 张在宣 2013 光谱学与光谱分析 33 865Google Scholar

    Wang J F, Liu H L, Zhang S Q, Yu X D, Sun Z Z, Jin S Z, Zhang Z X 2013 Spectrosc. Spect. Anal. 33 865Google Scholar

    [13]

    余向东, 张在宣, 祝海忠, 金尚忠, 刘红林, 王剑锋 2011 光子学报 40 1870Google Scholar

    Yu X D, Zhang Z X, Zhu H Z, Jin S Z, Liu H L, Wang J F 2011 Acta. Photon. Sin. 40 1870Google Scholar

    [14]

    He H L, Dyck M F, Horton R, Li M, Jin H J, Si B C 2018 Adv. Agron. 148 173Google Scholar

    [15]

    Chai Q, Luo Y, Ren J, Zhang J Z, Yang J, Yuan L B, Peng G D 2019 Opt. Eng. 58 072007

    [16]

    孙苗, 汤玉泉, 杨爽, 李俊, Culshaw B, 董凤忠 2015 光电子·激光 26 2070

    Sun M, Tang Y Q, Yang S, Li J, Culshaw B, Dong F Z 2015 J. Optoelectron. Laser 26 2070

    [17]

    Cao Y L, Yang F, Xu D, Ye Q, Cai H W, Fang Z J 2016 Chin. Phys. Lett. 33 050701Google Scholar

    [18]

    Yang C, Wang M, Tang M, Wu H, Zhao C, Liu T Q, Fu S N, Tong W J 2018 Appl. Opt. 57 6923Google Scholar

    [19]

    Shang C, Wu C Q, Li Z Y, Yang S S 2011 Chin. Phys. Lett. 28 094212Google Scholar

    [20]

    Liu Y P, Ma L, Yang C, Tong W J, He Z Y 2018 Opt. Express 26 20562Google Scholar

    [21]

    Hwang D, Yoon D J, Kwon I B, Seo D C, Chung Y J 2010 Opt. Express 18 9747Google Scholar

    [22]

    Suh K, Lee C 2008 Opt. Lett. 33 1845Google Scholar

    [23]

    Wang Z L, Zhang S S, Chang J, Lü P G, Wang W J, Jiang S, Liu X Z, Liu X H, Luo S, Sun B N, Liu Y N 2013 Opt. Quant. Electron. 45 1087Google Scholar

    [24]

    van de Giesen N, Steele-Dunne S C, Jansen J, Hoes O, Hausner M B, Tyler S, Selker J 2012 Sensors 12 5471Google Scholar

    [25]

    汤玉泉, 孙苗, 李俊, 杨爽, Culshaw B, 董凤忠 2015 光子学报 44 0506006Google Scholar

    Tang Y Q, Sun M, Li J, Yang S, Culshaw B, Dong F Z 2015 Acta. Photon. Sin. 44 0506006Google Scholar

    [26]

    Sun B N, Chang J, Lian J, Wang Z L, Lü G P, Liu X Z, Wang W J, Zhou S, Wei W, Jiang S, Liu Y N, Luo S, Liu X H, Liu Z, ZhangS S 2013 Opt. Commun. 306 117Google Scholar

    [27]

    Yin Y X, Wu Z F, Sun S W, Tian L, Wang X B, Wu Y D, Zhang D M 2019 Chin. Phys. B 28 074202Google Scholar

    [28]

    汤玉泉, 孙苗, 李俊, 杨爽, Culshaw B, 董凤忠 2015 光电子·激光 26 847

    Tang Y Q, Sun M, Li J, Yang S, Culshaw B, Dong F Z 2015 J. Optoelectron. Laser 26 847

    [29]

    Wang Z L, Chang J, Zhang S S, Luo S, Jia C W, Jiang S, Sun B N, Liu Y N, Wei W, Liu X H, Lü G P 2015 Optik 126 270Google Scholar

    [30]

    柴敬 2003 博士学位论文 (西安: 西安科技大学)

    Chai J 2003 Ph. D. Dissertation (Xi’an: Xi’an University of Science and Technology) (in Chinese)

    [31]

    Lin Q, Yaman F, Agrawal G P 2007 Phys. Rev. A 75 023803Google Scholar

    [32]

    Wang Z L, Chang J, Zhang S S, Sun B N, Jiang S, Luo S, Jia C W, Liu Y N, Liu X H, Lü G P, Liu X Z 2014 Opt. Quant. Electron. 46 821Google Scholar

  • [1] Qi Hai-Dong, Wang Jing, Chen Zhong-Jun, Wu Zhong-Hua, Song Xi-Ping. Influence of temperature on lattice constants of martensite and ferrite. Acta Physica Sinica, 2022, 71(9): 098301. doi: 10.7498/aps.71.20211954
    [2] Wang Yu-Hao, Liu Jian-Guo, Xu Liang, Liu Wen-Qing, Song Qing-li, Jin Ling, Xu Han-Yang. Quantitative analysis of accuracy of concentration inversion under different temperature and pressure. Acta Physica Sinica, 2021, 70(7): 073201. doi: 10.7498/aps.70.20201672
    [3] Qi Ke-Wu, Zhao Yu-Hong, Guo Hui-Jun, Tian Xiao-Lin, Hou Hua. Phase field crystal simulation of the effect of temperature on low-angle symmetric tilt grain boundary dislocation motion. Acta Physica Sinica, 2019, 68(17): 170504. doi: 10.7498/aps.68.20190051
    [4] Zhang Wei, Liu Ying-Gang, Zhang Ting, Liu Xin, Fu Hai-Wei, Jia Zhen-An. Dual micro-holes-based in-fiber Fabry-Perot interferometer sensor. Acta Physica Sinica, 2018, 67(20): 204203. doi: 10.7498/aps.67.20180528
    [5] Yang Yi, Xu Ben, Liu Ya-Ming, Li Ping, Wang Dong-Ning, Zhao Chun-Liu. Sensitivity-enhanced temperature sensor with fiber optic Fabry-Perot interferometer based on vernier effect. Acta Physica Sinica, 2017, 66(9): 094205. doi: 10.7498/aps.66.094205
    [6] Tang Yuan-He, Wang Shu-Hua, Cui Jin, Xu Ying, Mei Yi-Feng, Li Cun-Xia. Study on the forward of mashgas CO temperature and concentration by the remote passive measurement. Acta Physica Sinica, 2016, 65(18): 184201. doi: 10.7498/aps.65.184201
    [7] Deng Chun-Yu, Hou Shang-Lin, Lei Jing-Li, Wang Dao-Bin, Li Xiao-Xiao. Simultaneous measurement on strain and temperature via guided acoustic-wave Brillouin scattering in single mode fibers. Acta Physica Sinica, 2016, 65(24): 240702. doi: 10.7498/aps.65.240702
    [8] Xu Hui, Tian Xiao-Bo, Bu kai, Li Qing-Jiang. Influence of temperature change on conductive characteristics of titanium oxide memristor. Acta Physica Sinica, 2014, 63(9): 098402. doi: 10.7498/aps.63.098402
    [9] Gu Yuan, Shi Rong-Ye, Wang Yan-Hui. study on sensitivity-related parameters of distributed feedback laser-pumped cesium atomic magnetometer. Acta Physica Sinica, 2014, 63(11): 110701. doi: 10.7498/aps.63.110701
    [10] Cao Ye, Pei Yong-Wei, Tong Zheng-Rong. Simultaneous measurement of temperature and bending-curvature using a single local micro-structured longperiod fiber grating. Acta Physica Sinica, 2014, 63(2): 024206. doi: 10.7498/aps.63.024206
    [11] Jiang Zhong-Ying, Zhang Guo-Liang, Ma Jing, Zhu Tao. Lipid exhange between membranes: effects of temperature and ionic strength. Acta Physica Sinica, 2013, 62(1): 018701. doi: 10.7498/aps.62.018701
    [12] Li Yan, Fu Hai-Wei, Shao Min, Li Xiao-Li. Temperature characteristic of photonic crystals resonant cavitycomposed of GaAs pillars with graphite lattice. Acta Physica Sinica, 2011, 60(7): 074219. doi: 10.7498/aps.60.074219
    [13] Cheng Zheng-Fu, Long Xiao-Xia, Zheng Rui-Lun. Influence of temperature on the Bose condensation of photons and excitons in optic microcavity. Acta Physica Sinica, 2010, 59(12): 8377-8384. doi: 10.7498/aps.59.8377
    [14] Han Ru, Fan Xiao-Ya, Yang Yin-Tang. Temperature-dependent Raman property of n-type SiC. Acta Physica Sinica, 2010, 59(6): 4261-4266. doi: 10.7498/aps.59.4261
    [15] Wang Ya-Zhen, Huang Ping, Gong Zhong-Liang. Study on the influence of temperature on interfacial micro-friction. Acta Physica Sinica, 2010, 59(8): 5635-5640. doi: 10.7498/aps.59.5635
    [16] Chen Pi-Heng, Ao Bing-Yun, Li Ju, Li Rong, Shen Liang. Simulation of He behavior in bcc Fe on heating. Acta Physica Sinica, 2009, 58(4): 2605-2611. doi: 10.7498/aps.58.2605
    [17] Zhao Xue-Yan, Yuan Ping, Wang Jie, Shen Xiao-Zhi, Guo Yi-Xiao, Qiao Hong-Zhen. Theoretical study on the rule of plasma temperature decay in the process of lightning dissipation. Acta Physica Sinica, 2009, 58(5): 3243-3247. doi: 10.7498/aps.58.3243
    [18] Chen Guo-Qing, Wu Ya-Min, Lu Xing-Zhong. Temperature effects of optical bistability of metal/dielectric granular composites. Acta Physica Sinica, 2007, 56(2): 1146-1151. doi: 10.7498/aps.56.1146
    [19] Zhou Xu-Chang, Chen Xiao-Shuang, Zhen Hong-Lou, Lu Wei. The effect of distribution of holes in the momentum-space on the photoresponse of p-type quantum well infrared photodetector. Acta Physica Sinica, 2006, 55(8): 4247-4252. doi: 10.7498/aps.55.4247
    [20] TANG YONG-JIAN, ZHAO YONG-KUAN, JIANG WEI-YANG, ZHU ZHENG-HE, LIU YUAN-QIONG. LIQUID HYDROGEN ISOTOPES LAYER PROFILE INSIDE A CRYOGENIC INERTIA CONFINEMENT FUSION CAPSULE FOR AN ISOTHERMAL ENVIRONMENT. Acta Physica Sinica, 1999, 48(12): 2208-2214. doi: 10.7498/aps.48.2208
Metrics
  • Abstract views:  8249
  • PDF Downloads:  118
  • Cited By: 0
Publishing process
  • Received Date:  24 September 2019
  • Accepted Date:  18 October 2019
  • Published Online:  05 February 2020

/

返回文章
返回