Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Multi-channel few-mode multicore fiber based surface plasmon resonance biosensor with open air-hole

Xiao Shi-Yan Jia Da-Gong Nie An-Ran Yu Hui Ji Zhe Zhang Hong-Xia Liu Tie-Gen

Citation:

Multi-channel few-mode multicore fiber based surface plasmon resonance biosensor with open air-hole

Xiao Shi-Yan, Jia Da-Gong, Nie An-Ran, Yu Hui, Ji Zhe, Zhang Hong-Xia, Liu Tie-Gen
PDF
HTML
Get Citation
  • Based on the structural characteristics of the few-mode multicore fiber (FM-MCF), a multi-channel FM-MCF surface plasmon resonance (SPR) biosensor with open air-hole is presented. Due to the air-hole distribution of the FM-MCF, the six outer air-holes naturally become open air-holes, i.e. groove sensing channels, fabricated by chemical etching. Then, compared with D-shape structure, tapered structure of fiber and air-hole of photonic crystal fiber (PCF), the open groove structure is easy to accommodate the liquid analyte. In order to obtain better sensing performance, a sensing model of the presented FM-MCF SPR biosensor with sensitive dielectric layer is established and numerical simulations are performed using the finite element method. In the simulations, the effect of core-hole distance, coating thickness, sensing dielectrics, transmission modes in optical fiber on the sensing performance as well as the role of multi-channel are analyzed. The simulation results show that when the air-hole is tangent to the core (d = 0 μm), the FM-MCF SPR biosensor has the better performance because the core-hole distance d determines the leakage intensity of the evanescent wave. As the evanescent field excited by high-order mode (LP11ax mode) is stronger than that by fundamental mode (LP01x mode), the performance of biosensors for SPR excitation by using high-order mode is better than by using fundamental mode. Meanwhile when the coating thickness of gold, silver and indium tin oxides (ITOs) is 40 nm, 30 nm and 100 nm respectively, the FWHM of loss spectrum reaches a minimum value, which means that the presented biosensor has the better performance in this sense. For the case of different sensing dielectrics, it is observed that the resonance wavelength of gold and silver film are in the visible wavelength range, while the ITO is at near-infrared wavelength. Then it is useful for our biosensor to simultaneously detect many liquid analytes in one SPR transmittance spectrum. In addition, the calculation results also show that when one of the groove channels is coated with 100 nm ITO for the LP11ax mode, the FM-MCF SPR biosensor has a highest sensitivity of 20824.66 nm/RIU and refractive index (RI) resolution is 4.8 × 10–6 RIU with the surrounding RI changing from 1.33 to 1.39, in which the RI of bovine serum albumin (BSA) solution, human Immunoglobulin G and C-reactive protein can be detected. Moreover, when the outer groove channels of our biosensor are coated with gold, silver and ITO film with different thickness, many biological liquid analytes can be detected separately or the same biological liquid analyte can be detected jointly, which reveals that the control flexibility of the groove sensing channel and the diversity of the detection analytes .
      Corresponding author: Jia Da-Gong, dagongjia@tju.edu.cn ; Yu Hui, yuhui@tju.edu.cn
    [1]

    Cooper M A 2002 Nat. Rev. Drug Discov. 1 515Google Scholar

    [2]

    Borisov S M, Wolfbeis O S 2008 Chem. Rev. 108 423Google Scholar

    [3]

    李加东, 程珺洁, 苗斌, 魏晓玮, 张志强, 黎海文, 吴东岷 2014 物理学报 63 070204Google Scholar

    Li J D, Cheng J J, Miao B, Wei X W, Zhang Z Q, Li H W, Wu D M 2014 Acta Phys. Sin. 63 070204Google Scholar

    [4]

    Shankaran D R, Gobi K V, Miura N 2007 Sensor Actuat. B-Chem. 121 158Google Scholar

    [5]

    Fan X D, White I M, Shopova S I, Zhu H Y, Suter J D, Sun Y Z 2008 Anal. Chim. Acta 620 8Google Scholar

    [6]

    Gupta B D, Verma R K 2009 J. Sens. 2009 1

    [7]

    Homola J 2008 Chem. Rev. 108 462Google Scholar

    [8]

    Velázquez-González J S, Monzón-Hernández D, Moreno-Hernández D, Martínez-Piñón F, Hernández-Romano I 2017 Sensor Actuat. B-Chem. 242 912Google Scholar

    [9]

    施伟华, 尤承杰, 吴静 2015 物理学报 64 224221Google Scholar

    Shi W H, You C J, Wu J 2015 Acta Phys. Sin. 64 224221Google Scholar

    [10]

    冯李航, 曾捷, 梁大开, 张为公 2013 物理学报 62 124207Google Scholar

    Feng L H, Zeng J, Liang D K, Zhang W G 2013 Acta Phys. Sin. 62 124207Google Scholar

    [11]

    张海志 2003 生物学通报 38 1Google Scholar

    Zhang H Z 2003 Bull. Biol. 38 1Google Scholar

    [12]

    Kassani S H, Khazaeinezhad R, Jung Y M, Kobelke J, Oh K 2015 IEEE Photonics J. 7 1Google Scholar

    [13]

    Liu C, Yang L, Lu X L, Liu Q, Wang F M, Lv J W, Sun T, Mu H W, Chu P K 2017 Opt. Express 25 14227Google Scholar

    [14]

    Yang Z, Xia L, Li C, Chen X, Liu D M 2019 Opt. Commun. 430 195Google Scholar

    [15]

    Wei Y, Su Y D, Liu C L, Zhang Y H, Nie X F, Liu Z H, Zhang Y, Peng F 2017 Opt. Express 25 21841Google Scholar

    [16]

    Li A, Wang Y F, Hu Q, Shieh W 2015 Opt. Express 23 1139Google Scholar

    [17]

    Sakaguchi J, Klaus W, Mendinueta J M D, Puttnam B J, Luís R S, Awaji Y, Wada N, Hayashi T, Nakanishi T, Watanabe T, Kokubun Y, Takahata T, Kobayashi T 2015 J. Lightwave Technol. 34 93Google Scholar

    [18]

    Xia C, Amezcua-Correa R, Bai N, Antonio-Lopez E, Arrioja D M, Schulzgen A, Richardson M, Liñares J, Montero C, Mateo E, Zhou X, Li G F 2012 IEEE Photonics Technol. Lett. 24 1914Google Scholar

    [19]

    Rakić A D, Djurišić A B, Elazar J M, Majewski M L 1998 Appl. Opt. 37 5271Google Scholar

    [20]

    Wang Y J, Dong J L, Luo Y H, Tang J Y, Lu H H, Yu J H, Guan H Y, Zhang J, Chen Z 2017 IEEE Photonics J. 9 1Google Scholar

    [21]

    Dong J L, Zhang Y X, Wang Y J, Yang F, Hu S Q, Chen Y F, Zhu W G, Qiu W T, Guan H Y, Lu H H, Yu J H, Zhong Y C, Zhang J, Luo Y H, Chen Z 2019 Opt. Express 27 11348Google Scholar

    [22]

    Zheng Y F, Lang T T, Cao B B, Jin J J, Dong R Q, Feng H 2018 Opt. Fiber Technol. 46 179Google Scholar

    [23]

    Wang W J, Mai Z G, Chen Y Z, Wang J Q, Li L, Su Q N, Li X J, Hong X M 2017 Sci. Rep. 7 1Google Scholar

  • 图 1  (a) FM-MCF SPR生物传感器的横截面; (b) FM-MCF横截面; (c) FEM网格划分

    Figure 1.  (a) Cross section of the FM-MCF SPR biosensor; (b) cross section of the FM-MCF; (c) FEM mesh for calculation.

    图 2  氢氟酸腐蚀FM-MCF过程中纤芯和气孔间距d的变化 (a)包层与最外侧气孔相切; (b)腐蚀气孔与纤芯恰好相切; (c)纤芯被腐蚀; 下方的插图是红色区域的放大示意图

    Figure 2.  The core-hole distance d variation during using hydrofluoric acid to fabricate the groove channel: (a) Cladding is tangent to the outermost air-holes; (b) air-holes are tangent to the cores; (c) fiber cores are also etched. The inserts below are zoom-in of red region.

    图 3  (a)当na = 1.33—1.36时不同d的芯模损耗光谱曲线; (b)不同RI下d对共振波长和灵敏度的影响; (c) d与传感器FWHM和FOM的关系

    Figure 3.  (a) Loss spectra of the core mode with different d when na = 1.33—1.36; (b) the effect of d on both resonance wavelength and sensitivity with various RI; (c) relations between d and FWHM as well as FOM of the sensor.

    图 4  不同膜层厚度下的芯模损耗光谱 (a)金膜; (b)银膜; (c) ITO

    Figure 4.  Loss spectra of the core mode for different coating thickness (t): (a) Au; (b) Ag; (c) ITO.

    图 5  na变化时传感器的共振光谱 (a)金膜厚度为40 nm; (b) ITO膜厚度为100 nm

    Figure 5.  Loss spectra of the sensor with na increasing: (a) tAu = 40 nm; (b) tITO = 100 nm.

    图 6  待测物RI与共振波长之间的关系 (a) 金膜厚度为40 nm; (b) ITO膜为100 nm

    Figure 6.  Relations between na and resonance wavelength for different t: (a) tAu = 40 nm; (b) tITO = 100 nm.

    图 7  (a) LP01x模的电场分布; (b) LP01x模的光场分布; (c) LP11ax模的电场分布; (d) LP11ax模的光场分布

    Figure 7.  (a) Electric field distributions of LP01x; (b) optical field distributions of LP01x; (c) electric field distributions of LP11ax; (d) optical field distributions of LP11ax.

    图 8  (a) LP11ax模激发的光谱损耗曲线; (b) LP11ax模激发时na与共振波长之间的关系

    Figure 8.  (a) Loss spectra excited by LP11ax mode; (b) relations between na and resonance wavelength at LP11ax mode.

    图 9  三种生物物质传感时光谱损耗 (a) 1通道na = 1.35, 金膜; (b) 2通道na = 1.34, 银膜; (c) 5通道na = 1.33, ITO膜; 插图是共振发生时通道中光场分布

    Figure 9.  The loss spectra of three bio-substances sensing: (a) Channel 1 for Au coating with na = 1.35; (b) channel 2 for Ag coating with na = 1.34; (c) channel 5 for ITO coating with na = 1.33. Insets are optical field distributions for three channels.

    图 10  na从1.33增加到1.34时, 多通道传感检测同种物质时的光谱损耗 (a) 1通道; (b) 2通道; (c) 5通道

    Figure 10.  Loss spectra for detecting one bio-substance simultaneously using multi-channel when na increases from 1.33 to 1.34: (a) Channel 1; (b)channel 2; (c) channel 5.

  • [1]

    Cooper M A 2002 Nat. Rev. Drug Discov. 1 515Google Scholar

    [2]

    Borisov S M, Wolfbeis O S 2008 Chem. Rev. 108 423Google Scholar

    [3]

    李加东, 程珺洁, 苗斌, 魏晓玮, 张志强, 黎海文, 吴东岷 2014 物理学报 63 070204Google Scholar

    Li J D, Cheng J J, Miao B, Wei X W, Zhang Z Q, Li H W, Wu D M 2014 Acta Phys. Sin. 63 070204Google Scholar

    [4]

    Shankaran D R, Gobi K V, Miura N 2007 Sensor Actuat. B-Chem. 121 158Google Scholar

    [5]

    Fan X D, White I M, Shopova S I, Zhu H Y, Suter J D, Sun Y Z 2008 Anal. Chim. Acta 620 8Google Scholar

    [6]

    Gupta B D, Verma R K 2009 J. Sens. 2009 1

    [7]

    Homola J 2008 Chem. Rev. 108 462Google Scholar

    [8]

    Velázquez-González J S, Monzón-Hernández D, Moreno-Hernández D, Martínez-Piñón F, Hernández-Romano I 2017 Sensor Actuat. B-Chem. 242 912Google Scholar

    [9]

    施伟华, 尤承杰, 吴静 2015 物理学报 64 224221Google Scholar

    Shi W H, You C J, Wu J 2015 Acta Phys. Sin. 64 224221Google Scholar

    [10]

    冯李航, 曾捷, 梁大开, 张为公 2013 物理学报 62 124207Google Scholar

    Feng L H, Zeng J, Liang D K, Zhang W G 2013 Acta Phys. Sin. 62 124207Google Scholar

    [11]

    张海志 2003 生物学通报 38 1Google Scholar

    Zhang H Z 2003 Bull. Biol. 38 1Google Scholar

    [12]

    Kassani S H, Khazaeinezhad R, Jung Y M, Kobelke J, Oh K 2015 IEEE Photonics J. 7 1Google Scholar

    [13]

    Liu C, Yang L, Lu X L, Liu Q, Wang F M, Lv J W, Sun T, Mu H W, Chu P K 2017 Opt. Express 25 14227Google Scholar

    [14]

    Yang Z, Xia L, Li C, Chen X, Liu D M 2019 Opt. Commun. 430 195Google Scholar

    [15]

    Wei Y, Su Y D, Liu C L, Zhang Y H, Nie X F, Liu Z H, Zhang Y, Peng F 2017 Opt. Express 25 21841Google Scholar

    [16]

    Li A, Wang Y F, Hu Q, Shieh W 2015 Opt. Express 23 1139Google Scholar

    [17]

    Sakaguchi J, Klaus W, Mendinueta J M D, Puttnam B J, Luís R S, Awaji Y, Wada N, Hayashi T, Nakanishi T, Watanabe T, Kokubun Y, Takahata T, Kobayashi T 2015 J. Lightwave Technol. 34 93Google Scholar

    [18]

    Xia C, Amezcua-Correa R, Bai N, Antonio-Lopez E, Arrioja D M, Schulzgen A, Richardson M, Liñares J, Montero C, Mateo E, Zhou X, Li G F 2012 IEEE Photonics Technol. Lett. 24 1914Google Scholar

    [19]

    Rakić A D, Djurišić A B, Elazar J M, Majewski M L 1998 Appl. Opt. 37 5271Google Scholar

    [20]

    Wang Y J, Dong J L, Luo Y H, Tang J Y, Lu H H, Yu J H, Guan H Y, Zhang J, Chen Z 2017 IEEE Photonics J. 9 1Google Scholar

    [21]

    Dong J L, Zhang Y X, Wang Y J, Yang F, Hu S Q, Chen Y F, Zhu W G, Qiu W T, Guan H Y, Lu H H, Yu J H, Zhong Y C, Zhang J, Luo Y H, Chen Z 2019 Opt. Express 27 11348Google Scholar

    [22]

    Zheng Y F, Lang T T, Cao B B, Jin J J, Dong R Q, Feng H 2018 Opt. Fiber Technol. 46 179Google Scholar

    [23]

    Wang W J, Mai Z G, Chen Y Z, Wang J Q, Li L, Su Q N, Li X J, Hong X M 2017 Sci. Rep. 7 1Google Scholar

  • [1] Shen Yan-Li, Shi Bing-Rong, Lü Hao, Zhang Shuai-Yi, Wang Xia. Dye random laser enhanced by graphene-based Au nanoparticles. Acta Physica Sinica, 2022, 71(3): 034206. doi: 10.7498/aps.71.20211613
    [2] Wang Yan, Han Ying, Li Zeng-Hui, Gong Lin, Wang Lu-Yao, Li Shu-Guang. A low-crosstalk and high-density multi-core few-mode fiber based on heterogeneous core and trench-assisted air-holes isolation. Acta Physica Sinica, 2022, 71(2): 024205. doi: 10.7498/aps.71.20210974
    [3] Ding Zi-Ping, Liao Jian-Fei, Zeng Ze-Kai. A new type of ultra-broadband microstructured fiber sensor based on surface plasmon resonance. Acta Physica Sinica, 2021, 70(7): 074207. doi: 10.7498/aps.70.20201477
    [4] Sun Xiao-Liang, Chen Chang-Hong, Meng De-Jia, Feng Shi-Gao, Yu Hong-Hao. Split modes of composite metal grating and its application for high performance gas sensor. Acta Physica Sinica, 2015, 64(14): 147302. doi: 10.7498/aps.64.147302
    [5] Shi Wei-Hua, You Cheng-Jie, Wu Jing. D-shaped photonic crystal fiber refractive index and temperature sensor based on surface plasmon resonance and directional coupling. Acta Physica Sinica, 2015, 64(22): 224221. doi: 10.7498/aps.64.224221
    [6] Liao Wen-Ying, Fan Wan-De, Li Hai-Peng, Sui Jia-Nan, Cao Xue-Wei. Quasi-crystal photonic fiber surface plasmon resonance sensor. Acta Physica Sinica, 2015, 64(6): 064213. doi: 10.7498/aps.64.064213
    [7] Sun Song-Song, Wang Hong-Yan. Optical properties of silver hollow square embedded disk nanostructures. Acta Physica Sinica, 2014, 63(10): 107803. doi: 10.7498/aps.63.107803
    [8] Li Guo-Long, He Li-Jun, Li Jin, Li Xue-Sheng, Liang Sen, Gao Mang-Mang, Yuan Hai-Wen. Light absorption enhancement in polymer solar cells with nano-Ag. Acta Physica Sinica, 2013, 62(19): 197202. doi: 10.7498/aps.62.197202
    [9] Jing Qing-Li, Du Chun-Guang, Gao Jian-Cun. New application of surface plasmon resonance-measurement of weak magnetic field. Acta Physica Sinica, 2013, 62(3): 037302. doi: 10.7498/aps.62.037302
    [10] Zhang Zhe, Liu Qian, Qi Zhi-Mei. Study of Au-Ag alloy film based infrared surface plasmon resonance sensors. Acta Physica Sinica, 2013, 62(6): 060703. doi: 10.7498/aps.62.060703
    [11] Feng Li-Hang, Zeng Jie, Liang Da-Kai, Zhang Wei-Gong. Development of fiber-optic surface plasmon resonance sensor based on tapered structure probe. Acta Physica Sinica, 2013, 62(12): 124207. doi: 10.7498/aps.62.124207
    [12] Zou Zhi-Yu, Liu Xiao-Fang, Zeng Min, Yang Bai, Yu Rong-Hai, Jiang He, Tang Rui-He, Wu Zhang-Ben. Morphology control of gold nanoparticles on glass surface realized by electric field assisted dissolution method. Acta Physica Sinica, 2012, 61(10): 104208. doi: 10.7498/aps.61.104208
    [13] Yan Hong-Dan, Peter Lemmens, Johannes Ahrens, Martin Bröring, Sven Burger, Winfried Daum, Gerhard Lilienkamp, Sandra Korte, Aidin Lak, Meinhard Schilling. High-density array of Au nanowires coupled by plasmon modes. Acta Physica Sinica, 2012, 61(23): 237105. doi: 10.7498/aps.61.237105
    [14] Zhong Ming-Liang, Li Shan, Xiong Zu-Hong, Zhang Zhong-Yue. Plasmonic properties of silver cross-shape nanostructure. Acta Physica Sinica, 2012, 61(2): 027803. doi: 10.7498/aps.61.027803
    [15] Qiu Dong-Jiang, Fan Wen-Zhi, Weng Sheng, Wu Hui-Zhen, Wang Jun. Surface-plasmon-mediated emission enhancement from Ag-capped ZnO thin films. Acta Physica Sinica, 2011, 60(8): 087301. doi: 10.7498/aps.60.087301
    [16] Hao Peng, Wu Yi-Hui, Zhang Ping. Study of interaction of surface plasmon resonance sensor with nano-gold. Acta Physica Sinica, 2010, 59(9): 6532-6537. doi: 10.7498/aps.59.6532
    [17] Long Yong-Bing, Zhang Jian, Wang Guo-Ping. Femtosecond pump-probe technique assisted by surface plasmon resonance. Acta Physica Sinica, 2009, 58(11): 7722-7726. doi: 10.7498/aps.58.7722
    [18] Zhu Bao-Hua, Wang Fang-Fang, Zhang Kun, Ma Guo-Hong, Gu Yu-Zong, Guo Li-Jun, Qian Shi-Xiong. The optical and nonlinear optical properties of Au:TiO2 and Au:Al2O3 composite films. Acta Physica Sinica, 2008, 57(5): 3085-3092. doi: 10.7498/aps.57.3085
    [19] Hong Xiao-Gang, Xu Wen-Dong, Li Xiao-Gang, Zhao Cheng-Qiang, Tang Xiao-Dong. Numerical simulation of probe induced surface plasmon resonance coupling nanolithography. Acta Physica Sinica, 2008, 57(10): 6643-6648. doi: 10.7498/aps.57.6643
    [20] Zhu Bao-Hua, Wang Fang-Fang, Zhang Kun, Ma Guo-Hong, Guo Li-Jun, Qian Shi-Xiong. Linear and nonlinear optical properties of Ag:Bi2O3 composite films. Acta Physica Sinica, 2007, 56(7): 4024-4031. doi: 10.7498/aps.56.4024
Metrics
  • Abstract views:  8707
  • PDF Downloads:  173
  • Cited By: 0
Publishing process
  • Received Date:  10 March 2020
  • Accepted Date:  15 April 2020
  • Available Online:  09 May 2020
  • Published Online:  05 July 2020

/

返回文章
返回