-
Ambient temperature variations frequently induce measurement errors in fiber-optic Fabry-Perot strain sensors. To effectively compensate for temperature effects, this study systematically investigates a single-mode fiber-hollow-core fiber-single-mode fiber (SMF-HCF-SMF) Fabry-Perot fiber strain sensor. Experimental datasets were collected under varying temperature and strain conditions, with Kalman filtering employed for noise suppression and data preprocessing. The processed data were subsequently fed into an optimized PSO-BP neural network, where temperature values and spectral peak shift measurements from the sensor served as direct inputs to establish a temperature-compensated neural network model. The algorithm incorporates adaptive adjustment mechanisms for inertial weights and learning factors, significantly enhancing global search capability and local convergence accuracy.Experimental results demonstrate that the optimized PSO-BP algorithm achieves a mean absolute percentage error (MAPE) of 1.2% across the sensor's operational temperature range, with R2 values consistently exceeding 0.995 under diverse thermal conditions. Comparative analyses reveal that the optimized PSO-BP model improves MAPE by 57.14%, 45.45%, 73.91%, and 53.85% relative to conventional BP, PSO-BP, RF, and GA-BP models, respectively. Corresponding reductions in root mean square error (RMSE) reach 68.11%, 52.42%, 72.94%, and 63.13%. These metrics substantiate the algorithm's superior strain prediction performance and effective temperature compensation capability. The proposed methodology provides a novel technical pathway for developing cost-effective, high-precision sensing systems with robust thermal stability.
-
Keywords:
- optical fiber sensor /
- optimized PSO-BP neural network /
- temperature compensation /
- Fabry-Perot interference
-
[1] Feng D Q, Luo X D, Fan W, Zhu B H, Qiao X G 2021 Acta Opt. Sin. 41 88(in Chinese) [冯德全,罗小东,樊伟,朱宝辉,乔学光2021光学学报41 88]
[2] Tian C, Chen H B, Hu K, ZHANG J Y, WANG W 2022 Journal of Optoelectronics·Laser 33 865(in Chinese) [田晨,陈海滨,胡锴,张军英,王伟2022光电子·激光33 865]
[3] Xiao Y, Cheng J 2024 Sensors.24 7805
[4] Bian Q, Podhrazsky A, Bauer C, Stadler A, Buchfellner F, Kuttler R, Jakobi M, Volk W, W. Koch A, Roths J 2022 Optics Express 30 33449
[5] Rui F, Ge Y X, Su R, NI H B 2024 Acta Opt. Sin. 44 67(in Chinese) [芮菲,葛益娴,苏蕊,倪海彬2024光学学报44 67]
[6] Chen M, Chang J H, Xu Y, JIN A B, HU Z Y 2023 Acta Opt. Sin. 43 36(in Chinese) [陈鸣,常建华,徐遥,金澳博,胡子怡2023光学学报43 36]
[7] SUN J C, WANG T T, DAI Y, CHANG J H, KE W 2021 Acta Phys. Sin.70 214(in Chinese) [孙家程,王婷婷,戴洋,常建华,柯炜2021物理学报70 214]
[8] Wang Y L, Tu Y, Tu S D, YU X H, GUO Y N, REN L J, CHEN S J 2023 Instrument Technique and Sensor 43 26(in Chinese) [王雅莉,徒芸,涂善东,于新海,郭永宁,任利杰,陈时健2023仪表技术与传感器4326]
[9] Ding X, Chen N, Jin T, ZHANG X D, ZHANG R F 2023 Optics & Laser Technology 162 109302
[10] ZHAO Y, CAI L, LI X G, LU R Q 2017 Acta Phys. Sin.66 9(in Chinese) [赵勇,蔡露,李雪刚,吕日清2017物理学报66 9]
[11] WU Q, ZHANG Z Y, GUO X C, SHI W H 2018 Acta Phys. Sin.67 180(in Chinese) [吴倩,张诸宇,郭晓晨,施伟华2018物理学报67 180]
[12] Cao Y, Xu W Y, Lin B, Zhu Y, Meng F C, Zhao X T, Ding J M, Lou S Q, Wang X, He J W, Sheng X Z, Liang S 2022 Applied optics 61 8212
[13] Yang J Y, Liang L, Tang H M, XIE G M, XU G 2020 Journal of Optoelectronic·Laser 31351(in Chinese) [杨建宇,梁磊,唐浩冕,谢官模,徐刚2020光电子·激光 31351]
[14] Li Y Z, Jin D Y, Huang W X, HU J L, JING D T 2022 Piezoelectrics&Acoustooptics 44 873(in Chinese) [李勇志,金东洋,黄文雪,胡久龄,景殿涛2022压电与声光44873]
[15] Sun C, Guo N Y, Ye L, MIAO L X, CAO M, DING J J, YAN M D 2022 Piezoelectrics and Acoustooptics 44 85(in Chinese) [孙超,郭乃宇,叶力,苗隆鑫,曹勉,丁建军,严明蝶2022压电与声光44 85]
[16] Sun M M. M.S. Thesis(Nanjing:Nanjing University of Information Science and Technology) (in Chinese) [孙萌萌2023硕士学位论文(南京:南京信息工程大学)]
[17] ZHANG J W M.S. Thesis(Haerbin: Heilongjiang University) (in Chinese) [张金文2023硕士学位论文(哈尔滨:黑龙江大学)]
[18] Yu W, Qu H, Zhang Y 2023 Sensors 23 7823
[19] Li Y J, Li Y H, LI F, ZHAO B, LI Q Q 2015 Mathematical Problems in Engineering 2015 854945
[20] Wei L X, Zhang Y, JI L I, YE L, ZHU X C, FU J 2022 Energies 15 5880
[21] Zhou Z W, Gong H Y, You J, LIU S B, HE J L 2021 Materials Today Communications 28 102507
[22] Zhou Y 2024 Geomatics & Spatial Information Technology 47 217(in Chinese) [周勇2024测绘与空间地理信息47 217]
[23] Li X, Ke S C, Li Y, JIN W, FU X H, FU G W, BI W H 2024 Optics & Laser Technology 176 110973
Metrics
- Abstract views: 49
- PDF Downloads: 1
- Cited By: 0