Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Terahertz spectroscopic characterization of spin mode and crystal-field transition in high-throughput grown $ {\bf Sm}_{ x}{\bf Pr}_{ 1– x}{\bf FeO_3} $ crystals

Fang Yu-Qing Jin Zuan-Ming Chen Hai-Yang Ruan Shun-Yi Li Ju-Geng Cao Shi-Xun Peng Yan Ma Guo-Hong Zhu Yi-Ming

Citation:

Terahertz spectroscopic characterization of spin mode and crystal-field transition in high-throughput grown $ {\bf Sm}_{ x}{\bf Pr}_{ 1– x}{\bf FeO_3} $ crystals

Fang Yu-Qing, Jin Zuan-Ming, Chen Hai-Yang, Ruan Shun-Yi, Li Ju-Geng, Cao Shi-Xun, Peng Yan, Ma Guo-Hong, Zhu Yi-Ming
PDF
HTML
Get Citation
  • Terahertz (THz) transient has become an effective method to study the optical and electronic spin characteristics of the rare earth orthoferrites RFeO3. High-throughput grown crystal sample is sliced at different locations, then the continuously tunable rare earth elements co-doped single crystal SmxPr1–xFeO3 is studied with antiferromagnetic spin mode (qAFM) and crystal field transitions of rare earth ions under zero magnetic fields. Using THz time-domain spectroscopy, the qAFM resonance frequencies of Sm0.2Pr0.8FeO3 and Sm0.4Pr0.6FeO3 single crystals are located on the connection line of the qAFM frequencies of PrFeO3 (0.57 THz) and SmFeO3 (0.42 THz), therefore the frequency of qAFM increases linearly with doping concentration of Sm3+ ion increasing. The Sm0.4Pr0.6FeO3 crystal undergoes a temperature-induced spin reorientation phase transition at about 160 K. When the crystal temperature is lower than 80 K, a wide band absorption peak of about 0.5 THz appears in the absorption spectrum of Sm0.2Pr0.8FeO3 due to the crystal field effect. Our results show that THz spectral data not only allow us to monitor the quality of rare earth orthoferrite crystals prepared by high throughput and analyze the rare earth elements of the sample, but also improve the ability to analyze the physical properties of the co-doped RFeO3.
      Corresponding author: Jin Zuan-Ming, physics_jzm@usst.edu.cn ; Ma Guo-Hong, ghma@staff.shu.edu.cn ; Zhu Yi-Ming, ymzhu@usst.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61975110, 11674213, 61735010, 11604202), the 111 Project (Grant No. D18014), the International Joint Lab Program of the Science and Technology Commission Shanghai Municipality, China (Grant No. 17590750300), the Key Project of the Science and Technology Commission Shanghai Municipality, China (Grant No. YDZX20193100004960), the Shanghai Rising-Star Program of the Science and Technology Commission of Shanghai Municipality, China (Grant No. 18QA1401700), the Chenguang Project of Shanghai Educational Development Foundation, China (Grant No. 16CG45), and the Young Eastern Scholar Project of Shanghai Municipal Education Commission, China (Grant No. QD2015020)
    [1]

    Baltz V, Manchon A, Tsoi M, Moriyama T, Ono T, Tserkovnyak Y 2018 Rev. Mod. Phys. 90 015005Google Scholar

    [2]

    Jungwirth T, Marti X, Wadley P, Wunderlich J 2016 Nat. Nanotech. 11 231Google Scholar

    [3]

    Mikhaylovskiy R V, Hendry E, Secchi A, et al. 2015 Nat. Commun. 6 8190Google Scholar

    [4]

    Kurihara T, Watanabe H, Nakajima M, Karube S, Oto K, Otani Y, Suemoto T 2018 Phys. Rev. Lett. 120 107202Google Scholar

    [5]

    Baierl S, Hohenleutner M, Kampfrath T, Zvezdin A K, Kimel A V, Huber R, Mikhaylovskiy R V 2016 Nat. Photon. 10 715Google Scholar

    [6]

    Nova T F, Cartella A, Cantaluppi A, et al. 2017 Nat. Phys. 13 132Google Scholar

    [7]

    Pierce R D, Wolfe R, Van Uitert L G 1969 J. Appl. Phys. 40 1241Google Scholar

    [8]

    Jiang J, Song G, Wang D, Jin Z, Tian Z, Lin X, Han J, Ma G, Cao S, Cheng Z 2016 J. Phys.: Condens. Matter 28 116002Google Scholar

    [9]

    Yamaguchi K, Kurihara T, Minami Y, Nakajima M, Suemoto T 2013 Phys. Rev. Lett. 110 137204Google Scholar

    [10]

    Liu X, Jin Z, Zhang S, et al. 2018 J. Phys. D: Appl. Phys. 51 024001Google Scholar

    [11]

    Li X, Bamba M, Yuan N, et al. 2018 Science 361 794Google Scholar

    [12]

    Li R, Yuan N, Hu T, Feng Z, Ge J, Wang Y, Zheng H, Xing J, Gu H, Kang B, Zhang J, Ren W, Cao S 2018 AIP Adv. 8 115328Google Scholar

    [13]

    Tonouchi M 2007 Nat. Photonics 1 97Google Scholar

    [14]

    Ferguson B, Zhang X C 2002 Nat. Mater. 1 26Google Scholar

    [15]

    Walowski J, Münzenberg M 2016 J. Appl. Phys. 120 140901Google Scholar

    [16]

    Kampfrath T, Tanaka K, Nelson K A 2013 Nat. Photonics 7 680Google Scholar

    [17]

    Seifert T, Jaiswal S, Martens U, et al. 2016 Nat. Photonics 10 483Google Scholar

    [18]

    Huisman T J, Mikhaylovskiy R V, Costa J D, et al. 2016 Nat. Nanotechnol. 11 455Google Scholar

    [19]

    Vicario C, Ruchert C, Ardana-Lamas F, Derlet P M, Tudu B, Luning J, Hauri C P 2013 Nat. Photonics 7 720Google Scholar

    [20]

    Shalaby M, Vicario C, Hauri C P 2016 New J. Phys. 1 18

    [21]

    Bonetti S, Hoffmann M, Sher M, Chen Z, Yang S, Samant M G, Parkin S S P, Durr H A 2016 Phys. Rev. Lett. 8 117

    [22]

    Schlauderer S, Lange C, Baierl S, et al. 2019 Nature 569 7756

    [23]

    Kampfrath T, Sell A, Klatt G, et al. 2011 Nat. Photon. 5 31Google Scholar

    [24]

    金钻明, 阮舜逸, 李炬赓, 林贤, 任伟, 曹世勋, 马国宏, 姚建铨 2019 物理学报 68 167501Google Scholar

    Jin Z M, Ruan S Y, Li J G, Lin X, Ren W, Cao S X, Ma G H, Yao J Q 2019 Acta Phys. Sin. 68 167501Google Scholar

    [25]

    Yamaguchi K, Nakajima M, Suemoto T 2010 Phys. Rev. Lett. 105 237201Google Scholar

    [26]

    Zhou R, Jin Z, Li G, Ma G, Cheng Z, Wang X 2012 Appl. Phys. Lett. 100 061102Google Scholar

    [27]

    Jin Z, Mics Z, Ma G, Cheng Z, Bonn M, Turchinovich D 2013 Phys. Rev. B 87 094422Google Scholar

    [28]

    Zhang K, Xu K, Liu X, Zhang Z, Jin Z, Lin X, Li B, Cao S, Ma G 2016 Sci. Rep. 6 23648Google Scholar

    [29]

    Song G, Jiang J, Wang X, Jin Z, Lin X, Ma G, Cao S 2013 J. Appl. Phys. 114 243104Google Scholar

    [30]

    Song G, Jin Z, Lin X, Jiang J, Wang X, Wu H, Ma G, Cao S 2014 J. Appl. Phys. 115 163108Google Scholar

    [31]

    Kubacka T, Johnson J A, Hoffmann M, et al. 2014 Science 343 6177

    [32]

    Shao M, Cao S, Wang Y, Yuan S, Kang B, Zhang J, Wu A, Xu J 2011 J. Cryst. Growth 318 947Google Scholar

    [33]

    Wang X, Cao S, Wang Y, Yuan S, Kang B, Wu A, Zhang J 2013 J. Cryst. Growth 362 216Google Scholar

    [34]

    Cao Y, Yang Y, Xiang M, Feng Z, Kang B, Zhang J, Ren W, Cao S 2015 J. Cryst. Growth 420 90Google Scholar

    [35]

    Zhao W, Cao S, Huang R, Cao Y, Xu K, Kang B, Zhang J, Ren W 2015 Phys. Rev. B 91 104425Google Scholar

    [36]

    Liu X, Xie T, Guo J, et al. 2018 Appl. Phys. Lett. 113 022401Google Scholar

    [37]

    Fu X, Xi X, Bi K, Zhou J 2013 Appl. Phys. Lett. 103 211108Google Scholar

    [38]

    Jiang J, Jin Z, Song G, Lin X, Ma G, Cao S 2013 Appl. Phys. Lett. 103 062403Google Scholar

    [39]

    Zeng X, Wu L, Xi X, Li B, Zhou J, 2018 Ceram. Int. 44 19054Google Scholar

    [40]

    Kimel A V, Kirilyuk A, Tsvetkov A, Pisarev R V, Rasing T, 2004 Nature 429 850Google Scholar

    [41]

    Mikhaylovskiy R V, Huisman T J, Pisarev R V, Rasing T, Kimel A V 2017 Phys. Rev. Lett. 118 017205Google Scholar

  • 图 1  (a)高通量制备准连续成分单晶SmxPr1–xFeO3示意图; (b) SmFeO3, PrFeO3 和Sm0.2Pr0.8FeO3单晶的晶体结构图

    Figure 1.  (a) Experimental schematic of quasi-continuous phase formation in the high-throughput grown SmxPr1–xFeO3 (x = 0, 0.4, 0.7, 0.9, 1.0); (b) the crystallography structure of the single crystal SmFeO3, PrFeO3, and Sm0.2Pr0.8FeO3.

    图 2  (a) THz-TDS实验装置示意图; (b) b切Sm0.2Pr0.8FeO3单晶(红色); (c) Sm0.4Pr0.6FeO3单晶(蓝色) 300 K时的太赫兹时域透射谱, 此时HTHz//c; 插图分别表示振荡部分(40—60 ps)的傅里叶变换光谱及其洛伦兹拟合(虚线)

    Figure 2.  (a) Experimental setup diagram of THz-TDS. The THz time-domain waveforms transmitted through the b-cut (b) Sm0.2Pr0.8FeO3 and (c) Sm0.4Pr0.6FeO3 crystal at 300 K and the insets indicate the spectrum of oscillating parts obtained by Fourier transform of the waveform, which is fitted with a Lorentzian contour (dotted line).

    图 3  室温下SmxPr1–xFeO3单晶的qAFM自旋共振频率与Sm3+离子含量的关系, 其中插图表示qAFM模式的振动

    Figure 3.  Summarized frequencies of the qAFM resonances at several Sm3+ ion contents at room temperature and the insets indicate the vibration of the qAFM.

    图 4  b切Sm0.4Pr0.6FeO3单晶qAFM模式的共振频率和振幅随温度的关系; 插图表示Fe3+离子亚晶格的磁结构: 低温相(Г2 )、中间相(Г4 )、高温相(Г24 )

    Figure 4.  The frequencies and amplitudes of the qAFM resonances of b-cut Sm0.4 Pr0.6FeO3 crystal. Inset shows the magnetic structure of RFeO3 in the low-temperature(Г2 ), intermediate(Г4 ), and high temperature(Г24 )phases.

    图 5  (a) Sm0.2Pr0.8FeO3单晶温度依赖的太赫兹时域谱, 为了表达更为清楚, 不同温度的时域光谱在纵轴方向做了等间距的平移; 40, 80和300 K时Sm0.2Pr0.8FeO3单晶的(b)折射率和(c)吸收系数, 插图为Pr3+离子基态在晶体场中能级劈裂示意图

    Figure 5.  (a) The temperature dependent THz waveforms transmitted through the Sm0.2Pr0.8FeO3 single crystal; (b) refractive indices and (c) absorption spectra of Sm0.2Pr0.8FeO3 at 40, 80, and 300 K. The inset in (c) shows the energy level splitting of Pr3+ ion in the ground state crystal field.

  • [1]

    Baltz V, Manchon A, Tsoi M, Moriyama T, Ono T, Tserkovnyak Y 2018 Rev. Mod. Phys. 90 015005Google Scholar

    [2]

    Jungwirth T, Marti X, Wadley P, Wunderlich J 2016 Nat. Nanotech. 11 231Google Scholar

    [3]

    Mikhaylovskiy R V, Hendry E, Secchi A, et al. 2015 Nat. Commun. 6 8190Google Scholar

    [4]

    Kurihara T, Watanabe H, Nakajima M, Karube S, Oto K, Otani Y, Suemoto T 2018 Phys. Rev. Lett. 120 107202Google Scholar

    [5]

    Baierl S, Hohenleutner M, Kampfrath T, Zvezdin A K, Kimel A V, Huber R, Mikhaylovskiy R V 2016 Nat. Photon. 10 715Google Scholar

    [6]

    Nova T F, Cartella A, Cantaluppi A, et al. 2017 Nat. Phys. 13 132Google Scholar

    [7]

    Pierce R D, Wolfe R, Van Uitert L G 1969 J. Appl. Phys. 40 1241Google Scholar

    [8]

    Jiang J, Song G, Wang D, Jin Z, Tian Z, Lin X, Han J, Ma G, Cao S, Cheng Z 2016 J. Phys.: Condens. Matter 28 116002Google Scholar

    [9]

    Yamaguchi K, Kurihara T, Minami Y, Nakajima M, Suemoto T 2013 Phys. Rev. Lett. 110 137204Google Scholar

    [10]

    Liu X, Jin Z, Zhang S, et al. 2018 J. Phys. D: Appl. Phys. 51 024001Google Scholar

    [11]

    Li X, Bamba M, Yuan N, et al. 2018 Science 361 794Google Scholar

    [12]

    Li R, Yuan N, Hu T, Feng Z, Ge J, Wang Y, Zheng H, Xing J, Gu H, Kang B, Zhang J, Ren W, Cao S 2018 AIP Adv. 8 115328Google Scholar

    [13]

    Tonouchi M 2007 Nat. Photonics 1 97Google Scholar

    [14]

    Ferguson B, Zhang X C 2002 Nat. Mater. 1 26Google Scholar

    [15]

    Walowski J, Münzenberg M 2016 J. Appl. Phys. 120 140901Google Scholar

    [16]

    Kampfrath T, Tanaka K, Nelson K A 2013 Nat. Photonics 7 680Google Scholar

    [17]

    Seifert T, Jaiswal S, Martens U, et al. 2016 Nat. Photonics 10 483Google Scholar

    [18]

    Huisman T J, Mikhaylovskiy R V, Costa J D, et al. 2016 Nat. Nanotechnol. 11 455Google Scholar

    [19]

    Vicario C, Ruchert C, Ardana-Lamas F, Derlet P M, Tudu B, Luning J, Hauri C P 2013 Nat. Photonics 7 720Google Scholar

    [20]

    Shalaby M, Vicario C, Hauri C P 2016 New J. Phys. 1 18

    [21]

    Bonetti S, Hoffmann M, Sher M, Chen Z, Yang S, Samant M G, Parkin S S P, Durr H A 2016 Phys. Rev. Lett. 8 117

    [22]

    Schlauderer S, Lange C, Baierl S, et al. 2019 Nature 569 7756

    [23]

    Kampfrath T, Sell A, Klatt G, et al. 2011 Nat. Photon. 5 31Google Scholar

    [24]

    金钻明, 阮舜逸, 李炬赓, 林贤, 任伟, 曹世勋, 马国宏, 姚建铨 2019 物理学报 68 167501Google Scholar

    Jin Z M, Ruan S Y, Li J G, Lin X, Ren W, Cao S X, Ma G H, Yao J Q 2019 Acta Phys. Sin. 68 167501Google Scholar

    [25]

    Yamaguchi K, Nakajima M, Suemoto T 2010 Phys. Rev. Lett. 105 237201Google Scholar

    [26]

    Zhou R, Jin Z, Li G, Ma G, Cheng Z, Wang X 2012 Appl. Phys. Lett. 100 061102Google Scholar

    [27]

    Jin Z, Mics Z, Ma G, Cheng Z, Bonn M, Turchinovich D 2013 Phys. Rev. B 87 094422Google Scholar

    [28]

    Zhang K, Xu K, Liu X, Zhang Z, Jin Z, Lin X, Li B, Cao S, Ma G 2016 Sci. Rep. 6 23648Google Scholar

    [29]

    Song G, Jiang J, Wang X, Jin Z, Lin X, Ma G, Cao S 2013 J. Appl. Phys. 114 243104Google Scholar

    [30]

    Song G, Jin Z, Lin X, Jiang J, Wang X, Wu H, Ma G, Cao S 2014 J. Appl. Phys. 115 163108Google Scholar

    [31]

    Kubacka T, Johnson J A, Hoffmann M, et al. 2014 Science 343 6177

    [32]

    Shao M, Cao S, Wang Y, Yuan S, Kang B, Zhang J, Wu A, Xu J 2011 J. Cryst. Growth 318 947Google Scholar

    [33]

    Wang X, Cao S, Wang Y, Yuan S, Kang B, Wu A, Zhang J 2013 J. Cryst. Growth 362 216Google Scholar

    [34]

    Cao Y, Yang Y, Xiang M, Feng Z, Kang B, Zhang J, Ren W, Cao S 2015 J. Cryst. Growth 420 90Google Scholar

    [35]

    Zhao W, Cao S, Huang R, Cao Y, Xu K, Kang B, Zhang J, Ren W 2015 Phys. Rev. B 91 104425Google Scholar

    [36]

    Liu X, Xie T, Guo J, et al. 2018 Appl. Phys. Lett. 113 022401Google Scholar

    [37]

    Fu X, Xi X, Bi K, Zhou J 2013 Appl. Phys. Lett. 103 211108Google Scholar

    [38]

    Jiang J, Jin Z, Song G, Lin X, Ma G, Cao S 2013 Appl. Phys. Lett. 103 062403Google Scholar

    [39]

    Zeng X, Wu L, Xi X, Li B, Zhou J, 2018 Ceram. Int. 44 19054Google Scholar

    [40]

    Kimel A V, Kirilyuk A, Tsvetkov A, Pisarev R V, Rasing T, 2004 Nature 429 850Google Scholar

    [41]

    Mikhaylovskiy R V, Huisman T J, Pisarev R V, Rasing T, Kimel A V 2017 Phys. Rev. Lett. 118 017205Google Scholar

  • [1] Chen Zhao-Liang, Lu Da-Biao, Ye Xu-Bin, Zhao Hao-Ting, Zhang Jie, Pan Zhao, Chi Zhen-Hua, Cui Tian, Shen Yao, Long You-Wen. High-pressure synthesized perovskite-type CeTaN2O and its magnetic and electrical properties. Acta Physica Sinica, 2024, 73(8): 080702. doi: 10.7498/aps.73.20240025
    [2] Deng Shan-shan, Song Ping, Liu Xiao-he, Yao Sen, Zhao Qian-yi. The magnetic susceptibility of Mn3Sn single crystal is enhanced under GPa-level uniaxial stress. Acta Physica Sinica, 2024, 0(0): . doi: 10.7498/aps.73.20240287
    [3] Li Gao-Fang, Yin Wen, Huang Jing-Guo, Cui Hao-Yang, Ye Han-Jing, Gao Yan-Qing, Huang Zhi-Ming, Chu Jun-Hao. Conductivity in sulfur doped gallium selenide crystals measured by terahertz time-domain spectroscopy. Acta Physica Sinica, 2023, 72(4): 047801. doi: 10.7498/aps.72.20221548
    [4] Qing Yu-Lin, Peng Xiao-Li, Wen Lin, Hu Ai-Yuan. Ground state phase transition of spin-1/2 frustration model on stacked square lattice. Acta Physica Sinica, 2022, 71(3): 037501. doi: 10.7498/aps.71.20211584
    [5] Qing Yu-Lin, Peng Xiao-Li, Hu Ai-Yuan. Phase transition of spin-1 frustrated model on square-lattice bilayer. Acta Physica Sinica, 2022, 71(4): 047501. doi: 10.7498/aps.71.20211685
    [6] The ground state phase transition of the spin-1/2 frustration model on a stacked square lattice. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211584
    [7] Wen Lin, Hu Ai-Yuan. Effect of biquadratic exchange and anisotropy on the critical temperature of antiferromagnet. Acta Physica Sinica, 2020, 69(10): 107501. doi: 10.7498/aps.69.20200077
    [8] Ren Zhuang, Cheng Long, Sergei Guretskii, Nadzeya Liubochko, Li Jiang-Tao, Shang Jia-Min, Sergei Barilo, Wu An-Hua, Alexandra Kalashnikova, Ma Zong-Wei, Zhou Chun, Sheng Zhi-Gao. Terahertz spectroscopy study of doping and magnetic field induced effects on spin reorientation in Ho1–xYxFeO3 single crystals. Acta Physica Sinica, 2020, 69(20): 207802. doi: 10.7498/aps.69.20201518
    [9] Jin Zuan-Ming, Ruan Shun-Yi, Li Ju-Geng, Lin Xian, Ren Wei, Cao Shi-Xun, Ma Guo-Hong, Yao Jian-Quan. Research progress of coherent control of terahertz spin waves and strong coupling in rare-earth orthoferrites. Acta Physica Sinica, 2019, 68(16): 167501. doi: 10.7498/aps.68.20190706
    [10] Liu Kui-Li, Zhou Si-Hua, Chen Song-Ling. Exchange bias tuning of metal ions doped in CuO nanocomposites. Acta Physica Sinica, 2015, 64(13): 137501. doi: 10.7498/aps.64.137501
    [11] Guo Jing, Sun Li-Ling. Phenomena and findings in pressurized alkaline iron selenide superconductors. Acta Physica Sinica, 2015, 64(21): 217406. doi: 10.7498/aps.64.217406
    [12] Meng Zeng-Rui, Zhang Wei-Bin, Du Yu, Shang Li-Ping, Deng Hu. Terahertz spectrum and simulation of the phase transformation of FOX-7. Acta Physica Sinica, 2015, 64(7): 073302. doi: 10.7498/aps.64.073302
    [13] Hu Ni, Liu Yong, Tang Wu-Feng, Pei Ling, Fang Peng-Fei, Xiong Rui, Shi Jing. Fe/Cr doping effects on the magnetism in charge-ordered manganite La0.4Ca0.6MnO3. Acta Physica Sinica, 2014, 63(23): 237502. doi: 10.7498/aps.63.237502
    [14] Yang Jing-Qi, Li Shao-Xian, Zhao Hong-Wei, Zhang Jian-Bing, Yang Na, Jing Dan-Dan, Wang Chen-Yang, Han Jia-Guang. Terahertz study of L-asparagine and its monohydrate. Acta Physica Sinica, 2014, 63(13): 133203. doi: 10.7498/aps.63.133203
    [15] Wang Mei-Na, Li Ying, Wang Tian-Xing, Liu Guo-Dong. Magnetic properties of multiferroic material DyMnO3 in orthorhombic structure. Acta Physica Sinica, 2013, 62(22): 227101. doi: 10.7498/aps.62.227101
    [16] Liu Ming, Cao Shi-Xun, Yuan Shu-Juan, Kang Bao-Juan, Lu Bo, Zhang Jin-Cang. The study of Raman spectrum, distortion of lattice and spin reorientation phase transition on Pr doped DyFeO3 system. Acta Physica Sinica, 2013, 62(14): 147601. doi: 10.7498/aps.62.147601
    [17] Han Jiu-Rong, Jiang Xue-Fan, Liu Xian-Feng. First-principles studies of helical-spin order in frustrated triangular antiferromagnet AgCrO2. Acta Physica Sinica, 2010, 59(9): 6487-6493. doi: 10.7498/aps.59.6487
    [18] Ma Xiao-Jing, Zhao Hong-Wei, Dai Bin, Liu Gui-Feng. THz spectra of hypoxanthine and inosine. Acta Physica Sinica, 2008, 57(6): 3429-3434. doi: 10.7498/aps.57.3429
    [19] Li Hong, Wang Wei-Lu, Gong Pi-Feng. Spin current of a single quantum well. Acta Physica Sinica, 2007, 56(4): 2405-2408. doi: 10.7498/aps.56.2405
    [20] Teng Jiao, Cai Jian-Wang, Xiong Xiao-Tao, Lai Wu-Yan, Zhu Feng-Wu. The establishment and thermal stability of exchange bias in NiFe/FeMn bilayers. Acta Physica Sinica, 2004, 53(1): 272-275. doi: 10.7498/aps.53.272
Metrics
  • Abstract views:  5296
  • PDF Downloads:  141
  • Cited By: 0
Publishing process
  • Received Date:  15 May 2020
  • Accepted Date:  13 June 2020
  • Available Online:  12 October 2020
  • Published Online:  20 October 2020

/

返回文章
返回