-
Recently, it has been discovered that the AB(N,O)3-type perovskite oxynitrides exhibit excellent dielectric, ferroelectric, and photocatalytic properties, promising for applications in the fields of optoelectronics, energy storage, and communication. Due to the differences in charge, ionic radius, and covalent bonding between N3– ion and O2– ion, the N substitution for O enhances the B(N,O)6 octahedron tilting, giving rise to exotic properties and functionalities. However, the current fabrication process for this type of material is rather time-consuming, leading to products with an appreciable quantity of impurities. In this study, using oxide precursors and sodium amide as the nitrogen source, high-purity perovskite-type oxynitride CeTaN2O bulk materials are successfully synthesized under high-temperature and high-pressure conditions provided by a cubic-anvil press. The synthesis time decreases to 1 h, achieving rapid production. The lattice structure and physical properties of the obtained samples are comprehensively investigated. X-ray powder diffraction experiments and subsequent Rietveld refinement indicate that the title material shows an orthorhombic crystal structure with the space group of Pnma. The X-ray absorption spectra confirm the charge configuration and the anion composition as Ce3+Ta5+N2O. Magnetization and specific heat measurements reveal that the exchange interactions are mainly antiferromagnetic, with a potential magnetic transition below 2 K. The electrical transport data demonstrate typical semiconductor behaviors, which can be further explained by a three-dimensional variable-range hopping model. Our study paves the way for putting this exotic perovskite oxynitride into practical applications.
-
Keywords:
- high-pressure synthesis /
- perovskite-type nitride /
- antiferromagnetic /
- semiconductor
[1] Tobías G, Oró-Solé J, Beltrán-Porter D, Fuertes A 2001 Inorg. Chem. 40 6867Google Scholar
[2] Marchand R, Pors F, Laurent Y, Regreny O, Lostec J, Haussonne J M 1986 J. Phys. Colloques 47 C1Google Scholar
[3] Kim Y I, Woodward P M, Baba-Kishi K Z, Tai C W 2004 Chem. Mater. 16 1267Google Scholar
[4] Jorge A B, Oró-Solé J, Bea A M, Mufti N, Palstra T T M, Rodgers J A, Attfield J P, Fuertes A 2008 J. Am. Chem. Soc. 130 12572Google Scholar
[5] Yang M, Oró-Solé J, Kusmartseva A, Fuertes A, Attfield J P 2010 J. Am. Chem. Soc. 132 4822Google Scholar
[6] Maeda K, Domen K 2007 J. Phys. Chem. C 111 7851Google Scholar
[7] Li Y Q, Delsing A C A, de With G, Hintzen H T 2005 Chem. Mater. 17 3242Google Scholar
[8] Shannon R D 1976 Acta Crystallogr. Sect. A 32 751Google Scholar
[9] 叶施亚, 李端, 李俊生, 曾良, 曹峰 2021 人工晶体学报 50 187
Ye S Y, Li D, Li J S, Zeng L, F C 2021 J. Synth. Cryst. 50 187
[10] Porter S H, Huang Z, Woodward P M 2014 Cryst. Growth Des. 14 117Google Scholar
[11] Porter S H, Huang Z, Cheng Z, Avdeev M, Chen Z, Dou S, Woodward P M 2015 J. Solid State Chem. 226 279Google Scholar
[12] Page K, Stoltzfus M W, Kim Y I, Proffen T, Woodward P M, Cheetham A K, Seshadri R 2007 Chem. Mater. 19 4037Google Scholar
[13] Badding J V 1998 Annu. Rev. Mater. Sci. 28 631Google Scholar
[14] Brazhkin V V 2007 High Pressure Res. 27 333Google Scholar
[15] Rietveld H M 1969 J. Appl. Crystallogr. 2 65Google Scholar
[16] Roth R S, Negas T, Parker H S, Minor D B, Jones C 1977 Mater. Res. Bull. 12 1173Google Scholar
[17] Santoro A, Marezio M, Roth R S, Minor D 1980 J. Solid State Chem. 35 167Google Scholar
[18] 殷云宇, 王潇, 邓宏芟, 周龙, 戴建洪, 龙有文 2017 物理学报 66 030201Google Scholar
Yin Y Y, Wang X, Deng H S, Zhou L, Dai J H, Long Y W 2017 Acta Phys. Sin. 66 030201Google Scholar
[19] Deminami S, Kawamura Y, Chen Y Q, Kanazawa M, Hayashi J, Kuzuya T, Takeda K, Matsuda M, Sekine C 2017 J. Phys. Conf. Ser. 950 042032Google Scholar
[20] Sekine C, Sai U, Hayashi J, Kawamura Y, Bauer E 2017 J. Phys. Conf. Ser. 950 042028Google Scholar
[21] Kabeya N, Takahara S, Satoh N, Nakamura S, Katoh K, Ochiai A 2018 Phys. Rev. B 98 035131Google Scholar
[22] Nakano T, Onuma S, Takeda N, Uhlířová K, Prokleška J, Sechovský V, Gouchi J, Uwatoko Y 2019 Phys. Rev. B 100 035107Google Scholar
[23] Matin M, Kulkarni R, Thamizhavel A, Dhar S K, Provino A, Manfrinetti P 2017 J. Phys Condens. Matter 29 145601Google Scholar
[24] Ajeesh M O, Kushwaha S K, Thomas S M, Thompson J D, Chan M K, Harrison N, Tomczak J M, Rosa P F S 2023 Phys. Rev. B 108 245125Google Scholar
[25] Ravot D, Burlet P, Rossat-Mignod J, Tholence J L 1980 J. Phys. 41 1117Google Scholar
[26] Mott N F 1969 Philos. Mag. 19 835Google Scholar
-
图 4 (a) 0.1 T磁场下磁化率和磁化率倒数随温度的变化关系, 其中蓝线代表100 K以上的居里-外斯拟合结果; (b) 不同温度下磁化强度随磁场的变化关系
Figure 4. (a) Temperature dependence of magnetic susceptibility and the inverse susceptibility at 0.1 T. The blue line shows the Curie-Weiss fitting above 100 K; (b) field dependent magnetization measured at different temperatures.
表 1 CeTaN2O的精修结构参数
Table 1. Refined structure parameters of CeTaN2O.
Space group Pnma a/Å 5.69575(9) Rwp/% 3.28 b/Å 8.03326(8) Rp/% 2.30 c/Å 5.70427(8) χ2 2.71 Atomic position(s) atom site x y z occ Uiso/Å2 Ce 4c 0.01792(8) 0.25 0.99101(2) 1 0.0086(5) Ta 4b 0.5 0 0 1 0.0055(9) N/O 4c 0.49062(2) 0.25 0.14377(9) 0.67/0.33 0.01 N/O 8d 0.26950(2) 0.03833(9) 0.76871(6) 0.67/0.33 0.01 -
[1] Tobías G, Oró-Solé J, Beltrán-Porter D, Fuertes A 2001 Inorg. Chem. 40 6867Google Scholar
[2] Marchand R, Pors F, Laurent Y, Regreny O, Lostec J, Haussonne J M 1986 J. Phys. Colloques 47 C1Google Scholar
[3] Kim Y I, Woodward P M, Baba-Kishi K Z, Tai C W 2004 Chem. Mater. 16 1267Google Scholar
[4] Jorge A B, Oró-Solé J, Bea A M, Mufti N, Palstra T T M, Rodgers J A, Attfield J P, Fuertes A 2008 J. Am. Chem. Soc. 130 12572Google Scholar
[5] Yang M, Oró-Solé J, Kusmartseva A, Fuertes A, Attfield J P 2010 J. Am. Chem. Soc. 132 4822Google Scholar
[6] Maeda K, Domen K 2007 J. Phys. Chem. C 111 7851Google Scholar
[7] Li Y Q, Delsing A C A, de With G, Hintzen H T 2005 Chem. Mater. 17 3242Google Scholar
[8] Shannon R D 1976 Acta Crystallogr. Sect. A 32 751Google Scholar
[9] 叶施亚, 李端, 李俊生, 曾良, 曹峰 2021 人工晶体学报 50 187
Ye S Y, Li D, Li J S, Zeng L, F C 2021 J. Synth. Cryst. 50 187
[10] Porter S H, Huang Z, Woodward P M 2014 Cryst. Growth Des. 14 117Google Scholar
[11] Porter S H, Huang Z, Cheng Z, Avdeev M, Chen Z, Dou S, Woodward P M 2015 J. Solid State Chem. 226 279Google Scholar
[12] Page K, Stoltzfus M W, Kim Y I, Proffen T, Woodward P M, Cheetham A K, Seshadri R 2007 Chem. Mater. 19 4037Google Scholar
[13] Badding J V 1998 Annu. Rev. Mater. Sci. 28 631Google Scholar
[14] Brazhkin V V 2007 High Pressure Res. 27 333Google Scholar
[15] Rietveld H M 1969 J. Appl. Crystallogr. 2 65Google Scholar
[16] Roth R S, Negas T, Parker H S, Minor D B, Jones C 1977 Mater. Res. Bull. 12 1173Google Scholar
[17] Santoro A, Marezio M, Roth R S, Minor D 1980 J. Solid State Chem. 35 167Google Scholar
[18] 殷云宇, 王潇, 邓宏芟, 周龙, 戴建洪, 龙有文 2017 物理学报 66 030201Google Scholar
Yin Y Y, Wang X, Deng H S, Zhou L, Dai J H, Long Y W 2017 Acta Phys. Sin. 66 030201Google Scholar
[19] Deminami S, Kawamura Y, Chen Y Q, Kanazawa M, Hayashi J, Kuzuya T, Takeda K, Matsuda M, Sekine C 2017 J. Phys. Conf. Ser. 950 042032Google Scholar
[20] Sekine C, Sai U, Hayashi J, Kawamura Y, Bauer E 2017 J. Phys. Conf. Ser. 950 042028Google Scholar
[21] Kabeya N, Takahara S, Satoh N, Nakamura S, Katoh K, Ochiai A 2018 Phys. Rev. B 98 035131Google Scholar
[22] Nakano T, Onuma S, Takeda N, Uhlířová K, Prokleška J, Sechovský V, Gouchi J, Uwatoko Y 2019 Phys. Rev. B 100 035107Google Scholar
[23] Matin M, Kulkarni R, Thamizhavel A, Dhar S K, Provino A, Manfrinetti P 2017 J. Phys Condens. Matter 29 145601Google Scholar
[24] Ajeesh M O, Kushwaha S K, Thomas S M, Thompson J D, Chan M K, Harrison N, Tomczak J M, Rosa P F S 2023 Phys. Rev. B 108 245125Google Scholar
[25] Ravot D, Burlet P, Rossat-Mignod J, Tholence J L 1980 J. Phys. 41 1117Google Scholar
[26] Mott N F 1969 Philos. Mag. 19 835Google Scholar
Catalog
Metrics
- Abstract views: 2281
- PDF Downloads: 159
- Cited By: 0