搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自旋为1/2的双层平方晶格阻挫模型的基态相变

卿煜林 彭小莉 文林 胡爱元

引用本文:
Citation:

自旋为1/2的双层平方晶格阻挫模型的基态相变

卿煜林, 彭小莉, 文林, 胡爱元

Ground state phase transition of spin-1/2 frustration model on stacked square lattice

Qing Yu-Lin, Peng Xiao-Li, Wen Lin, Hu Ai-Yuan
PDF
HTML
导出引用
  • 基于线性自旋波理论, 研究了二维各向异性双层平方晶格阻挫模型的基态性质. 探讨了各向异性和自旋间交换作用对基态相图及系统可能发生相变的影响. 结果显示: 对于各向同性, 当层间耦合相互作用$ {J_{\text{c}}} \geqslant $$ 0.21 $$ {J_{\text{c}}} \leqslant - 0.175 $时, Nèel态(NS)和Collinear态(CS)能共存; 对于各向异性, NS和CS也可以共存. 对弱的各向异性, NS更稳定; 对于强的各向异性, 系统将发生由NS向CS转换的一阶相变.
    In this paper, we investigate the ground state phase transition of the spin-1/2 frustrated model on a stacked square lattice by the linear spin wave method. The effects of the anisotropy and the interplay of neighboring couplings on phase diagram and phase transformation between the Nèel state and collinear state are explored. Our results show that both the Nèel state and collinear state can exist due to the interplay of interlayer coupling $ {J_{\text{c}}} \geqslant 0.21 $ or $ {J_{\text{c}}} \leqslant - 0.175 $ for an isotropic system. For an anisotropic system, both the Nèel state and collinear state may also exist. In this case, for the weak anisotropy, the Nèel state is more stable. For the strong anisotropy, the system will undergo a first-order phase transition from the Nèel state to the collinear state.
      通信作者: 胡爱元, huaiyuan@cqnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11875010, 12175027)和重庆市自然科学基金(批准号: cstc2021jcyj-msxmX0168, cstc2019jcyj-msxmX0217, cstc2019jcyj-msxmX0251)资助的课题
      Corresponding author: Hu Ai-Yuan, huaiyuan@cqnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China ( Grant Nos. 11875010, 12175027) and the Chongqing Natural Science Foundation, China (Grant Nos. cstc2021jcyj-msxmX0168, cstc2019jcyj-msxmX0217, cstc2019jcyj-msxmX0251).
    [1]

    Chubukov A V, Jolicoeur T 1991 Phys. Rev. B 44 12050Google Scholar

    [2]

    Bishop R F, Farnell D J J, Parkinson J B 1998 Phys. Rev. B 58 6394Google Scholar

    [3]

    Metavitsiadis A, Sellmann D, Eggert S 2014 Phys. Rev. B 89 241104Google Scholar

    [4]

    Haghshenas R, Sheng D N 2018 Phys. Rev. B 97 174408Google Scholar

    [5]

    Sadrzadeh M, Haghshenas R, Langari A 2019 Phys. Rev. B 99 144414Google Scholar

    [6]

    Choo K, Neupert T, Carleo G 2019 Phys. Rev. B 100 125124Google Scholar

    [7]

    Doretto R L 2020 Phys. Rev. B 102 014415Google Scholar

    [8]

    Roscher D, Gneist N, Scherer M M, Trebst S, Diehl S 2019 Phys. Rev. B 100 125130Google Scholar

    [9]

    Bishop R F, Li P H Y, Darradi R, Schulenburg J, Richter J 2008 Phys. Rev. B 78 054412Google Scholar

    [10]

    Wang L, Sandvik A W 2018 Phys. Rev. Lett. 121 107202Google Scholar

    [11]

    Haghshenas R, Lan W W, Gong S S, Sheng D N 2018 Phys. Rev. B 97 184436Google Scholar

    [12]

    Sadrzadeh M, Haghshenas R, Jahromi S S, Langari A 2016 Phys. Rev. B 94 214419Google Scholar

    [13]

    Ferrari F, Becca F 2020 Phys. Rev. B 102 014417Google Scholar

    [14]

    Carretta P, Papinutto N, Azzoni C B, Mozzati M C, Pavarini E, Gonthier S, Millet P 2002 Phys. Rev. B 66 094420Google Scholar

    [15]

    Carretta P, Melzi R, Papinutto N, Millet P 2002 Phys. Rev. Lett. 88 047601Google Scholar

    [16]

    Nath R, Tsirlin A A, Rosner H, Geibel C 2008 Phys. Rev. B 78 064422Google Scholar

    [17]

    Zhao J, Yao D X, Li S, Hong T, Chen Y, Chang S, Ratcliff W, Lynn J W, Mook H A, Chen G F, Luo J L, Wang N L, Carlson E W, Hu J, Dai P 2008 Phys. Rev. Lett. 101 167203Google Scholar

    [18]

    Ewings R A, Perring T G, Bewley R I, Guidi T, Pitcher M J, Parker D R, Clarke S J, Boothroyd A T 2008 Phys. Rev. B 78 220501Google Scholar

    [19]

    Johnston D C, McQueeney R J, Lake B, Honecker A, Zhitomirsky M E, Nath R, Furukawa Y, Antropov V P, Singh Y 2011 Phys. Rev. B 84 094445Google Scholar

    [20]

    Holt M, Sushkov O P, Stanek D, Uhrig G S 2011 Phys. Rev. B 83 144528Google Scholar

    [21]

    Fan Z, Jie Q L 2014 Phys. Rev. B 89 054418Google Scholar

    [22]

    Schmalfuß D, Darradi R, Richter J, Schulenburg J, Ihle D 2006 Phys. Rev. Lett. 97 157201Google Scholar

    [23]

    Nunes W A, Ricardo de Sousa J, Roberto Viana J, Richter J 2010 J. Phys.: Condens. Matter. 22 146004Google Scholar

    [24]

    Majumdar K 2011 J. Phys.: Condens. Matter 23 046001Google Scholar

    [25]

    Thalmeier P, Zhitomirsky M E, Schmidt B, Shannon N 2008 Phys. Rev. B 77 104441Google Scholar

    [26]

    Rojas O, Hamer C J, Oitmaa J 2011 J. Phys.: Condens. Matter. 23 416001Google Scholar

    [27]

    Isaev L, Ortiz G 2012 Phys. Rev. B 86 100402Google Scholar

    [28]

    Bishop R F, Li P H Y, Götze O, Richter J 2019 Phys. Rev. B 100 024401Google Scholar

    [29]

    Holstein T, Primakoff H 1940 Phys. Rev. 58 1098Google Scholar

    [30]

    Dyson F J 1956 Phys. Rev. 102 1217Google Scholar

    [31]

    Oitmaa J, Zheng W H 1996 Phys. Rev. B 54 3022Google Scholar

    [32]

    Majumdar K 2010 Phys. Rev. B 82 144407Google Scholar

    [33]

    Kalza A, Honecker A, Fuchs S, Pruschke T 2008 Eur. Phys. J. B 65 533Google Scholar

    [34]

    Jin S, Sen A, Sandvik A W 2012 Phys. Rev. Lett. 108 045702Google Scholar

  • 图 1  NS和CS的磁构型 (a), (b) 层间耦合为反铁磁相互作用; (c), (d)层间耦合为铁磁相互作用. 实心和空心圆圈分别描述的是自旋取向相上和向下

    Fig. 1.  Spin configurations of the NS and CS: (a), (b) Interlayer coupling as antiferromagnetic interactions; (c), (d) interlayer coupling as ferromagnetic interactions. The solid and empty circles represent the up-spins and down-spins, respectively.

    图 2  $ \eta = 1 $时, 不同$ {J_{\text{c}}} $下的子晶格磁化强度$ m $$ {J_2} $之间的关系 (a) $ {J_{\text{c}}} = 0, 0.21, 1 $; (b) $ {J_{\text{c}}} = 0, - 0.175, - 1 $; (c) $ {J_{\text{c}}} = 0 $; (d) $ {J_{\text{c}}} = 1 $. 图(c)和(d)中, 短划线、空心方格、实心圆、实心三角形和破折号分别描述的是线性自旋波理论(本文的结果, LSW)、系列展开法到9阶(SE I)[31]、系列展开法到12阶(SE II)[26]、耦合团簇方法(CCM)[31]和二阶自旋波理论(SOSW)[32]的结果

    Fig. 2.  Sublattice magnetization $ m $ as a function of $ {J_2} $ for different $ {J_{\text{c}}} $ values at $ \eta = 1 $: (a) $ {J_{\text{c}}} = 0, 0.21, 1 $; (b) $ {J_{\text{c}}} = $$ 0, - 0.175, - 1 $; (c) $ {J_{\text{c}}} = 0 $; (d) $ {J_{\text{c}}} = 1 $. In panel (c) and (d), the shorted-dashed lines, open squares, filled circles, filled triangles and dashed-doted lines represent the results of the linear spin wave (this paper, LSW), the series expansion up to the 9th order (SE I)[31], the series expansion up to the 12th order (SE II) [26], the couple-cluster method (CCM)[31] and second-order spin wave (SOSW)[32], respectively.

    图 3  $ \eta = 1 $时, 系统在参数$ {J_2} $$ {J_{\text{c}}} $空间的基态相图

    Fig. 3.  Ground state phase diagram in the ${J_2} \text{-} {J_{\text{c}}}$ plan for$ \eta = 1 $.

    图 4  不同参数时的磁化强度$ m $$ {J_2} $的关系 (a) $ {J_{\text{c}}} = 0, \eta = 0.956 $; (b) ${J_{\rm c}} = 0.025, \eta = 0.9718$; (c)$ {J_{\text{c}}} = - 0.058, \eta = 0.987 $; (d) $ {J_{\text{c}}} = 0.3, \eta = 0.8 $; (e) $ {J_{\text{c}}} = 0.3, \eta = 0.8 $; (f) $ {J_{\text{c}}} = - 0.3, \eta = 0, 0.8, 0.9, 1 $

    Fig. 4.  Sublattice magnetization $ m $ as a function of $ {J_2} $ for different parameter values: (a) $ {J_{\text{c}}} = 0, \eta = 0.956 $; (b) ${J_{\rm c}} = 0.025, $$ \eta = 0.9718$; (c) $ {J_{\text{c}}} = - 0.058, \eta = 0.987 $; (d) $ {J_{\text{c}}} = 0.3, \eta = 0.8 $; (e) $ {J_{\text{c}}} = 0.3, \eta = 0.8 $; (f) $ {J_{\text{c}}} = - 0.3, \eta = 0, 0.8, 0.9, 1 $.

    图 5  在参数$ \eta $-$ {J_{\text{c}}} $空间中两个态共存所对应的区域. 平面分成了两个区域: 顺磁相和两个态共存的区域. 在共存区域$ {J_2} $的取值范围是$ J_2^1 \leqslant {J_2} \leqslant J_2^2 $. 相应的例子是图4(e)

    Fig. 5.  Area corresponding to the coexistence of the two states in the $\eta \text{-} {J_{\text{c}}}$ space. The plane is divided into the two areas: paramagnetic phase and the coexistence of the two states. In the coexistence area of the two states , the value range of $ {J_2} $ is $ J_2^1 \leqslant {J_2} \leqslant J_2^2 $. The corresponding example is Fig. 4(e).

    图 6  (a)当$ {J_2} = 0.5 $时, NS和CS的基态能$ {E_0} $$ {J_{\text{c}}} $的关系; (b)当$ {J_{\text{c}}} = 0, 1 $时, NS和CS的基态能$ {E_0} $$ {J_2} $的关系. 实心方块和实心圆是系列展开法(SE II)的结果[26]

    Fig. 6.  (a) Ground state energy $ {E_0} $ of the Néel and collinear states as a function of $ {J_{\text{c}}} $ for $ {J_2} = 0.5 $; (b) ground state energy $ {E_0} $ of the Néel and collinear states as a function of $ {J_2} $ for $ {J_{\text{c}}} = 0, 1 $. The filled squares and filled circles are the results of the series expansion up to the 12th order (SE II)[26].

    图 7  $ {J_{\text{c}}} = 0.03 $时, 不同$ \eta $值下两个态的基态能$ {E_0} $$ {J_2} $的关系 (a) $ \eta = 0.97 $; (b) $ \eta = 0.7703 $; (c) $ \eta = 0.5 $; (d) $\eta = 0$

    Fig. 7.  Ground state energy $ {E_0} $ of the two states as a function of $ {J_2} $ for different $ \eta $ values when $ {J_{\text{c}}} = 0.03 $: (a) $\eta = $$ 0.97$; (b) $ \eta = 0.7703 $; (c) $ \eta = 0.5 $; (d) $ \eta = 0 $.

    图 8  $ J_2^1 \leqslant {J_2} \leqslant J_2^2 $时, 两个态的基态能在参数${J_{\text{c}}} \text{-} \eta$空间中的比较

    Fig. 8.  Comparison of the ground state energy of the two states in the ${J_{\text{c}}} \text{-} \eta$ space when $ J_2^1 \leqslant {J_2} \leqslant J_2^2 $.

  • [1]

    Chubukov A V, Jolicoeur T 1991 Phys. Rev. B 44 12050Google Scholar

    [2]

    Bishop R F, Farnell D J J, Parkinson J B 1998 Phys. Rev. B 58 6394Google Scholar

    [3]

    Metavitsiadis A, Sellmann D, Eggert S 2014 Phys. Rev. B 89 241104Google Scholar

    [4]

    Haghshenas R, Sheng D N 2018 Phys. Rev. B 97 174408Google Scholar

    [5]

    Sadrzadeh M, Haghshenas R, Langari A 2019 Phys. Rev. B 99 144414Google Scholar

    [6]

    Choo K, Neupert T, Carleo G 2019 Phys. Rev. B 100 125124Google Scholar

    [7]

    Doretto R L 2020 Phys. Rev. B 102 014415Google Scholar

    [8]

    Roscher D, Gneist N, Scherer M M, Trebst S, Diehl S 2019 Phys. Rev. B 100 125130Google Scholar

    [9]

    Bishop R F, Li P H Y, Darradi R, Schulenburg J, Richter J 2008 Phys. Rev. B 78 054412Google Scholar

    [10]

    Wang L, Sandvik A W 2018 Phys. Rev. Lett. 121 107202Google Scholar

    [11]

    Haghshenas R, Lan W W, Gong S S, Sheng D N 2018 Phys. Rev. B 97 184436Google Scholar

    [12]

    Sadrzadeh M, Haghshenas R, Jahromi S S, Langari A 2016 Phys. Rev. B 94 214419Google Scholar

    [13]

    Ferrari F, Becca F 2020 Phys. Rev. B 102 014417Google Scholar

    [14]

    Carretta P, Papinutto N, Azzoni C B, Mozzati M C, Pavarini E, Gonthier S, Millet P 2002 Phys. Rev. B 66 094420Google Scholar

    [15]

    Carretta P, Melzi R, Papinutto N, Millet P 2002 Phys. Rev. Lett. 88 047601Google Scholar

    [16]

    Nath R, Tsirlin A A, Rosner H, Geibel C 2008 Phys. Rev. B 78 064422Google Scholar

    [17]

    Zhao J, Yao D X, Li S, Hong T, Chen Y, Chang S, Ratcliff W, Lynn J W, Mook H A, Chen G F, Luo J L, Wang N L, Carlson E W, Hu J, Dai P 2008 Phys. Rev. Lett. 101 167203Google Scholar

    [18]

    Ewings R A, Perring T G, Bewley R I, Guidi T, Pitcher M J, Parker D R, Clarke S J, Boothroyd A T 2008 Phys. Rev. B 78 220501Google Scholar

    [19]

    Johnston D C, McQueeney R J, Lake B, Honecker A, Zhitomirsky M E, Nath R, Furukawa Y, Antropov V P, Singh Y 2011 Phys. Rev. B 84 094445Google Scholar

    [20]

    Holt M, Sushkov O P, Stanek D, Uhrig G S 2011 Phys. Rev. B 83 144528Google Scholar

    [21]

    Fan Z, Jie Q L 2014 Phys. Rev. B 89 054418Google Scholar

    [22]

    Schmalfuß D, Darradi R, Richter J, Schulenburg J, Ihle D 2006 Phys. Rev. Lett. 97 157201Google Scholar

    [23]

    Nunes W A, Ricardo de Sousa J, Roberto Viana J, Richter J 2010 J. Phys.: Condens. Matter. 22 146004Google Scholar

    [24]

    Majumdar K 2011 J. Phys.: Condens. Matter 23 046001Google Scholar

    [25]

    Thalmeier P, Zhitomirsky M E, Schmidt B, Shannon N 2008 Phys. Rev. B 77 104441Google Scholar

    [26]

    Rojas O, Hamer C J, Oitmaa J 2011 J. Phys.: Condens. Matter. 23 416001Google Scholar

    [27]

    Isaev L, Ortiz G 2012 Phys. Rev. B 86 100402Google Scholar

    [28]

    Bishop R F, Li P H Y, Götze O, Richter J 2019 Phys. Rev. B 100 024401Google Scholar

    [29]

    Holstein T, Primakoff H 1940 Phys. Rev. 58 1098Google Scholar

    [30]

    Dyson F J 1956 Phys. Rev. 102 1217Google Scholar

    [31]

    Oitmaa J, Zheng W H 1996 Phys. Rev. B 54 3022Google Scholar

    [32]

    Majumdar K 2010 Phys. Rev. B 82 144407Google Scholar

    [33]

    Kalza A, Honecker A, Fuchs S, Pruschke T 2008 Eur. Phys. J. B 65 533Google Scholar

    [34]

    Jin S, Sen A, Sandvik A W 2012 Phys. Rev. Lett. 108 045702Google Scholar

  • [1] 陈兆亮, 卢达标, 叶旭斌, 赵浩婷, 张杰, 潘昭, 迟振华, 崔田, 沈瑶, 龙有文. 钙钛矿型CeTaN2O的高压制备及其磁性和电学性质. 物理学报, 2024, 73(8): 080702. doi: 10.7498/aps.73.20240025
    [2] 汪静丽, 杨志雄, 董先超, 尹亮, 万洪丹, 陈鹤鸣, 钟凯. 基于VO2的太赫兹各向异性编码超表面. 物理学报, 2023, 72(12): 124204. doi: 10.7498/aps.72.20222171
    [3] 卿煜林, 彭小莉, 胡爱元. 自旋为1的双层平方晶格阻挫模型的相变. 物理学报, 2022, 71(4): 047501. doi: 10.7498/aps.71.20211685
    [4] 卿煜林, 彭小莉, 文林, 胡爱元. 自旋为1/2的双层平方晶格阻挫模型的基态相变研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211584
    [5] 蔡成欣, 陈韶赓, 王学梅, 梁俊燕, 王兆宏. 各向异性三维非对称双锥五模超材料的能带结构及品质因数. 物理学报, 2020, 69(13): 134302. doi: 10.7498/aps.69.20200364
    [6] 方雨青, 金钻明, 陈海洋, 阮舜逸, 李炬赓, 曹世勋, 彭滟, 马国宏, 朱亦鸣. 高通量制备的SmxPr1–xFeO3晶体中反铁磁自旋模式和晶体场跃迁的太赫兹光谱. 物理学报, 2020, 69(20): 209501. doi: 10.7498/aps.69.20200732
    [7] 文林, 胡爱元. 双二次交换作用和各向异性对反铁磁体相变温度的影响. 物理学报, 2020, 69(10): 107501. doi: 10.7498/aps.69.20200077
    [8] 胡妮, 刘雍, 汤五丰, 裴玲, 方鹏飞, 熊锐, 石兢. La0.4Ca0.6MnO3中Mn-位Fe和Cr掺杂对磁性质的影响. 物理学报, 2014, 63(23): 237502. doi: 10.7498/aps.63.237502
    [9] 张永伟, 殷春浩, 赵强, 李富强, 朱姗姗, 刘海顺. TiO2电子结构与其双折射性、各向异性关联的理论研究. 物理学报, 2012, 61(2): 027801. doi: 10.7498/aps.61.027801
    [10] 胡妮, 刘雍, 程莉, 石兢, 熊锐. La0.4Ca0.6MnO3系统中Mn位Fe和Cr掺杂效应的比较性研究. 物理学报, 2011, 60(1): 017503. doi: 10.7498/aps.60.017503
    [11] 刘雍, 周睿, 李靖, 张悦, 熊锐, 尹镝, 汤五丰, 石兢. 尖晶石结构自旋有序CaTi2O4单晶生长和磁化率特性研究. 物理学报, 2010, 59(8): 5620-5625. doi: 10.7498/aps.59.5620
    [12] 刘先锋, 韩玖荣, 江学范. 阻挫三角反铁磁AgCrO2螺旋自旋序的第一性原理研究. 物理学报, 2010, 59(9): 6487-6493. doi: 10.7498/aps.59.6487
    [13] 万勇, 韩文娟, 刘均海, 夏临华, Xavier Mateos, Valentin Petrov, 张怀金, 王继扬. 单斜结构的Yb:KLu(WO4)2晶体光谱和激光性质的各向异性. 物理学报, 2009, 58(1): 278-284. doi: 10.7498/aps.58.278.1
    [14] 王志军, 王锦程, 杨根仓. 各向异性作用下合金定向凝固界面稳定性的渐近分析. 物理学报, 2008, 57(2): 1246-1253. doi: 10.7498/aps.57.1246
    [15] 史力斌, 任骏原, 张凤云, 张国华, 余增强. 关于MgB2/Al2O3超导薄膜电阻转变和各向异性的研究. 物理学报, 2007, 56(9): 5353-5358. doi: 10.7498/aps.56.5353
    [16] 翁紫梅, 陈 浩. 单离子各向异性影响下的一维铁磁链中的孤子. 物理学报, 2007, 56(4): 1911-1918. doi: 10.7498/aps.56.1911
    [17] 郑志远, 李玉同, 远晓辉, 徐妙华, 梁文锡, 于全芝, 张 翼, 王兆华, 魏志义, 张 杰. 超热电子角分布和能谱的实验研究. 物理学报, 2006, 55(10): 5349-5353. doi: 10.7498/aps.55.5349
    [18] 刘少斌, 莫锦军, 袁乃昌. 各向异性磁等离子体的辅助方程FDTD算法. 物理学报, 2004, 53(7): 2233-2236. doi: 10.7498/aps.53.2233
    [19] 庄飞, 肖三水, 何江平, 何赛灵. 二维正方各向异性碲圆柱光子晶体完全禁带中缺陷模的FDTD计算分析和设计. 物理学报, 2002, 51(9): 2167-2172. doi: 10.7498/aps.51.2167
    [20] 杜启振, 杨慧珠. 线性黏弹性各向异性介质速度频散和衰减特征研究. 物理学报, 2002, 51(9): 2101-2108. doi: 10.7498/aps.51.2101
计量
  • 文章访问数:  3976
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-27
  • 修回日期:  2021-10-02
  • 上网日期:  2022-01-23
  • 刊出日期:  2022-02-05

/

返回文章
返回