Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design and research of non-contact triboelectric nanogenerator based on changing electrostatic field

Cao Jie Gu Wei-Guang Qu Zhao-Qi Zhong Yan Cheng Guang-Gui Zhang Zhong-Qiang

Citation:

Design and research of non-contact triboelectric nanogenerator based on changing electrostatic field

Cao Jie, Gu Wei-Guang, Qu Zhao-Qi, Zhong Yan, Cheng Guang-Gui, Zhang Zhong-Qiang
PDF
HTML
Get Citation
  • Triboelectric nanogenerator (TENG) and its self-powered sensor based on the principles of contact electricity generation and electrostatic induction have important application prospects in the fields of new energy and internet of things (IoT). In the contact separation process of polymer materials with different electronegativity values, due to the transfer of electrons, a changing electrostatic field will be generated in the space around the polymer. In the existing TENG research, the field strength perpendicular to the plane of the friction layer and the electrode layer is mainly used to generate electrostatic induction, and the electric field effect around the polymer is ignored. According to the principle of electrostatic induction, the internal charge of the conductor in the electric field will be redistributed, which provides a way for the conductor to generate an induced electrical signal on the surface of the conductor without contacting the friction material. In this paper, we design a non-contact triboelectric nanogenerator (NC-TENG) based on changing electrostatic field. The influence of the distance between the conductor and the friction material, the induction area of the conductor and the position of the conductor relative to the friction material on the induced electrical output performance are studied when silicone rubber and nitrile rubber are used as a friction material. The results show that the NC-TENG can produce a stable electrical signal output when the conductor is completely separated from the friction material. The induced voltage of NC-TENG decreases with the increase of the distance between the conductor and the friction material, and gradually increases with the increase of the conductor's induction area. For the friction material with a size of 30 mm × 30 mm, the electrical output of NC-TENG tends to be stable when its conductor area is 60 mm × 45 mm. In addition, the different orientation of the conductor relative to the friction material also has a significant effect on the induced electrical output. The NC-TENG designed in this paper provides a novel electrical output generation mode, which provides a higher possibility for the subsequent research on TENG and the application of self-powered sensors.
      Corresponding author: Cheng Guang-Gui, ggcheng@ujs.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51675236)
    [1]

    Yin E, Li Q, Xuan Y 2019 Appl. Energy 236 560Google Scholar

    [2]

    Bu L, Chen Z, Chen Z, Qin L, Yang F, Xu K, Han J, Wang X 2020 Nano Energy 70 104500Google Scholar

    [3]

    Xing F, Jie Y, Cao X, Li T, Wang N 2017 Nano Energy 42 138Google Scholar

    [4]

    Zhong W, Xu L, Wang H, Li D, Wang Z 2019 Nano Energy 66 104108Google Scholar

    [5]

    Liu X, Cheng K, Cui P, Qi H, Qin H, Gu G, Shang W, Wang S, Cheng G, Du Z 2019 Nano Energy 66 104188Google Scholar

    [6]

    Cheng G, Lin Z, Du Z, Wang Z 2014 ACS Nano 8 1932Google Scholar

    [7]

    Fan F, Tian Z, Wang Z 2012 Nano Energy 1 328Google Scholar

    [8]

    Chung J, Lee S, Yong H, Moon H, Choi D, Lee S 2016 Nano Energy 20 84Google Scholar

    [9]

    Yang W, Wang X, Li H, Wu J, Hu Y 2018 Nano Energy 51 241Google Scholar

    [10]

    Seol M, Han J, Moon D, Yoon K, Hwang C, Meyyappan M 2018 Nano Energy 44 82Google Scholar

    [11]

    Jing Q, Zhu G, Bai P, Xie Y, Chen J, Han R, Wang Z 2014 ACS Nano 8 3836Google Scholar

    [12]

    Gogurla N, Roy B, Park J, Kim S 2019 Nano Energy 62 674Google Scholar

    [13]

    Paosangthong W, Wagih M, Torah R, Beeby S 2019 Nano Energy 66 104148Google Scholar

    [14]

    Xi F, Pang Y, Liu G, Wang S, Li W, Zhang C, Wang Z 2019 Nano Energy 61 1Google Scholar

    [15]

    Zhang Z, He J, Wen T, Zhai C, Han J, Mu J, Jia W, Zhang B, Zhang W, Chou X, Xue C 2017 Nano Energy 33 88Google Scholar

    [16]

    Kim W, Bhatia D, Jeong S, Choi D 2019 Nano Energy 56 307Google Scholar

    [17]

    吴晔盛, 刘启, 曹杰, 李凯, 程广贵, 张忠强, 丁建宁, 蒋诗宇 2019 物理学报 68 190201Google Scholar

    Wu Y S, Liu Q, Cao J, Li K, Cheng G G, Zhang Z Q, Ding J N, Jiang S Y 2019 Acta Phys. Sin. 68 190201Google Scholar

    [18]

    Liu X, Zhao K, Yang Y 2018 Nano Energy 53 622Google Scholar

    [19]

    Kim D, Tcho I, Choi Y 2018 Nano Energy 52 256Google Scholar

    [20]

    Lee J, Kim S, Kim T, Khan U, Kim S 2019 Nano Energy 58 579Google Scholar

    [21]

    Yang X, Chan S, Wang L, Daoud W 2018 Nano Energy 44 388Google Scholar

    [22]

    Cui P, Wang J, Xiong J, Li S, Zhang W, Liu X, Gu G, Guo J, Zhang B, Cheng G, Du Z 2020 Nano Energy 71 104646Google Scholar

    [23]

    Zhang R, Hummelgård M, Örtegren J, Olsen M, Andersson H, Olin H 2019 Nano Energy 57 279Google Scholar

    [24]

    Xia K, Zhu Z, Zhang H, Du C, Fu J, Xu Z 2019 Nano Energy 56 400Google Scholar

    [25]

    Lin H, Liu Y, Chen S, Xu Q, Wang S, Hu T, Pan P, Wang Y, Zhang Y, Li N, Li Y, Ma Y, Xie Y, Wang L 2019 Nano Energy 65 103944Google Scholar

    [26]

    Lim G, Kwak S, Kwon N, Kim T, Kim H, Kim S, Kim S, Lim B 2017 Nano Energy 42 300Google Scholar

    [27]

    Feng Y, Huang X, Liu S, Guo W, Li Y, Wu H 2019 Nano Energy 62 197Google Scholar

    [28]

    Meng X, Cheng Q, Jiang X, Fang Z, Chen X, Li S, Li C, Sun C, Wang W, Wang Z 2018 Nano Energy 51 721Google Scholar

    [29]

    Wu C, Ding W, Liu R, Wang J, Wang A, Wang J, Li S, Zi Y, Wang Z 2018 Mater. Today 21 216Google Scholar

    [30]

    Chen J, Pu X, Guo H, Tang Q, Feng L, Wang X, Hu C 2018 Nano Energy 43 253Google Scholar

    [31]

    Zhang W, Wang P, Sun K, Wang C, Diao D 2019 Nano Energy 56 277Google Scholar

    [32]

    Heo D, Kim T, Yong H, Yoo K, Lee S 2018 Nano Energy 50 1Google Scholar

    [33]

    Zhao K, Gu G, Zhang Y, Zhang B, Yang F, Zhao L, Zheng M, Cheng G, Du Z 2018 Nano Energy 53 898Google Scholar

    [34]

    Liu D, Yin X, Guo H, Zhou L, Li X, Zhang C, Wang J, Wang Z 2019 Sci. Adv. 005 6437Google Scholar

    [35]

    Li S, Liu D, Zhao Z, Zhou L, Yin X, Li X, Gao Y, Zhang C, Zhang Q, Wang J, Wang Z 2020 ACS Nano 14 2475Google Scholar

    [36]

    Jiang T, Chen X Y, Yang K D, Han C B, Tang W, Wang Z L 2016 Nano Res. 009 1057Google Scholar

    [37]

    程广贵, 张伟, 方俊, 蒋诗宇, 丁建宁, Pesika N S, 张忠强, 郭立强, 王莹 2016 物理学报 65 060201Google Scholar

    Cheng G G, Zhang W, Fang J, Jiang S Y, Ding J N, Pesika N S, Zhang Z Q, Guo L Q, Wang Y 2016 Acta Phys. Sin. 65 060201Google Scholar

    [38]

    王中林, 林龙, 陈俊, 牛思淼, 訾云龙 2017 摩擦纳米发电机 (北京: 科学出版社) 第14−15页

    Wang Z L, Lin L, Chen J, Niu S M, Zi Y L 2017 Triboelectric Nanogenerator (Beijing: Science Press) pp14−15 (in Chinese)

  • 图 1  (a) NC-TENG装置3D示意图; (b) NC-TENG实物图

    Figure 1.  (a) 3D schematic of NC-TENG; (b) physical picture of NC-TENG.

    图 2  输出性能测试装置示意图

    Figure 2.  Schematic diagram of the output performance test.

    图 3  电场的简要描述 (a)电场的方向以及电场强度的判断; (b)静电感应原理图

    Figure 3.  A brief description of the electric field, including: (a) The direction of the electric field and the judgment of the electric field strength; (b) the principle diagram of electrostatic induction.

    图 4  垂直接触TENG的V-Q-x模型

    Figure 4.  V-Q-x model of vertical contact TENGs.

    图 5  不同分离距离的电势分布图 (a) d = 1 mm; (b) d = 4 mm; (c) d = 7 mm; (d) d = 10 mm

    Figure 5.  The potential distribution picture with different distance: (a) d = 1 mm; (b) d = 4 mm; (c) d = 7 mm; (d) d = 10 mm.

    图 6  基于变化静电场的NC-TENG工作原理图 (i)初始状态, 丁腈橡胶与硅胶刚接触; (ii)丁腈橡胶与硅胶逐渐分离, 丁腈橡胶和硅胶表面所带静电荷产生静电场; (iii)丁腈橡胶和硅胶分离到最大距离, 此时丁腈橡胶和硅胶之间电势差达到最大; (iv)丁腈橡胶和硅胶分离距离逐渐减小, 彼此之间的电势差也在减小

    Figure 6.  Working principle diagram of NC-TENG based on changing electrostatic field: (i) Initial state, nitrile rubber and silicone rubber are just in contact; (ii) nitrile rubber and silicone rubber are gradually separated, the surface of nitrile rubber and silicone rubber is charged and generate an electrostatic field; (iii) the nitrile rubber and the silicone rubber are separated to the maximum distance, at this time the potential difference between the nitrile rubber and the silicone rubber reaches the maximum; (iv) the separation distance between the nitrile rubber and the silicone rubber gradually decreases and the potential difference between them is also decreasing.

    图 7  基于变化静化场的NC-TENG结构图及输出测量图 (a) NC-TENG结构图; (b) 距摩擦材料不同距离时的输出性能; (c) 不同导体面积时的输出性能

    Figure 7.  Structure diagram of NC-TENG based on changing electrostatic field and electrical signal output measurement diagram: (a) Structure diagram of NC-TENG; (b) the output performance of the TENG under different distance from the friction material; (c) the output performance of the TENG under different conductor area.

    图 8  基于变化静电场的NC-TENG电信号输出与导体所处方位关系图 (a)导体处于硅胶正上方和丁腈橡胶正下方以及(b)相应的电信号输出; (c)导体距离硅胶/丁腈橡胶15 mm且分别位于硅胶同一平面和丁腈橡胶同一平面以及(d)相应的电信号输出

    Figure 8.  Research on the relationship between the electrical signal output of the NC-TENG and the position of the conductor: (a) The conductor is directly above the silicone rubber and directly under the nitrile rubber and (b) the corresponding electrical signal output; (c) the conductor is 15 mm away from the silicone/nitrile rubber and is located on the same plane of silicone and nitrile rubber and (d) the corresponding electrical signal output.

  • [1]

    Yin E, Li Q, Xuan Y 2019 Appl. Energy 236 560Google Scholar

    [2]

    Bu L, Chen Z, Chen Z, Qin L, Yang F, Xu K, Han J, Wang X 2020 Nano Energy 70 104500Google Scholar

    [3]

    Xing F, Jie Y, Cao X, Li T, Wang N 2017 Nano Energy 42 138Google Scholar

    [4]

    Zhong W, Xu L, Wang H, Li D, Wang Z 2019 Nano Energy 66 104108Google Scholar

    [5]

    Liu X, Cheng K, Cui P, Qi H, Qin H, Gu G, Shang W, Wang S, Cheng G, Du Z 2019 Nano Energy 66 104188Google Scholar

    [6]

    Cheng G, Lin Z, Du Z, Wang Z 2014 ACS Nano 8 1932Google Scholar

    [7]

    Fan F, Tian Z, Wang Z 2012 Nano Energy 1 328Google Scholar

    [8]

    Chung J, Lee S, Yong H, Moon H, Choi D, Lee S 2016 Nano Energy 20 84Google Scholar

    [9]

    Yang W, Wang X, Li H, Wu J, Hu Y 2018 Nano Energy 51 241Google Scholar

    [10]

    Seol M, Han J, Moon D, Yoon K, Hwang C, Meyyappan M 2018 Nano Energy 44 82Google Scholar

    [11]

    Jing Q, Zhu G, Bai P, Xie Y, Chen J, Han R, Wang Z 2014 ACS Nano 8 3836Google Scholar

    [12]

    Gogurla N, Roy B, Park J, Kim S 2019 Nano Energy 62 674Google Scholar

    [13]

    Paosangthong W, Wagih M, Torah R, Beeby S 2019 Nano Energy 66 104148Google Scholar

    [14]

    Xi F, Pang Y, Liu G, Wang S, Li W, Zhang C, Wang Z 2019 Nano Energy 61 1Google Scholar

    [15]

    Zhang Z, He J, Wen T, Zhai C, Han J, Mu J, Jia W, Zhang B, Zhang W, Chou X, Xue C 2017 Nano Energy 33 88Google Scholar

    [16]

    Kim W, Bhatia D, Jeong S, Choi D 2019 Nano Energy 56 307Google Scholar

    [17]

    吴晔盛, 刘启, 曹杰, 李凯, 程广贵, 张忠强, 丁建宁, 蒋诗宇 2019 物理学报 68 190201Google Scholar

    Wu Y S, Liu Q, Cao J, Li K, Cheng G G, Zhang Z Q, Ding J N, Jiang S Y 2019 Acta Phys. Sin. 68 190201Google Scholar

    [18]

    Liu X, Zhao K, Yang Y 2018 Nano Energy 53 622Google Scholar

    [19]

    Kim D, Tcho I, Choi Y 2018 Nano Energy 52 256Google Scholar

    [20]

    Lee J, Kim S, Kim T, Khan U, Kim S 2019 Nano Energy 58 579Google Scholar

    [21]

    Yang X, Chan S, Wang L, Daoud W 2018 Nano Energy 44 388Google Scholar

    [22]

    Cui P, Wang J, Xiong J, Li S, Zhang W, Liu X, Gu G, Guo J, Zhang B, Cheng G, Du Z 2020 Nano Energy 71 104646Google Scholar

    [23]

    Zhang R, Hummelgård M, Örtegren J, Olsen M, Andersson H, Olin H 2019 Nano Energy 57 279Google Scholar

    [24]

    Xia K, Zhu Z, Zhang H, Du C, Fu J, Xu Z 2019 Nano Energy 56 400Google Scholar

    [25]

    Lin H, Liu Y, Chen S, Xu Q, Wang S, Hu T, Pan P, Wang Y, Zhang Y, Li N, Li Y, Ma Y, Xie Y, Wang L 2019 Nano Energy 65 103944Google Scholar

    [26]

    Lim G, Kwak S, Kwon N, Kim T, Kim H, Kim S, Kim S, Lim B 2017 Nano Energy 42 300Google Scholar

    [27]

    Feng Y, Huang X, Liu S, Guo W, Li Y, Wu H 2019 Nano Energy 62 197Google Scholar

    [28]

    Meng X, Cheng Q, Jiang X, Fang Z, Chen X, Li S, Li C, Sun C, Wang W, Wang Z 2018 Nano Energy 51 721Google Scholar

    [29]

    Wu C, Ding W, Liu R, Wang J, Wang A, Wang J, Li S, Zi Y, Wang Z 2018 Mater. Today 21 216Google Scholar

    [30]

    Chen J, Pu X, Guo H, Tang Q, Feng L, Wang X, Hu C 2018 Nano Energy 43 253Google Scholar

    [31]

    Zhang W, Wang P, Sun K, Wang C, Diao D 2019 Nano Energy 56 277Google Scholar

    [32]

    Heo D, Kim T, Yong H, Yoo K, Lee S 2018 Nano Energy 50 1Google Scholar

    [33]

    Zhao K, Gu G, Zhang Y, Zhang B, Yang F, Zhao L, Zheng M, Cheng G, Du Z 2018 Nano Energy 53 898Google Scholar

    [34]

    Liu D, Yin X, Guo H, Zhou L, Li X, Zhang C, Wang J, Wang Z 2019 Sci. Adv. 005 6437Google Scholar

    [35]

    Li S, Liu D, Zhao Z, Zhou L, Yin X, Li X, Gao Y, Zhang C, Zhang Q, Wang J, Wang Z 2020 ACS Nano 14 2475Google Scholar

    [36]

    Jiang T, Chen X Y, Yang K D, Han C B, Tang W, Wang Z L 2016 Nano Res. 009 1057Google Scholar

    [37]

    程广贵, 张伟, 方俊, 蒋诗宇, 丁建宁, Pesika N S, 张忠强, 郭立强, 王莹 2016 物理学报 65 060201Google Scholar

    Cheng G G, Zhang W, Fang J, Jiang S Y, Ding J N, Pesika N S, Zhang Z Q, Guo L Q, Wang Y 2016 Acta Phys. Sin. 65 060201Google Scholar

    [38]

    王中林, 林龙, 陈俊, 牛思淼, 訾云龙 2017 摩擦纳米发电机 (北京: 科学出版社) 第14−15页

    Wang Z L, Lin L, Chen J, Niu S M, Zi Y L 2017 Triboelectric Nanogenerator (Beijing: Science Press) pp14−15 (in Chinese)

  • [1] Deng Hao-Cheng, Li Yi, Tian Shuang-Shuang, Zhang Xiao-Xing, Xiao Song. Dielectric materials for high-performance triboelectric nanogenerators. Acta Physica Sinica, 2024, 73(7): 070702. doi: 10.7498/aps.73.20240150
    [2] Lan Wan, Chi Chen-Yang, Guo Ying-Chun, Yang Yu-Jun, Wang Bing-Bing. High order harmonic spectra of CO under external electrostatic field. Acta Physica Sinica, 2023, 72(13): 134202. doi: 10.7498/aps.72.20230560
    [3] Liang Shuai-Bo, Yuan Tao, Qiu Yang, Zhang Zhen, Miao Ya-Ning, Han Jing-Feng, Liu Xiu-Tong, Yao Chun-Li. Barium titanate dielectric regulation improved output performance of paper-based triboelectric nanogenerator. Acta Physica Sinica, 2022, 71(7): 077701. doi: 10.7498/aps.71.20212022
    [4] Zhang Jia-Wei, Yao Hong-Bo, Zhang Yuan-Zheng, Jiang Wei-Bo, Wu Yong-Hui, Zhang Ya-Ju, Ao Tian-Yong, Zheng Hai-Wu. Self-powered sensing based on triboelectric nanogenerator through machine learning and its application. Acta Physica Sinica, 2022, 71(7): 078702. doi: 10.7498/aps.71.20211632
    [5] Ding Ya-Fei, Chen Xiang-Yu. Triboelectric nanogenerator based wearable energy harvesting devices. Acta Physica Sinica, 2020, 69(17): 170202. doi: 10.7498/aps.69.20200867
    [6] Wu Ye-Sheng, Liu Qi, Cao Jie, Li Kai, Cheng Guang-Gui, Zhang Zhong-Qiang, Ding Jian-Ning, Jiang Shi-Yu. Design and output performance of vibration energy harvesting triboelectric nanogenerator. Acta Physica Sinica, 2019, 68(19): 190201. doi: 10.7498/aps.68.20190806
    [7] Cheng Guang-Gui, Zhang Wei, Fang Jun, Jiang Shi-Yu, Ding Jian-Ning, Noshir S. Pesika, Zhang Zhong-Qiang, Guo Li-Qiang, Wang Ying. Fabrication of triboelectric nanogenerator with textured surface and its electric output performance. Acta Physica Sinica, 2016, 65(6): 060201. doi: 10.7498/aps.65.060201
    [8] Xie Guo-Feng. Improving parallel electrode method by sputtering atoms' angle distribution rule. Acta Physica Sinica, 2008, 57(3): 1784-1787. doi: 10.7498/aps.57.1784
    [9] Huang Shi-Hua, Wu Feng-Min. Electron acceleration by a focused laser pulse in static electric field. Acta Physica Sinica, 2008, 57(12): 7680-7684. doi: 10.7498/aps.57.7680
    [10] Li Hong-Yun, Wang Bing-Bing, Jiang Hong-Bing, Chen Jing, Li Xiao-Feng, Liu Jie, Gong Qi-Huang, Fu Pan-Ming. The effect of static electric field on nonsequential double ionization. Acta Physica Sinica, 2008, 57(1): 124-131. doi: 10.7498/aps.57.124
    [11] Hong Wei-Yi, Cao Wei, Lan Peng-Fei, Lu Pei-Xiang. The effects of static electric field on the time-frequency characteristics of high-order harmonic generation. Acta Physica Sinica, 2007, 56(11): 6623-6628. doi: 10.7498/aps.56.6623
    [12] Xie Guo-Feng, Wang De-Wu, Ying Chun-Tong. Ion extraction and collection studied by parallel electrode method on considerin g sputtering loss. Acta Physica Sinica, 2005, 54(4): 1543-1551. doi: 10.7498/aps.54.1543
    [13] Song Xiao-Peng, Chen Rong, Bao Cheng-Yu, Wang De-Wu. Dual extraction and collection of ions by parallel electrode method. Acta Physica Sinica, 2005, 54(9): 4198-4202. doi: 10.7498/aps.54.4198
    [14] XU ZHENG-YI. MECHANISM OF THE ENHANCEMENT OF NEUTRON DIFFRACTION FROM KDP AND TGS CRYSTALS UNDER THE ACTION OF AN ELECTROSTATIC FIELD. Acta Physica Sinica, 1978, 27(6): 700-709. doi: 10.7498/aps.27.700
    [15] YANG ZHEN, CHENG YU-FEN, NIU SHI-WEN. ENHANCEMENT OF NEUTRON DIFFRACTION OF TGS MONOCRYSTALS NEAR THE CURIE POINT WITH THE APPLICATION OF A DC FIELD. Acta Physica Sinica, 1978, 27(2): 226-228. doi: 10.7498/aps.27.226
    [16] YI SUN-SHENG, LIANG JING-KUI. VARIATION OF LATTICE CONSTANTS IN THE α-LiIO3 SINGLE CRYSTAL UNDER THE ACTION OF AN ELECTROSTATIC FIELD. Acta Physica Sinica, 1978, 27(3): 314-321. doi: 10.7498/aps.27.314
    [17] α-LITHIUM IODATE EESEARCH GROUP. ENHANCEMENT OF NEUTRON DIFFRACTION INTENSITIES OF α-LiIO3 SINGLE CRYSTALS WITH THE APPLICATION OF A DC FIELD (Ⅱ). Acta Physica Sinica, 1976, 25(2): 129-134. doi: 10.7498/aps.25.129
    [18] . Acta Physica Sinica, 1975, 24(6): 385-388. doi: 10.7498/aps.24.385
    [19] . Acta Physica Sinica, 1975, 24(1): 6-11. doi: 10.7498/aps.24.6
    [20] Jin Jian-zhong. A SUGGESTION OF USING SOLID INSULATING MATERIAL IN ELECTROSTATIC GENERATOR IN PLACE OF COMPRESSED GASES. Acta Physica Sinica, 1956, 12(5): 487-489. doi: 10.7498/aps.12.487
Metrics
  • Abstract views:  11410
  • PDF Downloads:  226
  • Cited By: 0
Publishing process
  • Received Date:  03 July 2020
  • Accepted Date:  05 August 2020
  • Available Online:  23 November 2020
  • Published Online:  05 December 2020

/

返回文章
返回