Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fabrication of triboelectric nanogenerator with textured surface and its electric output performance

Cheng Guang-Gui Zhang Wei Fang Jun Jiang Shi-Yu Ding Jian-Ning Noshir S. Pesika Zhang Zhong-Qiang Guo Li-Qiang Wang Ying

Citation:

Fabrication of triboelectric nanogenerator with textured surface and its electric output performance

Cheng Guang-Gui, Zhang Wei, Fang Jun, Jiang Shi-Yu, Ding Jian-Ning, Noshir S. Pesika, Zhang Zhong-Qiang, Guo Li-Qiang, Wang Ying
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Contact electrification between insulators, manifesting as static or triboelectricity is a well-known effect. The triboelectric nanogenerator (TENG) which is based on the contact triboelectricification and electrostatic induction provides a promising route for harvesting ambient mechanical energy and converting it into electric energy. The TENG which is due to its unique properties such as simple structures, low cost, high electric density etc., can offset or even replace the traditional power source for small portable electronics, sensors and so on. So far, the influence of factors on the output performance of TENG is still trapped in unsettled questions and under debate. In this paper, we prepare several textured polydimethylsiloxane (PDMS) films with micro rod array by model method and fabricate a TENG with a size of 2222 mm. The electric generation can be achieved with a cycled process of contact and separation between a polymer and metal electrode (PDMS and aluminum respectively in this study). Several influences as the surface structure and external load on the electrical output of the TENG are systematically studied by integrating use of experimenal tests and ANSYS simulation. Results show that the existence of micro rod array on the PDMS films effectively enlarges the contact area and provides more surfaces for charge storage and hence improve the output performance of TENG. When keeping the external load constant, the output increases with decreasing distance between micro rods. When the external load is 5 N and the distance is 15 m, the average output voltage and current as high as 88 V and 15 A can be achieved respectively, which is 1.5 times higher than the output generated when the distance is 50 m. The electrical output increases quasilinearly with the increase of the external load. Simulation results show that the micro rods of PDMS films are mainly compressed by normal load, which results in a bigger diameter of micro rods. The deformations of PDMS substrate leads to the lateral friction between the micro rods and the upper electrode, which produces more charges because of the friction. For 5 N normal load, the deformations of PDMS substrate and micro rods contribute to the sum of displacement vector and the deformations along Z-axis are 32.7 m and 21.3 m respectively, and are 4.96 and 5.04 times higher than the deformation at the load of 1 N. All the results in an enlarging surface area and the larger output correspondingly. Not only does this work present a new type of generator with micro rods on the PDMS surface, which can be an effective method to improve the electrical output of TENG, but also offers a unique point of view for further understanding of the working principle of TENG.
      Corresponding author: Cheng Guang-Gui, ggcheng@ujs.edu.cn;dingjn@ujs.edu.cn ; Ding Jian-Ning, ggcheng@ujs.edu.cn;dingjn@ujs.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51335002, 11472117); and the Tribology Science Fund of State Key Laboratory of Tribology(SKLTKF14A01).
    [1]

    Dresselhaus M S, Thomas I L 2001 Nature 414 332

    [2]

    Peng L, Mei Y, Chen S F, Zhang Y P, Hao J Y, Deng L L, Huang W 2015 Chin. Phys. B 24 115202

    [3]

    Mao Y C, Zhao P, McConohy G, Yang H, Tong Y X 2014 Adv. Energy Mater. 4 175

    [4]

    Wang Z L, Zhu G, Yang Y, Wang S H, Pan C F 2012 Mater. Today 155 32

    [5]

    Shen D, Park J H, Noh J H, Choe S Y, Kim S H, Kim D J 2009 Sens. Actuators A 154 103

    [6]

    Horn R G, Smith D T 1992 Science 256 362

    [7]

    Yang W M, Lin C J, Liao J, Li Y Q 2013 Chin. Phys. B 22 097202

    [8]

    Lian Z J 2010 Chin. Phys. B 19 058202

    [9]

    Zhang M Q, Wang Y H, Dong P Y, Zhang J 2012 Acta Phys. Sin. 61 238102 (in Chinese) [张明琪, 王育华, 董鹏玉, 张佳 2012 物理学报 23 238102]

    [10]

    Fan F R, Tian Z Q, Wang Z L 2012 Nano Energy 1 328

    [11]

    Yang Y, Zhu G, Zhang H L, Chen J, Zhong X D, Lin Z H, Su Y J, Bai P, Wen X N, Wang Z L 2013 ACS Nano 7 9461

    [12]

    Lin Z H, Cheng G, Lin L, Lee S, Wang Z L 2013 Angew. Chem. Int. Ed 52 1

    [13]

    Zhang H L, Yang Y, Hou T C, Su Y J, Hu C G, Wang Z L 2013 Nano Energy 2 1019

    [14]

    Wu Y, Jing Q S, Chen J, Bai P, Bai J J, Zhu G, Su Y J, Wang Z L 2015 Adv. Funct. Mater. 25 2166

    [15]

    Niu S M, Wang S H, Lin L, Liu Y, Zhou Y S, Hu Y F, Wang Z L 2013 Energy Environ. Sci. 6 3576

    [16]

    Li W, Sun J, Chen M F 2014 Nano Energy 3 95

    [17]

    Zhang C, Tang W, Han C B, Fan F R, Wang Z L 2014 Adv. Mater. 26 3580

    [18]

    Jie Y, Wang N, Cao X, Xu Y, Li T, Zhang X J, Wang Z L 2015 Acs Nano 9 8376

    [19]

    Wang X F, Niu S M, Yin Y J, Yi F, You Z, Wang Z L 2015 Adv. Energy Mater.1501467

    [20]

    Lee S M, Lee Y, Kim D, Yang Y, Lin L, Lin Z H, Hwang W B, Wang Z L 2013 Nano Energy 2 1113

    [21]

    Zhang X S, Han M D, Wang R X, Zhu F Y, Li Z H, Wang W, Zhang H X 2013 Nano Lett. 13 1168

    [22]

    Zhang X S, Han M D, Wang R X, Meng B, Zhu F Y, Sun X M, Hu W, Wang W, Li Z H, Zhang H X2013 Nano Energy 4 123

    [23]

    Watson P K, Yu Z Z 1997 J. Electrostat. 40 67

    [24]

    Castle G S P 1997 J. Electrostat. 40 13

    [25]

    Davies D K 1969 J. Phys. D: Appl. Phys. 2 1533

    [26]

    Saurenbach F, Wollmann D, Terris B D, Diaz A F 1992 Langmuir 8 1199

    [27]

    Lee K Y, Chun J S, Lee J H, Kim K N, Kang N R, Kim J Y, Kim M H, Shin K S, Gupta M K, Baik J M, Kim S W 2014 Adv. Mater. 26 5037

    [28]

    He X M, Guo H Y, Yue X L, Gao J, Xi Y, Hu C Q 2015 Nanoscale 7 1896

    [29]

    Tang W, Meng B, Zhang H X 2013 Nano Energy 2 1164

    [30]

    ZhongJ W, Zhong Q Z, Fan F R, Zhang Y, Wang S H, Hu B, Wang Z L 2013 Nano Energy 2491

    [31]

    Wang S, Lin L, Wang Z L 2012 Nano Lett. 12 6339

    [32]

    Seghir R, Arscott S 2015 Sensor Actuat. A:-Phys. 230 33

    [33]

    Ltters J C, Olthuis W, Veltink P H, Bergveld P 1997 J. Micromech. Microeng. 7 145

  • [1]

    Dresselhaus M S, Thomas I L 2001 Nature 414 332

    [2]

    Peng L, Mei Y, Chen S F, Zhang Y P, Hao J Y, Deng L L, Huang W 2015 Chin. Phys. B 24 115202

    [3]

    Mao Y C, Zhao P, McConohy G, Yang H, Tong Y X 2014 Adv. Energy Mater. 4 175

    [4]

    Wang Z L, Zhu G, Yang Y, Wang S H, Pan C F 2012 Mater. Today 155 32

    [5]

    Shen D, Park J H, Noh J H, Choe S Y, Kim S H, Kim D J 2009 Sens. Actuators A 154 103

    [6]

    Horn R G, Smith D T 1992 Science 256 362

    [7]

    Yang W M, Lin C J, Liao J, Li Y Q 2013 Chin. Phys. B 22 097202

    [8]

    Lian Z J 2010 Chin. Phys. B 19 058202

    [9]

    Zhang M Q, Wang Y H, Dong P Y, Zhang J 2012 Acta Phys. Sin. 61 238102 (in Chinese) [张明琪, 王育华, 董鹏玉, 张佳 2012 物理学报 23 238102]

    [10]

    Fan F R, Tian Z Q, Wang Z L 2012 Nano Energy 1 328

    [11]

    Yang Y, Zhu G, Zhang H L, Chen J, Zhong X D, Lin Z H, Su Y J, Bai P, Wen X N, Wang Z L 2013 ACS Nano 7 9461

    [12]

    Lin Z H, Cheng G, Lin L, Lee S, Wang Z L 2013 Angew. Chem. Int. Ed 52 1

    [13]

    Zhang H L, Yang Y, Hou T C, Su Y J, Hu C G, Wang Z L 2013 Nano Energy 2 1019

    [14]

    Wu Y, Jing Q S, Chen J, Bai P, Bai J J, Zhu G, Su Y J, Wang Z L 2015 Adv. Funct. Mater. 25 2166

    [15]

    Niu S M, Wang S H, Lin L, Liu Y, Zhou Y S, Hu Y F, Wang Z L 2013 Energy Environ. Sci. 6 3576

    [16]

    Li W, Sun J, Chen M F 2014 Nano Energy 3 95

    [17]

    Zhang C, Tang W, Han C B, Fan F R, Wang Z L 2014 Adv. Mater. 26 3580

    [18]

    Jie Y, Wang N, Cao X, Xu Y, Li T, Zhang X J, Wang Z L 2015 Acs Nano 9 8376

    [19]

    Wang X F, Niu S M, Yin Y J, Yi F, You Z, Wang Z L 2015 Adv. Energy Mater.1501467

    [20]

    Lee S M, Lee Y, Kim D, Yang Y, Lin L, Lin Z H, Hwang W B, Wang Z L 2013 Nano Energy 2 1113

    [21]

    Zhang X S, Han M D, Wang R X, Zhu F Y, Li Z H, Wang W, Zhang H X 2013 Nano Lett. 13 1168

    [22]

    Zhang X S, Han M D, Wang R X, Meng B, Zhu F Y, Sun X M, Hu W, Wang W, Li Z H, Zhang H X2013 Nano Energy 4 123

    [23]

    Watson P K, Yu Z Z 1997 J. Electrostat. 40 67

    [24]

    Castle G S P 1997 J. Electrostat. 40 13

    [25]

    Davies D K 1969 J. Phys. D: Appl. Phys. 2 1533

    [26]

    Saurenbach F, Wollmann D, Terris B D, Diaz A F 1992 Langmuir 8 1199

    [27]

    Lee K Y, Chun J S, Lee J H, Kim K N, Kang N R, Kim J Y, Kim M H, Shin K S, Gupta M K, Baik J M, Kim S W 2014 Adv. Mater. 26 5037

    [28]

    He X M, Guo H Y, Yue X L, Gao J, Xi Y, Hu C Q 2015 Nanoscale 7 1896

    [29]

    Tang W, Meng B, Zhang H X 2013 Nano Energy 2 1164

    [30]

    ZhongJ W, Zhong Q Z, Fan F R, Zhang Y, Wang S H, Hu B, Wang Z L 2013 Nano Energy 2491

    [31]

    Wang S, Lin L, Wang Z L 2012 Nano Lett. 12 6339

    [32]

    Seghir R, Arscott S 2015 Sensor Actuat. A:-Phys. 230 33

    [33]

    Ltters J C, Olthuis W, Veltink P H, Bergveld P 1997 J. Micromech. Microeng. 7 145

  • [1] Deng Hao-Cheng, Li Yi, Tian Shuang-Shuang, Zhang Xiao-Xing, Xiao Song. Dielectric materials for high-performance triboelectric nanogenerators. Acta Physica Sinica, 2024, 73(7): 070702. doi: 10.7498/aps.73.20240150
    [2] Zhang Jia-Wei, Yao Hong-Bo, Zhang Yuan-Zheng, Jiang Wei-Bo, Wu Yong-Hui, Zhang Ya-Ju, Ao Tian-Yong, Zheng Hai-Wu. Self-powered sensing based on triboelectric nanogenerator through machine learning and its application. Acta Physica Sinica, 2022, 71(7): 078702. doi: 10.7498/aps.71.20211632
    [3] Liang Shuai-Bo, Yuan Tao, Qiu Yang, Zhang Zhen, Miao Ya-Ning, Han Jing-Feng, Liu Xiu-Tong, Yao Chun-Li. Barium titanate dielectric regulation improved output performance of paper-based triboelectric nanogenerator. Acta Physica Sinica, 2022, 71(7): 077701. doi: 10.7498/aps.71.20212022
    [4] Li Yi-Wei, Lei You-Ming, Yang Yong-Ge. Nano-friction phenomena in driven Frenkel-Kontorova model with stochastic excitation. Acta Physica Sinica, 2021, 70(9): 090501. doi: 10.7498/aps.70.20201254
    [5] Wang Chuang, Bao Rong-Rong, Pan Cao-Feng. Research and application of flexible wearable electronics based on nanogenerator in touch sensor. Acta Physica Sinica, 2021, 70(10): 100705. doi: 10.7498/aps.70.20202157
    [6] Shen Mao-Liang, Zhang Yan. Flexible sensor and energy storage device based on piezoelectric nanogenerator. Acta Physica Sinica, 2020, 69(17): 170701. doi: 10.7498/aps.69.20200784
    [7] Cao Jie, Gu Wei-Guang, Qu Zhao-Qi, Zhong Yan, Cheng Guang-Gui, Zhang Zhong-Qiang. Design and research of non-contact triboelectric nanogenerator based on changing electrostatic field. Acta Physica Sinica, 2020, 69(23): 230201. doi: 10.7498/aps.69.20201052
    [8] Ding Ya-Fei, Chen Xiang-Yu. Triboelectric nanogenerator based wearable energy harvesting devices. Acta Physica Sinica, 2020, 69(17): 170202. doi: 10.7498/aps.69.20200867
    [9] Wu Ye-Sheng, Liu Qi, Cao Jie, Li Kai, Cheng Guang-Gui, Zhang Zhong-Qiang, Ding Jian-Ning, Jiang Shi-Yu. Design and output performance of vibration energy harvesting triboelectric nanogenerator. Acta Physica Sinica, 2019, 68(19): 190201. doi: 10.7498/aps.68.20190806
    [10] Teng Qi-Zhi, Tan Xin, Wu Zi-Yu, Shen Jun, Wang Hai-Feng. Comprehensive evaluation method in the cooling mode of large-scale hydro-generators. Acta Physica Sinica, 2015, 64(17): 178802. doi: 10.7498/aps.64.178802
    [11] Yang Yi-Fei, Luo Min-Zhou, Xing Shao-Bang, Han Xiao-Xin, Zhu Huang-Qiu. Analysis of chaos in permanent magnet synchronous generator and optimal output feedback H∞ control. Acta Physica Sinica, 2015, 64(4): 040504. doi: 10.7498/aps.64.040504
    [12] Wu Zhong-Qiang, Yang Yang, Xu Chun-Hua. Fault diagnosis for permanent magnet synchronous generator under chaos conditions:LMI approach. Acta Physica Sinica, 2013, 62(15): 150507. doi: 10.7498/aps.62.150507
    [13] Li Wei-Zhi, Wang Jun. Numerical simulation of direct current method of measuring thermal conductivities of thin films. Acta Physica Sinica, 2012, 61(11): 114401. doi: 10.7498/aps.61.114401
    [14] Yu Yang, Mi Zeng-Qiang, Liu Xing-Jie. Analysis of chaos in doubly fed induction generator and sliding mode control of chaos synchronization. Acta Physica Sinica, 2011, 60(7): 070509. doi: 10.7498/aps.60.070509
    [15] Wu Shu-Hua, Sun Yi, Hao Jian-Hong, Xu Hai-Bo. Bifurcation and dual-parameter characteristic of the coupled dynamos system. Acta Physica Sinica, 2011, 60(1): 010507. doi: 10.7498/aps.60.010507
    [16] Wang Ya-Zhen, Huang Ping, Gong Zhong-Liang. Study on the influence of temperature on interfacial micro-friction. Acta Physica Sinica, 2010, 59(8): 5635-5640. doi: 10.7498/aps.59.5635
    [17] Wang Xing-Yuan, Wu Xiang-Jun. Chaos control of a modified coupled dynamos system. Acta Physica Sinica, 2006, 55(10): 5083-5093. doi: 10.7498/aps.55.5083
    [18] Wang Xing-Yuan, Wu Xiang-Jun. Adaptive control and synchronization of a coupled dynamos system. Acta Physica Sinica, 2006, 55(10): 5077-5082. doi: 10.7498/aps.55.5077
    [19] Jin Jian-zhong. A SUGGESTION OF USING SOLID INSULATING MATERIAL IN ELECTROSTATIC GENERATOR IN PLACE OF COMPRESSED GASES. Acta Physica Sinica, 1956, 12(5): 487-489. doi: 10.7498/aps.12.487
    [20] . Acta Physica Sinica, 1933, 1(1): 87-90. doi: 10.7498/aps.1.87
Metrics
  • Abstract views:  8698
  • PDF Downloads:  628
  • Cited By: 0
Publishing process
  • Received Date:  09 December 2015
  • Accepted Date:  27 December 2015
  • Published Online:  05 March 2016

/

返回文章
返回