-
Contact electrification between insulators, manifesting as static or triboelectricity is a well-known effect. The triboelectric nanogenerator (TENG) which is based on the contact triboelectricification and electrostatic induction provides a promising route for harvesting ambient mechanical energy and converting it into electric energy. The TENG which is due to its unique properties such as simple structures, low cost, high electric density etc., can offset or even replace the traditional power source for small portable electronics, sensors and so on. So far, the influence of factors on the output performance of TENG is still trapped in unsettled questions and under debate. In this paper, we prepare several textured polydimethylsiloxane (PDMS) films with micro rod array by model method and fabricate a TENG with a size of 2222 mm. The electric generation can be achieved with a cycled process of contact and separation between a polymer and metal electrode (PDMS and aluminum respectively in this study). Several influences as the surface structure and external load on the electrical output of the TENG are systematically studied by integrating use of experimenal tests and ANSYS simulation. Results show that the existence of micro rod array on the PDMS films effectively enlarges the contact area and provides more surfaces for charge storage and hence improve the output performance of TENG. When keeping the external load constant, the output increases with decreasing distance between micro rods. When the external load is 5 N and the distance is 15 m, the average output voltage and current as high as 88 V and 15 A can be achieved respectively, which is 1.5 times higher than the output generated when the distance is 50 m. The electrical output increases quasilinearly with the increase of the external load. Simulation results show that the micro rods of PDMS films are mainly compressed by normal load, which results in a bigger diameter of micro rods. The deformations of PDMS substrate leads to the lateral friction between the micro rods and the upper electrode, which produces more charges because of the friction. For 5 N normal load, the deformations of PDMS substrate and micro rods contribute to the sum of displacement vector and the deformations along Z-axis are 32.7 m and 21.3 m respectively, and are 4.96 and 5.04 times higher than the deformation at the load of 1 N. All the results in an enlarging surface area and the larger output correspondingly. Not only does this work present a new type of generator with micro rods on the PDMS surface, which can be an effective method to improve the electrical output of TENG, but also offers a unique point of view for further understanding of the working principle of TENG.
-
Keywords:
- TENG /
- electrification /
- micro rods /
- ANSYS
[1] Dresselhaus M S, Thomas I L 2001 Nature 414 332
[2] Peng L, Mei Y, Chen S F, Zhang Y P, Hao J Y, Deng L L, Huang W 2015 Chin. Phys. B 24 115202
[3] Mao Y C, Zhao P, McConohy G, Yang H, Tong Y X 2014 Adv. Energy Mater. 4 175
[4] Wang Z L, Zhu G, Yang Y, Wang S H, Pan C F 2012 Mater. Today 155 32
[5] Shen D, Park J H, Noh J H, Choe S Y, Kim S H, Kim D J 2009 Sens. Actuators A 154 103
[6] Horn R G, Smith D T 1992 Science 256 362
[7] Yang W M, Lin C J, Liao J, Li Y Q 2013 Chin. Phys. B 22 097202
[8] Lian Z J 2010 Chin. Phys. B 19 058202
[9] Zhang M Q, Wang Y H, Dong P Y, Zhang J 2012 Acta Phys. Sin. 61 238102 (in Chinese) [张明琪, 王育华, 董鹏玉, 张佳 2012 物理学报 23 238102]
[10] Fan F R, Tian Z Q, Wang Z L 2012 Nano Energy 1 328
[11] Yang Y, Zhu G, Zhang H L, Chen J, Zhong X D, Lin Z H, Su Y J, Bai P, Wen X N, Wang Z L 2013 ACS Nano 7 9461
[12] Lin Z H, Cheng G, Lin L, Lee S, Wang Z L 2013 Angew. Chem. Int. Ed 52 1
[13] Zhang H L, Yang Y, Hou T C, Su Y J, Hu C G, Wang Z L 2013 Nano Energy 2 1019
[14] Wu Y, Jing Q S, Chen J, Bai P, Bai J J, Zhu G, Su Y J, Wang Z L 2015 Adv. Funct. Mater. 25 2166
[15] Niu S M, Wang S H, Lin L, Liu Y, Zhou Y S, Hu Y F, Wang Z L 2013 Energy Environ. Sci. 6 3576
[16] Li W, Sun J, Chen M F 2014 Nano Energy 3 95
[17] Zhang C, Tang W, Han C B, Fan F R, Wang Z L 2014 Adv. Mater. 26 3580
[18] Jie Y, Wang N, Cao X, Xu Y, Li T, Zhang X J, Wang Z L 2015 Acs Nano 9 8376
[19] Wang X F, Niu S M, Yin Y J, Yi F, You Z, Wang Z L 2015 Adv. Energy Mater.1501467
[20] Lee S M, Lee Y, Kim D, Yang Y, Lin L, Lin Z H, Hwang W B, Wang Z L 2013 Nano Energy 2 1113
[21] Zhang X S, Han M D, Wang R X, Zhu F Y, Li Z H, Wang W, Zhang H X 2013 Nano Lett. 13 1168
[22] Zhang X S, Han M D, Wang R X, Meng B, Zhu F Y, Sun X M, Hu W, Wang W, Li Z H, Zhang H X2013 Nano Energy 4 123
[23] Watson P K, Yu Z Z 1997 J. Electrostat. 40 67
[24] Castle G S P 1997 J. Electrostat. 40 13
[25] Davies D K 1969 J. Phys. D: Appl. Phys. 2 1533
[26] Saurenbach F, Wollmann D, Terris B D, Diaz A F 1992 Langmuir 8 1199
[27] Lee K Y, Chun J S, Lee J H, Kim K N, Kang N R, Kim J Y, Kim M H, Shin K S, Gupta M K, Baik J M, Kim S W 2014 Adv. Mater. 26 5037
[28] He X M, Guo H Y, Yue X L, Gao J, Xi Y, Hu C Q 2015 Nanoscale 7 1896
[29] Tang W, Meng B, Zhang H X 2013 Nano Energy 2 1164
[30] ZhongJ W, Zhong Q Z, Fan F R, Zhang Y, Wang S H, Hu B, Wang Z L 2013 Nano Energy 2491
[31] Wang S, Lin L, Wang Z L 2012 Nano Lett. 12 6339
[32] Seghir R, Arscott S 2015 Sensor Actuat. A:-Phys. 230 33
[33] Ltters J C, Olthuis W, Veltink P H, Bergveld P 1997 J. Micromech. Microeng. 7 145
-
[1] Dresselhaus M S, Thomas I L 2001 Nature 414 332
[2] Peng L, Mei Y, Chen S F, Zhang Y P, Hao J Y, Deng L L, Huang W 2015 Chin. Phys. B 24 115202
[3] Mao Y C, Zhao P, McConohy G, Yang H, Tong Y X 2014 Adv. Energy Mater. 4 175
[4] Wang Z L, Zhu G, Yang Y, Wang S H, Pan C F 2012 Mater. Today 155 32
[5] Shen D, Park J H, Noh J H, Choe S Y, Kim S H, Kim D J 2009 Sens. Actuators A 154 103
[6] Horn R G, Smith D T 1992 Science 256 362
[7] Yang W M, Lin C J, Liao J, Li Y Q 2013 Chin. Phys. B 22 097202
[8] Lian Z J 2010 Chin. Phys. B 19 058202
[9] Zhang M Q, Wang Y H, Dong P Y, Zhang J 2012 Acta Phys. Sin. 61 238102 (in Chinese) [张明琪, 王育华, 董鹏玉, 张佳 2012 物理学报 23 238102]
[10] Fan F R, Tian Z Q, Wang Z L 2012 Nano Energy 1 328
[11] Yang Y, Zhu G, Zhang H L, Chen J, Zhong X D, Lin Z H, Su Y J, Bai P, Wen X N, Wang Z L 2013 ACS Nano 7 9461
[12] Lin Z H, Cheng G, Lin L, Lee S, Wang Z L 2013 Angew. Chem. Int. Ed 52 1
[13] Zhang H L, Yang Y, Hou T C, Su Y J, Hu C G, Wang Z L 2013 Nano Energy 2 1019
[14] Wu Y, Jing Q S, Chen J, Bai P, Bai J J, Zhu G, Su Y J, Wang Z L 2015 Adv. Funct. Mater. 25 2166
[15] Niu S M, Wang S H, Lin L, Liu Y, Zhou Y S, Hu Y F, Wang Z L 2013 Energy Environ. Sci. 6 3576
[16] Li W, Sun J, Chen M F 2014 Nano Energy 3 95
[17] Zhang C, Tang W, Han C B, Fan F R, Wang Z L 2014 Adv. Mater. 26 3580
[18] Jie Y, Wang N, Cao X, Xu Y, Li T, Zhang X J, Wang Z L 2015 Acs Nano 9 8376
[19] Wang X F, Niu S M, Yin Y J, Yi F, You Z, Wang Z L 2015 Adv. Energy Mater.1501467
[20] Lee S M, Lee Y, Kim D, Yang Y, Lin L, Lin Z H, Hwang W B, Wang Z L 2013 Nano Energy 2 1113
[21] Zhang X S, Han M D, Wang R X, Zhu F Y, Li Z H, Wang W, Zhang H X 2013 Nano Lett. 13 1168
[22] Zhang X S, Han M D, Wang R X, Meng B, Zhu F Y, Sun X M, Hu W, Wang W, Li Z H, Zhang H X2013 Nano Energy 4 123
[23] Watson P K, Yu Z Z 1997 J. Electrostat. 40 67
[24] Castle G S P 1997 J. Electrostat. 40 13
[25] Davies D K 1969 J. Phys. D: Appl. Phys. 2 1533
[26] Saurenbach F, Wollmann D, Terris B D, Diaz A F 1992 Langmuir 8 1199
[27] Lee K Y, Chun J S, Lee J H, Kim K N, Kang N R, Kim J Y, Kim M H, Shin K S, Gupta M K, Baik J M, Kim S W 2014 Adv. Mater. 26 5037
[28] He X M, Guo H Y, Yue X L, Gao J, Xi Y, Hu C Q 2015 Nanoscale 7 1896
[29] Tang W, Meng B, Zhang H X 2013 Nano Energy 2 1164
[30] ZhongJ W, Zhong Q Z, Fan F R, Zhang Y, Wang S H, Hu B, Wang Z L 2013 Nano Energy 2491
[31] Wang S, Lin L, Wang Z L 2012 Nano Lett. 12 6339
[32] Seghir R, Arscott S 2015 Sensor Actuat. A:-Phys. 230 33
[33] Ltters J C, Olthuis W, Veltink P H, Bergveld P 1997 J. Micromech. Microeng. 7 145
Catalog
Metrics
- Abstract views: 8698
- PDF Downloads: 628
- Cited By: 0