-
Perovskite solar cells (PSCs) with inverted structures have received significant attention in the field of photovoltaics. NiO is one of the commonly explored hole transport materials (HTMs) because of its excellent chemical stability in comparison with organic materials. Pure NiO is an insulator, but the presence of nickel vacancies can lead to the formation of Ni3+ ions, resulting in p-type semiconductor properties. However, the low conductivity and poor interfacial contact between NiO and perovskite thin films still pose challenges in achieving high-performance inverted PSCs. To solve these problems, potassium acetate is used as a potassium source for a nickel precursor, and therefore potassium ions (K+) are doped into NiO nanocrystals. The introduction of K+ into NiO leads to the formation of Ni3+ ions, thereby increasing the conductivity and hole mobility of NiO. Furthermore, K+-doped NiO exhibits better interface contact with the perovskite film, facilitating the efficient separation of photo-generated charges and showing a strong photoluminescence quenching effect. Experimental results demonstrate that the optimal concentration of K+ doping is 3%, and the PSCs prepared with K+-doped NiO exhibit a significant increase in efficiency, from 15.15% to 16.75%, which is attributed primarily to the improvements in the short-circuit current density and fill factor. These improvements highlight the importance of enhanced conductivity and better interfacial contact achieved through K+ doping for charge carrier collection, effectively addressing the limitations of NiO in inverted PSCs.
[1] Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Grätzel M, Park N G 2012 Sci. Rep. 2 591Google Scholar
[2] Roy P, Kumar Sinha N, Tiwari S, Khare A 2020 Sol. Energy 198 665Google Scholar
[3] Li S D, Xiao Y, Su R, Xu W D, Luo D Y, Huang P R, Dai L J, Chen P, Caprioglio P, Elmestekawy K A, Dubajic M, Chosy C, Hu J T, Habib I, Dasgupta A, Guo D Y, Boeije Y, Zelewski S J, Lu Z Y C, Huang T Y, Li Q Y, Wang J M, Yan H M, Chen H H, Li C S, Lewis B A I, Wang D K, Wu J, Zhao L C, Han B, Wang J P, Herz L M, Durrant J R, Novoselov K S, Lu Z H, Gong Q H, Stranks S D, Snaith H J, Zhu R 2024 Nature Doi: 10.1038/s41586-024-08159-5
[4] Wang Y R, Lin R X, Liu C S Y, Wang X Y, Chosy C, Haruta Y, Bui A D, Li M H, Sun H F, Zheng X T, Luo H W, Wu P, Gao H, Sun W J, Nie Y F, Zhu H S, Zhou K, Nguyen H T, Luo X, Li L D, Xiao C X, Saidaminov M I, Stranks S D, Zhang L J, Tan H R 2024 Nature Doi: 10.1038/s41586-024-08158-6
[5] Zhao X, Kim H S, Seo J Y, Park N G 2017 ACS Appl. Mater. Interfaces 9 7148Google Scholar
[6] Boyd C C, Shallcross R C, Moot T, Kerner R, Bertoluzzi L, Onno A, Kavadiya S, Chosy C, Wolf E J, Werner J, Raiford J A, de Paula C, Palmstrom A F, Yu Z J, Berry J J, Bent S F, Holman Z C, Luther J M, Ratcliff E L, Armstrong N R, McGehee M D 2020 Joule 4 1759Google Scholar
[7] Barsoum M W 2002 Fundamentals of Ceramics (Boca Raton: CRC Press
[8] Zhao X, Chen J, Park N G 2019 Sol. RRL 3 1800339Google Scholar
[9] Chen W, Wu Y Z, Yue Y F, Liu J, Zhang W J, Yang X D, Chen H, Bi E B, Ashraful I, Grätzel M, Han L Y 2015 Science 350 944Google Scholar
[10] Jung J W, Chueh C C, Jen A K Y 2015 Adv. Mater. 27 7874Google Scholar
[11] Chen W, Liu F Z, Feng X Y, Djurišić A B, Chan W K, He Z B 2017 Adv. Energy Mater. 7 1700722Google Scholar
[12] Yu S Q, Xiong Z, Zhou H T, Zhang Q, Wang Z H, Ma F, Qu Z H, Zhao Y, Chu X B, Zhang X W, You J B 2023 Science 382 1399Google Scholar
[13] Li L, Wei M Y, Carnevali V, Zeng H P, Zeng M M, Liu R R, Lempesis N, Eickemeyer F T, Luo L, Agosta L, Dankl M, Zakeeruddin S M, Roethlisberger U, Grätzel M, Rong Y G, Li X 2024 Adv. Mater. 36 2303869Google Scholar
[14] Bai Y, Chen H M, Xiao S, Xue Q F, Zhang T, Zhu Z L, Li Q, Hu C, Yang Y, Hu Z C, Huang F, Wong K S, Yip H L, Yang S H 2016 Adv. Funct. Mater. 26 2950Google Scholar
[15] Zhou Y, Huang X, Zhang J, Zhang L, Wu H, Zhou Y, Wang Y, Wang Y, Fu W, Chen H 2024 Adv. Energy Mater. 14 2400616Google Scholar
[16] Zhao X, Zhou J J, Wang S Y, Tan L G, Li M H, Li H, Yi C Y 2021 ACS Appl. Energy Mater. 4 6903Google Scholar
[17] Zhang Y, Kim S G, Lee D K, Park N G 2018 ChemSusChem 11 1813Google Scholar
[18] Manders J R, Tsang S wing W, Hartel M J, Lai T han H, Chen S, Amb C M, Reynolds J R, So F 2013 Adv. Funct. Mater. 23 2993Google Scholar
[19] Liu J, Hanson M P, Peters J A, Wessels B W 2015 ACS Appl. Mater. Interfaces 7 24159Google Scholar
[20] Zhang J Y, Li W W, Hoye R L Z, MacManus-Driscoll J L, Budde M, Bierwagen O, Wang L, Du Y, Wahila M J, Piper L F J, Lee T L, Edwards H J, Dhanak V R, Zhang K H L 2018 J. Mater. Chem. C 6 2275Google Scholar
[21] Jang W L, Lu Y M, Hwang W S, Hsiung T L, Wang H P 2009 Appl. Phys. Lett. 94 062103Google Scholar
[22] Wang Y, Ghanbaja J, Bruyère S, Boulet P, Soldera F, Horwat D, Mücklich F, Pierson J F 2016 CrystEngComm 18 1732Google Scholar
[23] Grosvenor A P, Biesinger M C, Smart R S C, McIntyre N S 2006 Surf. Sci. 600 1771Google Scholar
[24] Liu S Y, Liu R, Chen Y, Ho S, Kim J H, So F 2014 Chem. Mater. 26 4528Google Scholar
[25] Zhao X, Qiu Y J, Wang M, Wu D X, Yue X P, Yan H L, Fan B B, Du S X, Yang Y Q, Yang Y Y, Li D N, Cui P, Huang H, Li Y F, Park N G, Li M C 2024 ACS Energy Lett. 9 2659Google Scholar
[26] Teo S, Guo Z L, Xu Z H, Zhang C, Kamata Y, Hayase S, Ma T L 2019 ChemSusChem 12 518Google Scholar
-
图 2 K+掺杂前后电池结构及光伏特性变化 (a)反式PSC结构示意图; (b)能级图; (c)不同浓度K+掺杂NiO的电池最佳J-V曲线; (d) 基于NiO和3% K+掺杂NiO (K:NiO)的电池正反扫J-V曲线; (e)电池的外量子效率(EQE)曲线; (f) 基于K:NiO空穴传输层的电池最大功率点追踪曲线
Figure 2. Changes in device structure and photovoltaic characteristics before and after K+ doping: (a) Schematic device structure of inverted PSC; (b) energy level diagram of inverted PSC; (c) J-V curves of PSCs using NiO before and after K+ doping with different molar ratios; (d) J-V curves of PSCs using NiO and 3% K+-doped NiO (K:NiO) scanned at forward and reverse scan; (e) external quantum efficiency (EQE) spectra along with the integrated photocurrent density for PSCs; (f) maximum power point tracking of PSC based on K:NiO HTL.
图 4 NiO和3% K+掺杂NiO的XPS谱图, 其中(a), (b) K 2p, (c), (d) Ni 2p和(e), (f) O 1s; 不同浓度K+掺杂的NiO XPS谱图, 其中(g) K 2p和(h) Ni 2p; (i)不同浓度K+掺杂NiO的Ni3+/Ni2+比值变化曲线
Figure 4. XPS spectra of (a), (b) K 2p, (c), (d) Ni 2p, (e), (f) O 1s for NiO and 3% K+-doped NiO; XPS of (g) K 2p and (h) Ni 2p of K doped NiO with various molar ratio; (i) ratio of Ni3+/Ni2+ of NiO or K doped NiO with various molar ratio.
图 5 NiO和掺杂3% K+的NiO薄膜的电学性能表征 (a) 暗态I-V曲线; (b) SCLC曲线; 其中NiO厚度为20 nm, 器件结构为FTO/HTL(NiO or K:NiO)/钙钛矿/spiro-MeOTAD/Au
Figure 5. Electrical properties of NiO thin films with and without K+ doping: (a) Dark I-V and (b) SCLC curves of NiO films with and without K+ doping. The thickness of NiO is 20 nm, and the device structure is FTO/HTL (NiO or K:NiO)/perovskite/spiro-MeOTAD/Au.
图 6 K+掺杂对MAPbI3薄膜的影响 (a) NiO和(b) 3% K+掺杂NiO薄膜上的MAPbI3表面形貌图; (c)沉积在NiO和K:NiO基底上的MAPbI3的粒径分布; K+掺杂前后MAPbI3薄膜的(d)吸光度和(e) XRD谱图
Figure 6. Influence of K+ doping on perovskite films: (a), (b) SEM images of MAPbI3 deposited on (a) NiO and (b) 3% K+-doped NiO films; (c) grain size distribution of MAPbI3 deposited on NiO and K:NiO substrates; (d) absorbance and (e) XRD patterns of MAPbI3 layers.
表 1 不同浓度K+掺杂NiO的电池最佳光伏特性参数
Table 1. Photovoltaic parameters of the best-performing PSCs using NiO before and after K+ ions doping with different molar ratios.
K+/% JSC/(mA·cm–2) VOC/V FF PCE/% 0 19.62 1.00 0.77 15.15 1 20.61 0.99 0.78 15.98 3 20.78 1.01 0.79 16.75 5 19.81 1.00 0.78 15.47 7 19.87 1.02 0.75 15.25 -
[1] Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Grätzel M, Park N G 2012 Sci. Rep. 2 591Google Scholar
[2] Roy P, Kumar Sinha N, Tiwari S, Khare A 2020 Sol. Energy 198 665Google Scholar
[3] Li S D, Xiao Y, Su R, Xu W D, Luo D Y, Huang P R, Dai L J, Chen P, Caprioglio P, Elmestekawy K A, Dubajic M, Chosy C, Hu J T, Habib I, Dasgupta A, Guo D Y, Boeije Y, Zelewski S J, Lu Z Y C, Huang T Y, Li Q Y, Wang J M, Yan H M, Chen H H, Li C S, Lewis B A I, Wang D K, Wu J, Zhao L C, Han B, Wang J P, Herz L M, Durrant J R, Novoselov K S, Lu Z H, Gong Q H, Stranks S D, Snaith H J, Zhu R 2024 Nature Doi: 10.1038/s41586-024-08159-5
[4] Wang Y R, Lin R X, Liu C S Y, Wang X Y, Chosy C, Haruta Y, Bui A D, Li M H, Sun H F, Zheng X T, Luo H W, Wu P, Gao H, Sun W J, Nie Y F, Zhu H S, Zhou K, Nguyen H T, Luo X, Li L D, Xiao C X, Saidaminov M I, Stranks S D, Zhang L J, Tan H R 2024 Nature Doi: 10.1038/s41586-024-08158-6
[5] Zhao X, Kim H S, Seo J Y, Park N G 2017 ACS Appl. Mater. Interfaces 9 7148Google Scholar
[6] Boyd C C, Shallcross R C, Moot T, Kerner R, Bertoluzzi L, Onno A, Kavadiya S, Chosy C, Wolf E J, Werner J, Raiford J A, de Paula C, Palmstrom A F, Yu Z J, Berry J J, Bent S F, Holman Z C, Luther J M, Ratcliff E L, Armstrong N R, McGehee M D 2020 Joule 4 1759Google Scholar
[7] Barsoum M W 2002 Fundamentals of Ceramics (Boca Raton: CRC Press
[8] Zhao X, Chen J, Park N G 2019 Sol. RRL 3 1800339Google Scholar
[9] Chen W, Wu Y Z, Yue Y F, Liu J, Zhang W J, Yang X D, Chen H, Bi E B, Ashraful I, Grätzel M, Han L Y 2015 Science 350 944Google Scholar
[10] Jung J W, Chueh C C, Jen A K Y 2015 Adv. Mater. 27 7874Google Scholar
[11] Chen W, Liu F Z, Feng X Y, Djurišić A B, Chan W K, He Z B 2017 Adv. Energy Mater. 7 1700722Google Scholar
[12] Yu S Q, Xiong Z, Zhou H T, Zhang Q, Wang Z H, Ma F, Qu Z H, Zhao Y, Chu X B, Zhang X W, You J B 2023 Science 382 1399Google Scholar
[13] Li L, Wei M Y, Carnevali V, Zeng H P, Zeng M M, Liu R R, Lempesis N, Eickemeyer F T, Luo L, Agosta L, Dankl M, Zakeeruddin S M, Roethlisberger U, Grätzel M, Rong Y G, Li X 2024 Adv. Mater. 36 2303869Google Scholar
[14] Bai Y, Chen H M, Xiao S, Xue Q F, Zhang T, Zhu Z L, Li Q, Hu C, Yang Y, Hu Z C, Huang F, Wong K S, Yip H L, Yang S H 2016 Adv. Funct. Mater. 26 2950Google Scholar
[15] Zhou Y, Huang X, Zhang J, Zhang L, Wu H, Zhou Y, Wang Y, Wang Y, Fu W, Chen H 2024 Adv. Energy Mater. 14 2400616Google Scholar
[16] Zhao X, Zhou J J, Wang S Y, Tan L G, Li M H, Li H, Yi C Y 2021 ACS Appl. Energy Mater. 4 6903Google Scholar
[17] Zhang Y, Kim S G, Lee D K, Park N G 2018 ChemSusChem 11 1813Google Scholar
[18] Manders J R, Tsang S wing W, Hartel M J, Lai T han H, Chen S, Amb C M, Reynolds J R, So F 2013 Adv. Funct. Mater. 23 2993Google Scholar
[19] Liu J, Hanson M P, Peters J A, Wessels B W 2015 ACS Appl. Mater. Interfaces 7 24159Google Scholar
[20] Zhang J Y, Li W W, Hoye R L Z, MacManus-Driscoll J L, Budde M, Bierwagen O, Wang L, Du Y, Wahila M J, Piper L F J, Lee T L, Edwards H J, Dhanak V R, Zhang K H L 2018 J. Mater. Chem. C 6 2275Google Scholar
[21] Jang W L, Lu Y M, Hwang W S, Hsiung T L, Wang H P 2009 Appl. Phys. Lett. 94 062103Google Scholar
[22] Wang Y, Ghanbaja J, Bruyère S, Boulet P, Soldera F, Horwat D, Mücklich F, Pierson J F 2016 CrystEngComm 18 1732Google Scholar
[23] Grosvenor A P, Biesinger M C, Smart R S C, McIntyre N S 2006 Surf. Sci. 600 1771Google Scholar
[24] Liu S Y, Liu R, Chen Y, Ho S, Kim J H, So F 2014 Chem. Mater. 26 4528Google Scholar
[25] Zhao X, Qiu Y J, Wang M, Wu D X, Yue X P, Yan H L, Fan B B, Du S X, Yang Y Q, Yang Y Y, Li D N, Cui P, Huang H, Li Y F, Park N G, Li M C 2024 ACS Energy Lett. 9 2659Google Scholar
[26] Teo S, Guo Z L, Xu Z H, Zhang C, Kamata Y, Hayase S, Ma T L 2019 ChemSusChem 12 518Google Scholar
Catalog
Metrics
- Abstract views: 192
- PDF Downloads: 3
- Cited By: 0