Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Enhancement of charge collection capability by potassium-doped NiO in inverted planar perovskite solar cells

Zhao Xing Li Dan-Ni Li Mei-Cheng

Citation:

Enhancement of charge collection capability by potassium-doped NiO in inverted planar perovskite solar cells

Zhao Xing, Li Dan-Ni, Li Mei-Cheng
cstr: 32037.14.aps.73.20240974
PDF
HTML
Get Citation
  • Perovskite solar cells (PSCs) with inverted structures have received significant attention in the field of photovoltaics. NiO is one of the commonly explored hole transport materials (HTMs) because of its excellent chemical stability in comparison with organic materials. Pure NiO is an insulator, but the presence of nickel vacancies can lead to the formation of Ni3+ ions, resulting in p-type semiconductor properties. However, the low conductivity and poor interfacial contact between NiO and perovskite thin films still pose challenges in achieving high-performance inverted PSCs. To solve these problems, potassium acetate is used as a potassium source for a nickel precursor, and therefore potassium ions (K+) are doped into NiO nanocrystals. The introduction of K+ into NiO leads to the formation of Ni3+ ions, thereby increasing the conductivity and hole mobility of NiO. Furthermore, K+-doped NiO exhibits better interface contact with the perovskite film, facilitating the efficient separation of photo-generated charges and showing a strong photoluminescence quenching effect. Experimental results demonstrate that the optimal concentration of K+ doping is 3%, and the PSCs prepared with K+-doped NiO exhibit a significant increase in efficiency, from 15.15% to 16.75%, which is attributed primarily to the improvements in the short-circuit current density and fill factor. These improvements highlight the importance of enhanced conductivity and better interfacial contact achieved through K+ doping for charge carrier collection, effectively addressing the limitations of NiO in inverted PSCs.
      Corresponding author: Li Mei-Cheng, mcli@ncepu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 22409061, 52232008, 51972110, 52102245, 52072121), the Beijing Natural Science Foundation, China (Grant Nos. 2222076, 2222077), the Huaneng Group Headquarters Science and Technology Project, China (Grant No. HNKJ20-H88), and the Fundamental Research Funds for the Central Universities (Grant Nos. 2023MS047, 2023MS042).
    [1]

    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Grätzel M, Park N G 2012 Sci. Rep. 2 591Google Scholar

    [2]

    Roy P, Kumar Sinha N, Tiwari S, Khare A 2020 Sol. Energy 198 665Google Scholar

    [3]

    Li S D, Xiao Y, Su R, Xu W D, Luo D Y, Huang P R, Dai L J, Chen P, Caprioglio P, Elmestekawy K A, Dubajic M, Chosy C, Hu J T, Habib I, Dasgupta A, Guo D Y, Boeije Y, Zelewski S J, Lu Z Y C, Huang T Y, Li Q Y, Wang J M, Yan H M, Chen H H, Li C S, Lewis B A I, Wang D K, Wu J, Zhao L C, Han B, Wang J P, Herz L M, Durrant J R, Novoselov K S, Lu Z H, Gong Q H, Stranks S D, Snaith H J, Zhu R 2024 Nature Doi: 10.1038/s41586-024-08159-5

    [4]

    Wang Y R, Lin R X, Liu C S Y, Wang X Y, Chosy C, Haruta Y, Bui A D, Li M H, Sun H F, Zheng X T, Luo H W, Wu P, Gao H, Sun W J, Nie Y F, Zhu H S, Zhou K, Nguyen H T, Luo X, Li L D, Xiao C X, Saidaminov M I, Stranks S D, Zhang L J, Tan H R 2024 Nature Doi: 10.1038/s41586-024-08158-6

    [5]

    Zhao X, Kim H S, Seo J Y, Park N G 2017 ACS Appl. Mater. Interfaces 9 7148Google Scholar

    [6]

    Boyd C C, Shallcross R C, Moot T, Kerner R, Bertoluzzi L, Onno A, Kavadiya S, Chosy C, Wolf E J, Werner J, Raiford J A, de Paula C, Palmstrom A F, Yu Z J, Berry J J, Bent S F, Holman Z C, Luther J M, Ratcliff E L, Armstrong N R, McGehee M D 2020 Joule 4 1759Google Scholar

    [7]

    Barsoum M W 2002 Fundamentals of Ceramics (Boca Raton: CRC Press

    [8]

    Zhao X, Chen J, Park N G 2019 Sol. RRL 3 1800339Google Scholar

    [9]

    Chen W, Wu Y Z, Yue Y F, Liu J, Zhang W J, Yang X D, Chen H, Bi E B, Ashraful I, Grätzel M, Han L Y 2015 Science 350 944Google Scholar

    [10]

    Jung J W, Chueh C C, Jen A K Y 2015 Adv. Mater. 27 7874Google Scholar

    [11]

    Chen W, Liu F Z, Feng X Y, Djurišić A B, Chan W K, He Z B 2017 Adv. Energy Mater. 7 1700722Google Scholar

    [12]

    Yu S Q, Xiong Z, Zhou H T, Zhang Q, Wang Z H, Ma F, Qu Z H, Zhao Y, Chu X B, Zhang X W, You J B 2023 Science 382 1399Google Scholar

    [13]

    Li L, Wei M Y, Carnevali V, Zeng H P, Zeng M M, Liu R R, Lempesis N, Eickemeyer F T, Luo L, Agosta L, Dankl M, Zakeeruddin S M, Roethlisberger U, Grätzel M, Rong Y G, Li X 2024 Adv. Mater. 36 2303869Google Scholar

    [14]

    Bai Y, Chen H M, Xiao S, Xue Q F, Zhang T, Zhu Z L, Li Q, Hu C, Yang Y, Hu Z C, Huang F, Wong K S, Yip H L, Yang S H 2016 Adv. Funct. Mater. 26 2950Google Scholar

    [15]

    Zhou Y, Huang X, Zhang J, Zhang L, Wu H, Zhou Y, Wang Y, Wang Y, Fu W, Chen H 2024 Adv. Energy Mater. 14 2400616Google Scholar

    [16]

    Zhao X, Zhou J J, Wang S Y, Tan L G, Li M H, Li H, Yi C Y 2021 ACS Appl. Energy Mater. 4 6903Google Scholar

    [17]

    Zhang Y, Kim S G, Lee D K, Park N G 2018 ChemSusChem 11 1813Google Scholar

    [18]

    Manders J R, Tsang S wing W, Hartel M J, Lai T han H, Chen S, Amb C M, Reynolds J R, So F 2013 Adv. Funct. Mater. 23 2993Google Scholar

    [19]

    Liu J, Hanson M P, Peters J A, Wessels B W 2015 ACS Appl. Mater. Interfaces 7 24159Google Scholar

    [20]

    Zhang J Y, Li W W, Hoye R L Z, MacManus-Driscoll J L, Budde M, Bierwagen O, Wang L, Du Y, Wahila M J, Piper L F J, Lee T L, Edwards H J, Dhanak V R, Zhang K H L 2018 J. Mater. Chem. C 6 2275Google Scholar

    [21]

    Jang W L, Lu Y M, Hwang W S, Hsiung T L, Wang H P 2009 Appl. Phys. Lett. 94 062103Google Scholar

    [22]

    Wang Y, Ghanbaja J, Bruyère S, Boulet P, Soldera F, Horwat D, Mücklich F, Pierson J F 2016 CrystEngComm 18 1732Google Scholar

    [23]

    Grosvenor A P, Biesinger M C, Smart R S C, McIntyre N S 2006 Surf. Sci. 600 1771Google Scholar

    [24]

    Liu S Y, Liu R, Chen Y, Ho S, Kim J H, So F 2014 Chem. Mater. 26 4528Google Scholar

    [25]

    Zhao X, Qiu Y J, Wang M, Wu D X, Yue X P, Yan H L, Fan B B, Du S X, Yang Y Q, Yang Y Y, Li D N, Cui P, Huang H, Li Y F, Park N G, Li M C 2024 ACS Energy Lett. 9 2659Google Scholar

    [26]

    Teo S, Guo Z L, Xu Z H, Zhang C, Kamata Y, Hayase S, Ma T L 2019 ChemSusChem 12 518Google Scholar

  • 图 1  不同浓度K+掺杂NiO的电池光伏特性参数统计图 (a) JSC; (b) VOC; (c) FF; (d) PCE

    Figure 1.  Statistical photovoltaic parameters of PSCs with different concentrations of K+ ions doping into NiO: (a) JSC; (b) VOC; (c) FF; (d) PCE.

    图 2  K+掺杂前后电池结构及光伏特性变化 (a)反式PSC结构示意图; (b)能级图; (c)不同浓度K+掺杂NiO的电池最佳J-V曲线; (d) 基于NiO和3% K+掺杂NiO (K:NiO)的电池正反扫J-V曲线; (e)电池的外量子效率(EQE)曲线; (f) 基于K:NiO空穴传输层的电池最大功率点追踪曲线

    Figure 2.  Changes in device structure and photovoltaic characteristics before and after K+ doping: (a) Schematic device structure of inverted PSC; (b) energy level diagram of inverted PSC; (c) J-V curves of PSCs using NiO before and after K+ doping with different molar ratios; (d) J-V curves of PSCs using NiO and 3% K+-doped NiO (K:NiO) scanned at forward and reverse scan; (e) external quantum efficiency (EQE) spectra along with the integrated photocurrent density for PSCs; (f) maximum power point tracking of PSC based on K:NiO HTL.

    图 3  K+掺杂前后NiO的光学及晶体结构变化, 即玻璃上NiO和3% K+掺杂NiO薄膜的(a)透射率和(b) GIXRD图谱

    Figure 3.  Changes in optical and crystal structure of NiO films before and after K+ doping: (a) Transmittance and (b) GIXRD of NiO and 3% K+-doped NiO films deposited on glass.

    图 4  NiO和3% K+掺杂NiO的XPS谱图, 其中(a), (b) K 2p, (c), (d) Ni 2p和(e), (f) O 1s; 不同浓度K+掺杂的NiO XPS谱图, 其中(g) K 2p和(h) Ni 2p; (i)不同浓度K+掺杂NiO的Ni3+/Ni2+比值变化曲线

    Figure 4.  XPS spectra of (a), (b) K 2p, (c), (d) Ni 2p, (e), (f) O 1s for NiO and 3% K+-doped NiO; XPS of (g) K 2p and (h) Ni 2p of K doped NiO with various molar ratio; (i) ratio of Ni3+/Ni2+ of NiO or K doped NiO with various molar ratio.

    图 5  NiO和掺杂3% K+的NiO薄膜的电学性能表征 (a) 暗态I-V曲线; (b) SCLC曲线; 其中NiO厚度为20 nm, 器件结构为FTO/HTL(NiO or K:NiO)/钙钛矿/spiro-MeOTAD/Au

    Figure 5.  Electrical properties of NiO thin films with and without K+ doping: (a) Dark I-V and (b) SCLC curves of NiO films with and without K+ doping. The thickness of NiO is 20 nm, and the device structure is FTO/HTL (NiO or K:NiO)/perovskite/spiro-MeOTAD/Au.

    图 6  K+掺杂对MAPbI3薄膜的影响 (a) NiO和(b) 3% K+掺杂NiO薄膜上的MAPbI3表面形貌图; (c)沉积在NiO和K:NiO基底上的MAPbI3的粒径分布; K+掺杂前后MAPbI3薄膜的(d)吸光度和(e) XRD谱图

    Figure 6.  Influence of K+ doping on perovskite films: (a), (b) SEM images of MAPbI3 deposited on (a) NiO and (b) 3% K+-doped NiO films; (c) grain size distribution of MAPbI3 deposited on NiO and K:NiO substrates; (d) absorbance and (e) XRD patterns of MAPbI3 layers.

    图 7  MAPbI3 沉积在未掺杂NiO和3% K+掺杂NiO薄膜上的(a)稳态光致发光光谱(SSPL)和(b)时间分辨光致发光光谱(TRPL)光谱

    Figure 7.  (a) Steady-state photoluminescence (SSPL) and (b) time-resolved photoluminescence (TRPL) of MAPbI3 deposited on undoped NiO and 3% K+ doped NiO films formed on bare glass.

    表 1  不同浓度K+掺杂NiO的电池最佳光伏特性参数

    Table 1.  Photovoltaic parameters of the best-performing PSCs using NiO before and after K+ ions doping with different molar ratios.

    K+/% JSC/(mA·cm–2) VOC/V FF PCE/%
    0 19.62 1.00 0.77 15.15
    1 20.61 0.99 0.78 15.98
    3 20.78 1.01 0.79 16.75
    5 19.81 1.00 0.78 15.47
    7 19.87 1.02 0.75 15.25
    DownLoad: CSV
  • [1]

    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Grätzel M, Park N G 2012 Sci. Rep. 2 591Google Scholar

    [2]

    Roy P, Kumar Sinha N, Tiwari S, Khare A 2020 Sol. Energy 198 665Google Scholar

    [3]

    Li S D, Xiao Y, Su R, Xu W D, Luo D Y, Huang P R, Dai L J, Chen P, Caprioglio P, Elmestekawy K A, Dubajic M, Chosy C, Hu J T, Habib I, Dasgupta A, Guo D Y, Boeije Y, Zelewski S J, Lu Z Y C, Huang T Y, Li Q Y, Wang J M, Yan H M, Chen H H, Li C S, Lewis B A I, Wang D K, Wu J, Zhao L C, Han B, Wang J P, Herz L M, Durrant J R, Novoselov K S, Lu Z H, Gong Q H, Stranks S D, Snaith H J, Zhu R 2024 Nature Doi: 10.1038/s41586-024-08159-5

    [4]

    Wang Y R, Lin R X, Liu C S Y, Wang X Y, Chosy C, Haruta Y, Bui A D, Li M H, Sun H F, Zheng X T, Luo H W, Wu P, Gao H, Sun W J, Nie Y F, Zhu H S, Zhou K, Nguyen H T, Luo X, Li L D, Xiao C X, Saidaminov M I, Stranks S D, Zhang L J, Tan H R 2024 Nature Doi: 10.1038/s41586-024-08158-6

    [5]

    Zhao X, Kim H S, Seo J Y, Park N G 2017 ACS Appl. Mater. Interfaces 9 7148Google Scholar

    [6]

    Boyd C C, Shallcross R C, Moot T, Kerner R, Bertoluzzi L, Onno A, Kavadiya S, Chosy C, Wolf E J, Werner J, Raiford J A, de Paula C, Palmstrom A F, Yu Z J, Berry J J, Bent S F, Holman Z C, Luther J M, Ratcliff E L, Armstrong N R, McGehee M D 2020 Joule 4 1759Google Scholar

    [7]

    Barsoum M W 2002 Fundamentals of Ceramics (Boca Raton: CRC Press

    [8]

    Zhao X, Chen J, Park N G 2019 Sol. RRL 3 1800339Google Scholar

    [9]

    Chen W, Wu Y Z, Yue Y F, Liu J, Zhang W J, Yang X D, Chen H, Bi E B, Ashraful I, Grätzel M, Han L Y 2015 Science 350 944Google Scholar

    [10]

    Jung J W, Chueh C C, Jen A K Y 2015 Adv. Mater. 27 7874Google Scholar

    [11]

    Chen W, Liu F Z, Feng X Y, Djurišić A B, Chan W K, He Z B 2017 Adv. Energy Mater. 7 1700722Google Scholar

    [12]

    Yu S Q, Xiong Z, Zhou H T, Zhang Q, Wang Z H, Ma F, Qu Z H, Zhao Y, Chu X B, Zhang X W, You J B 2023 Science 382 1399Google Scholar

    [13]

    Li L, Wei M Y, Carnevali V, Zeng H P, Zeng M M, Liu R R, Lempesis N, Eickemeyer F T, Luo L, Agosta L, Dankl M, Zakeeruddin S M, Roethlisberger U, Grätzel M, Rong Y G, Li X 2024 Adv. Mater. 36 2303869Google Scholar

    [14]

    Bai Y, Chen H M, Xiao S, Xue Q F, Zhang T, Zhu Z L, Li Q, Hu C, Yang Y, Hu Z C, Huang F, Wong K S, Yip H L, Yang S H 2016 Adv. Funct. Mater. 26 2950Google Scholar

    [15]

    Zhou Y, Huang X, Zhang J, Zhang L, Wu H, Zhou Y, Wang Y, Wang Y, Fu W, Chen H 2024 Adv. Energy Mater. 14 2400616Google Scholar

    [16]

    Zhao X, Zhou J J, Wang S Y, Tan L G, Li M H, Li H, Yi C Y 2021 ACS Appl. Energy Mater. 4 6903Google Scholar

    [17]

    Zhang Y, Kim S G, Lee D K, Park N G 2018 ChemSusChem 11 1813Google Scholar

    [18]

    Manders J R, Tsang S wing W, Hartel M J, Lai T han H, Chen S, Amb C M, Reynolds J R, So F 2013 Adv. Funct. Mater. 23 2993Google Scholar

    [19]

    Liu J, Hanson M P, Peters J A, Wessels B W 2015 ACS Appl. Mater. Interfaces 7 24159Google Scholar

    [20]

    Zhang J Y, Li W W, Hoye R L Z, MacManus-Driscoll J L, Budde M, Bierwagen O, Wang L, Du Y, Wahila M J, Piper L F J, Lee T L, Edwards H J, Dhanak V R, Zhang K H L 2018 J. Mater. Chem. C 6 2275Google Scholar

    [21]

    Jang W L, Lu Y M, Hwang W S, Hsiung T L, Wang H P 2009 Appl. Phys. Lett. 94 062103Google Scholar

    [22]

    Wang Y, Ghanbaja J, Bruyère S, Boulet P, Soldera F, Horwat D, Mücklich F, Pierson J F 2016 CrystEngComm 18 1732Google Scholar

    [23]

    Grosvenor A P, Biesinger M C, Smart R S C, McIntyre N S 2006 Surf. Sci. 600 1771Google Scholar

    [24]

    Liu S Y, Liu R, Chen Y, Ho S, Kim J H, So F 2014 Chem. Mater. 26 4528Google Scholar

    [25]

    Zhao X, Qiu Y J, Wang M, Wu D X, Yue X P, Yan H L, Fan B B, Du S X, Yang Y Q, Yang Y Y, Li D N, Cui P, Huang H, Li Y F, Park N G, Li M C 2024 ACS Energy Lett. 9 2659Google Scholar

    [26]

    Teo S, Guo Z L, Xu Z H, Zhang C, Kamata Y, Hayase S, Ma T L 2019 ChemSusChem 12 518Google Scholar

  • [1] Qu Zi-Han, Zhao Yang, Ma Fei, You Jing-Bi. Preparation of high-performance large-area perovskite solar cells by atomic layer deposition of metal oxide buffer layer. Acta Physica Sinica, 2024, 73(9): 098802. doi: 10.7498/aps.73.20240218
    [2] Wang Shi-Dong, Yan Ya-Ting, Wang Rui-Ying, Zhu Zhi-Li, Gu Jin-Hua. Cesium doping for improving performance of inverse-graded 2D (CMA)2MA8Pb9I28 perovskite film and solar cells. Acta Physica Sinica, 2023, 72(13): 138801. doi: 10.7498/aps.72.20230357
    [3] Han Xiao-Jing, Yang Jing, Zhang Jia-Li, Liu Dong-Xue, Shi Biao, Wang Peng-Yang, Zhao Ying, Zhang Xiao-Dan. Electron transport layer of tin dioxide deposited by reactive plasma and its application in perovskite solar cells. Acta Physica Sinica, 2023, 72(17): 178401. doi: 10.7498/aps.72.20230693
    [4] Jiang Xin-Shuai, Luo Yin-Hong, Zhao Wen, Zhang Feng-Qi, Wang Tan. Influences of well contact on multiple-cell upsets in 28 nm SRAM. Acta Physica Sinica, 2023, 72(3): 036101. doi: 10.7498/aps.72.20221742
    [5] Yu Yuan, Xing Ruo-Fei, Du Hui-Tian, Zhou Qian, Fan Ji-Hui, Pang Zhi-Yong, Han Sheng-Hao. Performance of trans perovskite solar cells improved by finely adjusting the particle size of nickel oxide nanoparticles through pH value. Acta Physica Sinica, 2023, 72(1): 018101. doi: 10.7498/aps.72.20221640
    [6] Han Mei-Dou-Xue,  Wang Ya,  Wang Rong-Bo,  Zhao Jun-Tao,  Ren Hui-Zhi,  Hou Guo-Fu,  Zhao Ying,  Zhang Xiao-Dan,  Ding Yi. Improved electrical properties of cuprous thiocyanate by lithium doping and its application in perovskite solar cells. Acta Physica Sinica, 2022, 0(0): . doi: 10.7498/aps.7120221222
    [7] Han Mei-Dou-Xue, Wang Ya, Wang Rong-Bo, Zhao Jun-Tao, Ren Hui-Zhi, Hou Guo-Fu, Zhao Ying, Zhang Xiao-Dan, Ding Yi. Improved electrical properties of cuprous thiocyanate by lithium doping and its application in perovskite solar cells. Acta Physica Sinica, 2022, 71(21): 217801. doi: 10.7498/aps.71.20221222
    [8] Xu Ting, Wang Zi-Shuai, Li Xuan-Hua, Sha Wei E. I.. Loss mechanism analyses of perovskite solar cells with equivalent circuit model. Acta Physica Sinica, 2021, 70(9): 098801. doi: 10.7498/aps.70.20201975
    [9] Wang Shun-Li, Wang Ya-Chao, Guo Dao-You, Li Chao-Rong, Liu Ai-Ping. NiO/GaN p-n junction ultraviolet photodetector and self-powered technology. Acta Physica Sinica, 2021, 70(12): 128502. doi: 10.7498/aps.70.20210154
    [10] Song Meng-Ting, Zhang Yue, Huang Wen-Juan, Hou Hua-Yi, Chen Xiang-Bai. Enhancement of two-magnon scattering in annealed nickel oxide studied by Raman spectroscopy. Acta Physica Sinica, 2021, 70(16): 167201. doi: 10.7498/aps.70.20210454
    [11] Wang Pei-Pei, Zhang Chen-Xi, Hu Li-Na, Li Shi-Qi, Ren Wei-Hua, Hao Yu-Ying. Research progress of inverted planar perovskite solar cells based on nickel oxide as hole transport layer. Acta Physica Sinica, 2021, 70(11): 118801. doi: 10.7498/aps.70.20201896
    [12] Chen Yong-Liang, Tang Ya-Wen, Chen Pei-Run, Zhang Li, Liu Qi, Zhao Ying, Huang Qian, Zhang Xiao-Dan. Progress in perovskite solar cells based on different buffer layer materials. Acta Physica Sinica, 2020, 69(13): 138401. doi: 10.7498/aps.69.20200543
    [13] Wu Jia-Long, Dou Yong-Jiang, Zhang Jian-Feng, Wang Hao-Ran, Yang Xu-Yong. Perovskite light-emitting diodes based on solution-processed metal-doped nickel oxide hole injection layer. Acta Physica Sinica, 2020, 69(1): 018101. doi: 10.7498/aps.69.20191269
    [14] Gao Zhan-Zhan, Hou Peng-Fei, Guo Hong-Xia, Li Bo, Song Hong-Jia, Wang Jin-Bin, Zhong Xiang-Li. Temperature dependence of single-event transient response in devices with selective-buried-oxide structure. Acta Physica Sinica, 2019, 68(4): 048501. doi: 10.7498/aps.68.20191932
    [15] Xiao Di, Wang Dong-Ming, Li Xun, Li Qiang, Shen Kai, Wang De-Zhao, Wu Ling-Ling, Wang De-Liang. Nickel oxide as back surface field buffer layer in CdTe thin film solar cell. Acta Physica Sinica, 2017, 66(11): 117301. doi: 10.7498/aps.66.117301
    [16] Yang Xu-Dong, Chen Han, Bi En-Bing, Han Li-Yuan. Key issues in highly efficient perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038404. doi: 10.7498/aps.64.038404
    [17] Yao Xin, Ding Yan-Li, Zhang Xiao-Dan, Zhao Ying. A review of the perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038805. doi: 10.7498/aps.64.038805
    [18] Hu Hai-Fan, Wang Ying, Chen Jie, Zhao Shi-Bin. Full three-dimensional simulations of optimized active pixel detector for ionizing particle detection. Acta Physica Sinica, 2014, 63(10): 100702. doi: 10.7498/aps.63.100702
    [19] Bi Jin-Shun, Liu Gang, Luo Jia-Jun, Han Zheng-Sheng. Numerical simulation of single-event-transient effects on ultra-thin-body fully-depleted silicon-on-insulator transistor based on 22 nm process node. Acta Physica Sinica, 2013, 62(20): 208501. doi: 10.7498/aps.62.208501
    [20] Zhang Jin-Xin, Guo Hong-Xia, Guo Qi, Wen Lin, Cui Jiang-Wei, Xi Shan-Bin, Wang Xin, Deng Wei. 3D simulation of heavy ion induced charge collection of single event effects in SiGe heterojunction bipolar transistor. Acta Physica Sinica, 2013, 62(4): 048501. doi: 10.7498/aps.62.048501
Metrics
  • Abstract views:  192
  • PDF Downloads:  3
  • Cited By: 0
Publishing process
  • Received Date:  13 July 2024
  • Accepted Date:  21 November 2024
  • Available Online:  25 November 2024
  • Published Online:  20 December 2024

/

返回文章
返回