Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Temperature dependence of single-event transient response in devices with selective-buried-oxide structure

Gao Zhan-Zhan Hou Peng-Fei Guo Hong-Xia Li Bo Song Hong-Jia Wang Jin-Bin Zhong Xiang-Li

Citation:

Temperature dependence of single-event transient response in devices with selective-buried-oxide structure

Gao Zhan-Zhan, Hou Peng-Fei, Guo Hong-Xia, Li Bo, Song Hong-Jia, Wang Jin-Bin, Zhong Xiang-Li
PDF
HTML
Get Citation
  • The silicon-on-insulator (SOI) device has been found to possess low leakage current and high operation speed due to reduced internal capacitances. The sensitive volume for charge collection in SOI device is smaller than that in bulk-silicon device, which improves the ability of SOI devices to resist single-event effect (SEE). In spite of these benefits, the SOI device has certain undesirable effects such as the kink effect. To mitigate the kink effect, selective-buried-oxide (SELBOX) SOI structure has been introduced. Space-borne electronic circuits based on SOI technology recently have been used in high radiation and extreme temperature environments. However, temperature affects internal carrier transport process and impact ionization process, which makes single-event transient (SET) pulse widths increased. Most of previous researches regarding temperature dependence of SEE were for SOI floating-body devices. But the influence of operating temperature on SEE of SELBOX SOI devices are yet unclear. In this paper, an SOI floating-body device and a SELBOX SOI device under 90 nm process are established by three-dimensional device simulation, and then temperature dependence of SET response in partially depleted SOI inverter chains is studied by a mixed-mode approach over a temperature range from 200 K to 450 K. Simulation results show that the N-type SELBOX SOI device has a better ability to resist SEE than the floating-body device, while the P-type SELBOX SOI device has the same ability to resist SEE at high linear energy transfer value as the floating-body device. And temperature dependence analysis of charge collection indicates that there is only drift-diffusion process in the N-type SELBOX SOI device. The amount of charge collection in the N-type SELBOX SOI device almost does not change with the increase of temperature. In addition, both the P-type SELBOX SOI device and the P-type floating-body device have a bipolar amplification process. With the increase of temperature, the bipolar amplification process in the substrate turns more serious. However, it suppresses the bipolar amplification process of the source because of SELBOX structure, so that the amount of charge collection is reduced in the drain significantly. According to our simulation results, compared with the floating-body device, the SELBOX SOI device can very well suppress the influence of temperature on SET pulse.
      Corresponding author: Hou Peng-Fei, pfhou@xtu.edu.cn ; Zhong Xiang-Li, xlzhong@xtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.11875229) and the Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory, China (Grant No.ZHD201803).
    [1]

    张正选, 邹世昌 2017 科学通报 62 1004

    Zhang Z X, Zou S C 2017 Chin. Sci. Bull. 62 1004

    [2]

    England T D, Arora R, Fleetwood Z F, Lourenco N E, Moen K A, Cardoso A S, McMorrow D, Roche N J H, Warner J H, Buchner S P, Paki P, Sutton A K, Freeman G, Cressler J D 2013 IEEE Trans. Nucl. Sci. 60 4405Google Scholar

    [3]

    Dodd P E, Shaneyfelt A R, Horn K M, Walsh D S, Hash G L, Hill T A, Draper B L, Schwank J R, Sexton F W, Winokur P S 2002 IEEE Trans. Nucl. Sci. 48 1893

    [4]

    Bartra W C, Vladimirescu A, Reis R 2015 IEEE International Conference on Electronics, Circuits, and Systems (ICECS) Cairo, Egypt, December 6—9, 2015 p133

    [5]

    Gouker P M, Tyrrell B, D'Onofrio R, Wyatt P, Soares T, Hu W L, Chen C S, Schwank J R, Shaneyfelt M R, Blackmore E W, Delikat K, Nelson M, McMarr P, Hughes H, Ahlbin J R, Weeden-Wright S, Schrimpf R 2011 IEEE Trans. Nucl. Sci. 58 2845Google Scholar

    [6]

    Thakral B, Bakshi G, Kushwaha A K, Manica 2014 International Conference on Reliability Optimization and Information Technology (ICROIT) Faridabad, India, Feburary 6—8, 2014 p487

    [7]

    Pelella M M, Fossum J G, Suh D, Krishnan S, Jenkins K A 1995 IEEE International SOI Conference Proceedings Tucson, USA, October 3—5, 1995 p8

    [8]

    Alvarado J, Kilchytska V, Boufouss E, Soto-Cruz B S, Flandre D 2012 IEEE Trans. Nucl. Sci. 59 943Google Scholar

    [9]

    Narayanan M R, Nashash H A 2016 The 11th International Conference on Advanced Semiconductor Devices & Microsystems (ASDAM) Smolenice, Slovakia, November 13—16, 2016 p61

    [10]

    Younis D, Madathumpadical N, Al-Nashash H 2017 The 7th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO) Sharjah, United Arab Emirates, April 4—6, 2017 p1

    [11]

    Gadlage M J, Ahlbin J R, Ramachandran V, Gouker P, Dinkins A C, Bhuva B L, Narasimham B, Schrimpf R D, McCurdy M W, Alles M L, Reed R A, Mendenhall M H, Massengill L W, Shuler R L, McMorrow D 2009 IEEE Trans. Nucl. Sci. 56 3115Google Scholar

    [12]

    蔡莉, 刘建成, 覃英参, 李丽丽, 郭刚, 史淑廷, 吴振宇, 池雅庆, 惠宁, 范辉, 沈东军, 何安林 2018 原子能科学技术 52 4

    Cai L, Liu J C, Qin Y C, Li L L, Guo G, Shi S T, Wu Z Y, Chi Y Q, Hui N, Fan H, Shen D J, He A L 2018 Atomic Energy Sci. Technol. 52 4

    [13]

    Liu T, Liu J, Geng C, Zhang Z G, Zhao F Z, Tong T, Sun Y M, Su H, Yao H J, Gu S, Xi K, Luo J, Liu G, Han Z S, Hou M D 2013 European Conference on Radiation and ITS Effects on Components and Systems Oxford, UK, September 23—27, 2013 p1

    [14]

    Boufouss E, Alvarado J, Flandre D 2010 International Conference on High Temperature Electronics (HiTEC 2010) Albuquerque, USA, May 11—13, 2010 p77

    [15]

    Li D W, Qin J R, Chen S M 2013 Chin. Phys. B 22 586

    [16]

    Nanoscale Integration and Modeling Group http://ptm.asu.edu/[2018-10-29]

    [17]

    Synopsys Inc. https://www.synopsys.com/silicon/tcad.html[2018-10-29]

    [18]

    Liu K J, Chang T C, Yang R Y, Chen C E, Ho S H, Tsai J Y, Hsieh T Y, Cheng O, Huang C T 2014 Thin Solid Films 572 39Google Scholar

    [19]

    刘必慰, 陈建军, 陈书明, 池雅庆 2012 物理学报 61 096102Google Scholar

    Liu B W, Chen J J, Chen S M, Chi Y Q 2012 Acta Phys. Sin. 61 096102Google Scholar

    [20]

    Liu J Q, Zhao Y F, Wang L, Zheng H C, Lei S, Li T D 2017 Proceedings of the 2017 2nd International Conference on Automation, Mechanical Control and Computational Engineering Beijing, China, March 25—26, 2017 p500

    [21]

    刘恩科, 朱秉升, 罗晋生 2011 半导体物理学 第7版 (北京: 电子工业出版社) 第97—100页

    Liu E K, Zhu B S, Luo J S 2011 The Physics of Semiconductors 7th Edition (Beijing: Electronics Industry) pp97—100 (in Chinese)

    [22]

    Ball D R, Alles M L, Kauppila J S, Harrington R C, Maharrey J A, Nsengiyumva P, Haeffner T D, Rowe J D, Sternberg A L, Zhang E X, Bhuva B L, Massengill L W 2018 IEEE Trans. Nucl. Sci. 65 326Google Scholar

    [23]

    Chen S M, Liang B, Liu B, Liu Z 2008 IEEE Trans. Nucl. Sci. 55 2914Google Scholar

    [24]

    刘必慰, 陈书明, 梁斌 2009 半导体学报 30 54

    Liu B W, Chen S M, Liang B 2009 J. Semicond. 30 54

  • 图 1  器件物理模型 (a) 器件整体模型; (b) SELBOX SOI器件有源区截面; (c) 浮体器件有源区截面

    Figure 1.  Device physical models: (a) The whole structure of devices; (b) the cross section of SELBOX SOI device; (c) the cross section of floating-body device.

    图 2  三级反相器链

    Figure 2.  Three-level inverter chains.

    图 3  室温下SOI NMOS及输出节点3的单粒子瞬态脉冲 (a) 瞬态电流脉冲; (b) 瞬态电压脉冲

    Figure 3.  Single-event-transient pulse of SOI NMOS and output 3 at room temperature: (a) Current pulse; (b) voltage pulse.

    图 4  室温下SOI PMOS及输出节点3的单粒子瞬态脉冲 (a) 瞬态电流脉冲; (b) 瞬态电压脉冲

    Figure 4.  Single-event-transient pulse of SOI PMOS and output 3 at room temperature: (a) The current pulse; (b) the voltage pulse.

    图 5  SOI NMOS及输出节点3的脉冲宽度随温度的变化 (a) 瞬态电流脉冲宽度的变化; (b) 瞬态电压脉冲宽度的变化

    Figure 5.  The pulsewidth of SOI NMOS and output 3 at different temperatures: (a) Changes of the current pulsewidth; (b) changes of the voltage pulsewidth.

    图 6  SOI PMOS及输出节点3的脉冲宽度随温度的变化 (a) 瞬态电流脉冲宽度的变化; (b) 瞬态电压脉冲宽度的变化

    Figure 6.  The pulsewidth of SOI PMOS and output 3 at different temperatures: (a) Changes of the current pulsewidth; (b) changes of the voltage pulsewidth.

    图 7  在不同温度下SOI NMOS的电荷收集量 (a) 浮体器件; (b) SELBOX SOI器件

    Figure 7.  The charge collection of SOI NMOS at different temperatures: (a) Floating-body device; (b) SELBOX SOI device.

    图 8  在不同温度下SOI PMOS的电荷收集量 (a) 浮体器件; (b) SELBOX SOI器件

    Figure 8.  The charge collection of SOI PMOS at different temperatures: (a) Floating-body device; (b) SELBOX SOI device.

    图 9  SOI器件产生双极放大的原理 (a) 浮体器件; (b) SELBOX SOI器件

    Figure 9.  The bipolar amplification effect of SOI devices: (a) Floating-body device; (b) SELBOX SOI device.

    表 1  SOI器件工艺参数

    Table 1.  Technologic parameters of SOI devices.

    参数数值
    多晶硅厚度/$ {\text{μ}}{\rm m}$0.15
    栅氧层厚度/nm1.4
    埋氧层厚度/$ {\text{μ}}{\rm m}$0.16
    埋氧层镂空宽度/$ {\text{μ}}{\rm m}$0.09
    N型衬底浓度/cm–31×1016
    N阱/P阱浓度/cm–35×1017
    源/漏浓度/cm–32×1020
    源/漏轻掺杂 (LDD) 浓度/cm–31×1019
    阈值电压掺杂浓度/cm–37.6×1018
    冠状 (Halo) 掺杂浓度/cm–32×1018
    DownLoad: CSV
  • [1]

    张正选, 邹世昌 2017 科学通报 62 1004

    Zhang Z X, Zou S C 2017 Chin. Sci. Bull. 62 1004

    [2]

    England T D, Arora R, Fleetwood Z F, Lourenco N E, Moen K A, Cardoso A S, McMorrow D, Roche N J H, Warner J H, Buchner S P, Paki P, Sutton A K, Freeman G, Cressler J D 2013 IEEE Trans. Nucl. Sci. 60 4405Google Scholar

    [3]

    Dodd P E, Shaneyfelt A R, Horn K M, Walsh D S, Hash G L, Hill T A, Draper B L, Schwank J R, Sexton F W, Winokur P S 2002 IEEE Trans. Nucl. Sci. 48 1893

    [4]

    Bartra W C, Vladimirescu A, Reis R 2015 IEEE International Conference on Electronics, Circuits, and Systems (ICECS) Cairo, Egypt, December 6—9, 2015 p133

    [5]

    Gouker P M, Tyrrell B, D'Onofrio R, Wyatt P, Soares T, Hu W L, Chen C S, Schwank J R, Shaneyfelt M R, Blackmore E W, Delikat K, Nelson M, McMarr P, Hughes H, Ahlbin J R, Weeden-Wright S, Schrimpf R 2011 IEEE Trans. Nucl. Sci. 58 2845Google Scholar

    [6]

    Thakral B, Bakshi G, Kushwaha A K, Manica 2014 International Conference on Reliability Optimization and Information Technology (ICROIT) Faridabad, India, Feburary 6—8, 2014 p487

    [7]

    Pelella M M, Fossum J G, Suh D, Krishnan S, Jenkins K A 1995 IEEE International SOI Conference Proceedings Tucson, USA, October 3—5, 1995 p8

    [8]

    Alvarado J, Kilchytska V, Boufouss E, Soto-Cruz B S, Flandre D 2012 IEEE Trans. Nucl. Sci. 59 943Google Scholar

    [9]

    Narayanan M R, Nashash H A 2016 The 11th International Conference on Advanced Semiconductor Devices & Microsystems (ASDAM) Smolenice, Slovakia, November 13—16, 2016 p61

    [10]

    Younis D, Madathumpadical N, Al-Nashash H 2017 The 7th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO) Sharjah, United Arab Emirates, April 4—6, 2017 p1

    [11]

    Gadlage M J, Ahlbin J R, Ramachandran V, Gouker P, Dinkins A C, Bhuva B L, Narasimham B, Schrimpf R D, McCurdy M W, Alles M L, Reed R A, Mendenhall M H, Massengill L W, Shuler R L, McMorrow D 2009 IEEE Trans. Nucl. Sci. 56 3115Google Scholar

    [12]

    蔡莉, 刘建成, 覃英参, 李丽丽, 郭刚, 史淑廷, 吴振宇, 池雅庆, 惠宁, 范辉, 沈东军, 何安林 2018 原子能科学技术 52 4

    Cai L, Liu J C, Qin Y C, Li L L, Guo G, Shi S T, Wu Z Y, Chi Y Q, Hui N, Fan H, Shen D J, He A L 2018 Atomic Energy Sci. Technol. 52 4

    [13]

    Liu T, Liu J, Geng C, Zhang Z G, Zhao F Z, Tong T, Sun Y M, Su H, Yao H J, Gu S, Xi K, Luo J, Liu G, Han Z S, Hou M D 2013 European Conference on Radiation and ITS Effects on Components and Systems Oxford, UK, September 23—27, 2013 p1

    [14]

    Boufouss E, Alvarado J, Flandre D 2010 International Conference on High Temperature Electronics (HiTEC 2010) Albuquerque, USA, May 11—13, 2010 p77

    [15]

    Li D W, Qin J R, Chen S M 2013 Chin. Phys. B 22 586

    [16]

    Nanoscale Integration and Modeling Group http://ptm.asu.edu/[2018-10-29]

    [17]

    Synopsys Inc. https://www.synopsys.com/silicon/tcad.html[2018-10-29]

    [18]

    Liu K J, Chang T C, Yang R Y, Chen C E, Ho S H, Tsai J Y, Hsieh T Y, Cheng O, Huang C T 2014 Thin Solid Films 572 39Google Scholar

    [19]

    刘必慰, 陈建军, 陈书明, 池雅庆 2012 物理学报 61 096102Google Scholar

    Liu B W, Chen J J, Chen S M, Chi Y Q 2012 Acta Phys. Sin. 61 096102Google Scholar

    [20]

    Liu J Q, Zhao Y F, Wang L, Zheng H C, Lei S, Li T D 2017 Proceedings of the 2017 2nd International Conference on Automation, Mechanical Control and Computational Engineering Beijing, China, March 25—26, 2017 p500

    [21]

    刘恩科, 朱秉升, 罗晋生 2011 半导体物理学 第7版 (北京: 电子工业出版社) 第97—100页

    Liu E K, Zhu B S, Luo J S 2011 The Physics of Semiconductors 7th Edition (Beijing: Electronics Industry) pp97—100 (in Chinese)

    [22]

    Ball D R, Alles M L, Kauppila J S, Harrington R C, Maharrey J A, Nsengiyumva P, Haeffner T D, Rowe J D, Sternberg A L, Zhang E X, Bhuva B L, Massengill L W 2018 IEEE Trans. Nucl. Sci. 65 326Google Scholar

    [23]

    Chen S M, Liang B, Liu B, Liu Z 2008 IEEE Trans. Nucl. Sci. 55 2914Google Scholar

    [24]

    刘必慰, 陈书明, 梁斌 2009 半导体学报 30 54

    Liu B W, Chen S M, Liang B 2009 J. Semicond. 30 54

  • [1] Jiang Xin-Shuai, Luo Yin-Hong, Zhao Wen, Zhang Feng-Qi, Wang Tan. Influences of well contact on multiple-cell upsets in 28 nm SRAM. Acta Physica Sinica, 2023, 72(3): 036101. doi: 10.7498/aps.72.20221742
    [2] Zhao Wen, Chen Wei, Luo Yin-Hong, He Chao-Hui, Shen Chen. Relationship between ion track characteristics and single event transients in nanometer inverter chain. Acta Physica Sinica, 2021, 70(12): 126102. doi: 10.7498/aps.70.20210192
    [3] Li Hua-Mei, Hou Peng-Fei, Wang Jin-Bin, Song Hong-Jia, Zhong Xiang-Li. Single-event-upset effect simulation of HfO2-based ferroelectric field effect transistor read and write circuits. Acta Physica Sinica, 2020, 69(9): 098502. doi: 10.7498/aps.69.20200123
    [4] Lu Chao, Chen Wei, Luo Yin-Hong, Ding Li-Li, Wang Xun, Zhao Wen, Guo Xiao-Qiang, Li Sai. Effect of source-drain conduction in single-event transient on nanoscaled bulk fin field effect transistor. Acta Physica Sinica, 2020, 69(8): 086101. doi: 10.7498/aps.69.20191896
    [5] Yang Hong-En, Wei Lian-Fu. Relevance of the heralded efficiency of the heralded single-photon source to the heralded basis. Acta Physica Sinica, 2019, 68(23): 234202. doi: 10.7498/aps.68.20190532
    [6] Luo Yin-Hong, Guo Xiao-Qiang, Chen Wei, Guo Gang, Fan Hui. Energy and angular dependence of single event upsets in ESA SEU Monitor. Acta Physica Sinica, 2016, 65(20): 206103. doi: 10.7498/aps.65.206103
    [7] Luo Yin-Hong, Zhang Feng-Qi, Guo Hong-Xia, Guo Xiao-Qiang, Zhao Wen, Ding Li-Li, Wang Yuan-Ming. Angular dependence of proton single event multiple-cell upsets in nanometer SRAM. Acta Physica Sinica, 2015, 64(21): 216103. doi: 10.7498/aps.64.216103
    [8] Zhao Xing, Mei Bo, Bi Jin-Shun, Zheng Zhong-Shan, Gao Lin-Chun, Zeng Chuan-Bin, Luo Jia-Jun, Yu Fang, Han Zheng-Sheng. Single event transients in a 0.18 m partially-depleted silicon-on-insulator complementary metal oxide semiconductor circuit. Acta Physica Sinica, 2015, 64(13): 136102. doi: 10.7498/aps.64.136102
    [9] Hu Hai-Fan, Wang Ying, Chen Jie, Zhao Shi-Bin. Full three-dimensional simulations of optimized active pixel detector for ionizing particle detection. Acta Physica Sinica, 2014, 63(10): 100702. doi: 10.7498/aps.63.100702
    [10] Bi Jin-Shun, Liu Gang, Luo Jia-Jun, Han Zheng-Sheng. Numerical simulation of single-event-transient effects on ultra-thin-body fully-depleted silicon-on-insulator transistor based on 22 nm process node. Acta Physica Sinica, 2013, 62(20): 208501. doi: 10.7498/aps.62.208501
    [11] Zhang Jin-Xin, Guo Hong-Xia, Guo Qi, Wen Lin, Cui Jiang-Wei, Xi Shan-Bin, Wang Xin, Deng Wei. 3D simulation of heavy ion induced charge collection of single event effects in SiGe heterojunction bipolar transistor. Acta Physica Sinica, 2013, 62(4): 048501. doi: 10.7498/aps.62.048501
    [12] Wang Shan-Shan, Guan Yu-Ping, Li Zhi-Jin, Chao Yi, Huang Jian-Ping. Preliminary analyses on characteristics of sea surface temperatures in Kuroshio and its extension and relations to atmospheric circulations. Acta Physica Sinica, 2012, 61(16): 169201. doi: 10.7498/aps.61.169201
    [13] Zhuo Qing-Qing, Liu Hong-Xia, Hao Yue. Two-dimensional numerical analysis of the collection mechanism of single event transient current in NMOSFET. Acta Physica Sinica, 2012, 61(21): 218501. doi: 10.7498/aps.61.218501
    [14] Chen Jian-Jun, Chen Shu-Ming, Liang Bin, Liu Bi-Wei, Chi Ya-Qing, Qin Jun-Rui, He Yi-Bai. Influence of interface traps of p-type metal-oxide-semiconductor field effect transistor on single event charge sharing collection. Acta Physica Sinica, 2011, 60(8): 086107. doi: 10.7498/aps.60.086107
    [15] Wang Qi-Guang, Hou Wei, Zheng Zhi-Hai, Gao Rong. The long range correlation of East Asia’s atmosphere. Acta Physica Sinica, 2009, 58(9): 6640-6650. doi: 10.7498/aps.58.6640
    [16] Feng Guo-Lin, Gong Zhi-Qiang, Hou Wei, Wang Qi-Guang, Zhi Rong. Long-range correlation of extreme events in meterorological field. Acta Physica Sinica, 2009, 58(4): 2853-2861. doi: 10.7498/aps.58.2853
    [17] Wang Qi-Guang, Zhi Rong, Zhang Zeng-Ping. The research on long range correlation of Lorenz system. Acta Physica Sinica, 2008, 57(8): 5343-5350. doi: 10.7498/aps.57.5343
    [18] Wang Yong-Gang, Chen Deng-Ping, He Hong-Liang, Wang Li-Li, Jing Fu-Qian. Temperature dependence of dynamic yield strength and spall strength for LY12 aluminum alloy under shock loading. Acta Physica Sinica, 2006, 55(8): 4202-4207. doi: 10.7498/aps.55.4202
    [19] Peng Jian-Xiang, Jing Fu-Qian, Wang Li-Li, Li Da-Hong. Pressure and temperature dependence of shear modulus and yield strength for aluminum, copper and tungsten under shock compression. Acta Physica Sinica, 2005, 54(5): 2194-2197. doi: 10.7498/aps.54.2194
    [20] LI YONG-QING, WANG YU-ZHU. REDUCTION OF QUANTUM NOISE BY PHOTON CORRELATION. Acta Physica Sinica, 1989, 38(3): 476-480. doi: 10.7498/aps.38.476
Metrics
  • Abstract views:  7468
  • PDF Downloads:  57
  • Cited By: 0
Publishing process
  • Received Date:  30 October 2018
  • Accepted Date:  02 December 2018
  • Available Online:  01 February 2019
  • Published Online:  20 February 2019

/

返回文章
返回