Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study on particle generation model of anode in rod-pinch diode

Qu Jun-Fu Feng Yuan-Wei Geng Li-Dong Li Hong-Tao

Citation:

Study on particle generation model of anode in rod-pinch diode

Qu Jun-Fu, Feng Yuan-Wei, Geng Li-Dong, Li Hong-Tao
PDF
HTML
Get Citation
  • Flash radiography technology is commonly used in detonation physics experiments and nondestructive testing, in which an X-ray diode is an integral part of flash radiography equipment. Its function is to convert the electric energy stored in the front power supply into X-rays through the bremsstrahlung effect. Rod-pinch diode is one of the most commonly used X-ray diodes in 1–4 MV. It has the characteristics of a small focal spot and high imaging resolution. The anode ions of the rod pinch diode come from the anode plasma, and the anode plasma electrons are generated at the same time as the anode plasma ions. Before the establishment of the bipolar current between the anode and cathode of the rod pinch diode, these electrons are mainly absorbed by the anode; however, after the formation of the bipolar current, due to the zero electric field on the anode surface, plasma electrons will accumulate near the anode surface and will not be absorbed. Given the theoretical derivation of bipolar current in the gap between anode and cathode of rod pinch diode in the early stage, it is necessary to study the electrons in anode plasma.The simulation of the rod-pinch diode is an essential tool for improving the performance of the rod-pinch diode. To improve simulation accuracy, it is necessary to study the emission mechanism of cathode and anode particles and continuously optimize the simulation model. In this paper, PIC and Monte Carlo simulation are used. An anode plasma model is proposed in this work based on the anode ion emission model of the rod-pinch diode and the characteristics of space charge bipolar flow, that is, when the anode plasma environment is fully established, the electric field on the anode surface is zero, and ions and electrons will accumulate on the anode surface. The new model is analyzed in detail and compared with the anode ion emission model in rod-pinch diode current, electromagnetic field distribution between cathode and anode, electron energy spectrum, motion state of electron incident anode rod, dose, and spot size. The results show that the calculation results from the new model are closer to the experimental results, which shows that the role of electrons accumulated near the anode in the plasma cannot be ignored in the numerical calculation of the rod-pinch diode anode rod surface plasma.
      Corresponding author: Li Hong-Tao, zj680525@21cn.com
    [1]

    刘军 2008 博士学位论文 (北京: 中国工程物理研究院)

    Liu J 2008 Ph. D. Dissertation (Beijing: China Academy of Engineering Physics) (in Chinese)

    [2]

    张寿云 1985 爆炸与冲击 5 89

    Zhang S Y 1985 Explos. Shock Waves 5 89

    [3]

    Duff R E, Knight H T 1956 J. Chem. Phys. 25 1301

    [4]

    耿力东, 何泱, 袁建强, 王敏华, 曹龙博, 谢卫平 2018 强激光与粒子束 30 115003Google Scholar

    Geng L D, He Y, Yuan J Q, Wang M H, Cao L B, Xie W P 2018 High Power Laser Part. Beams 30 115003Google Scholar

    [5]

    Commisso R J, Cooperstein G, Hinshelwood D D, Mosher D, Young F C 2002 IEEE Trans. Plasma Sci. 30 338Google Scholar

    [6]

    陈林, 姜巍, 谢卫平, 邓建军 2007 强激光与粒子束 19 1747

    Chen L, Jiang W, Xie W P, Deng J J 2007 High Power Laser Part. Beams 19 1747

    [7]

    高屹, 邱爱慈, 吕敏, 杨海亮, 张众, 张鹏飞 2010 核技术 33 5

    Gao Y, Qiu A C, Lü M, Yang H L, Zhang Z, Zhang P F 2010 Nucl. Tech. 33 5

    [8]

    Hinshelwood D D, Cooperstein G, Mosher D, Ottinger P F, Schumer J W, Stephanakis S J, Swanekamp S B, Weber B V, Young F C 2002 Am. Inst. Phys. Conf. Proc. 650 203

    [9]

    孙剑锋, 孙江, 邱爱慈, 张鹏飞, 杨海亮, 李静雅, 尹佳辉, 胡杨, 金亮 2014 强激光与粒子束 26 276Google Scholar

    Sun J F, Sun J, Qiu A C, Zhang P F, Yang H L, Li J Y, Yin J H, Hu Y, Jin L 2014 High Power Laser Part. Beams 26 276Google Scholar

    [10]

    孙江, 孙剑锋, 杨海亮, 张鹏飞, 苏兆锋, 周军 2013 现代应用物理 1 18Google Scholar

    Sun J, Sun J F, Yang H L, Zhang P F, Su Z F, Zhou J 2013 Mod. Appl. Phys. 1 18Google Scholar

    [11]

    Weber B V, Allen R, Comrmsso R J, Cooperstein G, Hinshelwood D D, Mosher D, Murphy D P, Ottinger PF, Phipps D G, Schumer J W 2007 IEEE 34th International Conference on Plasma Science (ICOPS) Albuquerque, NM, USA, June 17–22, 2007 p440

    [12]

    Sorokin S A 2010 Tech. Phys. Lett. 36 379Google Scholar

    [13]

    Weber B V, Cooperstein G, Hinshelwood D D, Mosher D, Schumer J W, Stephanakis S J, Strasburg S B, Swanekamp S B, Young F C 2002 AIP Conf. Proc. 650 191Google Scholar

    [14]

    徐启福 2012 博士学位论文 (长沙: 国防科学技术大学)

    Xu Q F 2012 Ph. D. Dissertation (Chang Sha: National University of Defense Science and technology) (in Chinese)

    [15]

    Poukey J W 1975 Appl. Phys. Lett. 26 145Google Scholar

    [16]

    耿力东, 谢卫平, 袁建强, 王敏华, 曹龙博, 付佳斌, 赵小明, 何泱 2018 强激光与粒子束 30 085003Google Scholar

    Geng L D, Xie W P, Yuan J Q, Wang M H, Cao L B, Fu J B, Zhao X M, He Y 2018 High Power Laser Part. Beams 30 085003Google Scholar

    [17]

    Miller C L, Welch D R, Rose D V, Oliver B V 2010 IEEE Trans. Plasma Sci. 38 2507Google Scholar

    [18]

    王宇, 李洪涛, 王文斗, 邓建军, 刘金峰, 马成刚 2015 强激光与粒子束 27 095005Google Scholar

    Wang Y, Li H T, Wang W D, Deng J J, Liu J F, Ma C G 2015 High Power Laser Part. Beams 27 095005Google Scholar

    [19]

    耿力东, 谢卫平, 袁建强, 王敏华, 曹龙博, 张思群, 赵小明, 何泱 2018 原子能科学技术 52 1512Google Scholar

    Geng L D, Xie W P, Yuan J Q, Wang M H, Cao L B, Zhang S Q, Zhao X M, He Y 2018 At. Energy Sci. Technol. 52 1512Google Scholar

    [20]

    Xie W, Xia M, Guo F, Geng L, Zhao Y, Xu L, Feng S, Zhou L, Wei B, He A, Yuan J, Chen L, Li H, Han W, Jiang J, Li F, Wang Z, Li Y, Kang J, Zhang Y, Wu W, Wang M, Zou W 2021 Phys. Rev. Accel. Beams 24 110401Google Scholar

    [21]

    Zhou J, Liu D, Chen L, Li Z 2009 IEEE Trans. Plasma Sci. 37 2002Google Scholar

    [22]

    Perl J, Shin J, Schümann J, Faddegon B, Paganetti H 2012 Med. Phys. 39 6818Google Scholar

    [23]

    Allison J, Amako K, Apostolakis J, Araujo H, Dubois P A, Asai M, Barrand G, Capra R, Chauvie S, Chytracek R 2006 IEEE Trans. Nucl. Sci. 53 270Google Scholar

    [24]

    Allison J, Amako K, Apostolakis J, Arce P, Asai M, Aso T, Bagli E, Bagulya A, Banerjee S, Barrand G, Beck B R, Bogdanov A G, Brandt D, Brown J M C, Burkhardt H, Canal P, Cano-Ott D, Chauvie S, Cho K, Cirrone G A P, Cooperman G, Cortés-Giraldo M A, Cosmo G, Cuttone G, Depaola G, Desorgher L, Dong X, Dotti A, Elvira V D, Folger G, Francis Z, Galoyan A, Garnier L, Gayer M, Genser K L, Grichine V M, Guatelli S, Guèye P, Gumplinger P, Howard A S, Hřivnáčová I, Hwang S, Incerti S, Ivanchenko A, Ivanchenko V N, Jones F W, Jun S Y, Kaitaniemi P, Karakatsanis N, Karamitros M, Kelsey M, Kimura A, Koi T, Kurashige H, Lechner A, Lee S B, Longo F, Maire M, Mancusi D, Mantero A, Mendoza E, Morgan B, Murakami K, Nikitina T, Pandola L, Paprocki P, Perl J, Petrović I, Pia M G, Pokorski W, Quesada J M, Raine M, Reis M A, Ribon A, Ristić Fira A, Romano F, Russo G, Santin G, Sasaki T, Sawkey D, Shin J I, Strakovsky I I, Taborda A, Tanaka S, Tomé B, Toshito T, Tran H N, Truscott P R, Urban L, Uzhinsky V, Verbeke J M, Verderi M, Wendt B L, Wenzel H, Wright D H, Wright D M, Yamashita T, Yarba J, Yoshida H 2016 Nucl. Instrum. Methods Phys. Res. , Sect. A 835 186Google Scholar

    [25]

    Agostinelli S, Allison J, Amako K, Apostolakis J, Zschiesche D 2003 Nucl. Instrum. Methods Phys. Res. , Sect. A 506 250Google Scholar

    [26]

    李成刚 2015 博士学位论文 (北京: 中国工程物理研究院)

    Li C G 2015 Ph. D. Dissertation (Beijing: China Academy of Engineering Physics) (in Chinese)

  • 图 1  电子相空间分布 (a) 阴极电子爆炸发射的模型; (b) 阴极电子-阳极离子发射模型; (c) 阴极电子-阳极等离子体模型

    Figure 1.  Spatial distribution of electron phase: (a) Model of cathode electron explosion emission; (b) Cathode electron anode ion emission model; (c) Cathode electron anode plasma model.

    图 2  研究流程图

    Figure 2.  Research flow chart.

    图 3  杆箍缩二极管电压、电流位置示意图(a)与D-dot探头标定结果(b)

    Figure 3.  Schematic diagram of D-dot, B-dot position of Rod-pinch diode (a) and D-dot calibration results (b).

    图 4  4—54发实验在50 ns各物理量空间分布图 (a) A模型电子空间分布; (b) B模型电子空间分布; (c) A模型Bphi空间分布; (d) B模型Bphi空间分布; (e) A模型Er空间分布; (f) B模型Er空间分布; (g) A模型Ez空间分布; (h) B模型Ez空间分布(图中白色部分为超量程值)

    Figure 4.  4–54 Experiments in 50 ns each physical quantity spatial distribution diagram: (a) A model electronic spatial distribution; (b) B model electronic spatial distribution; (c) A model Bphi spatial distribution; (d) B model Bphi spatial distribution; (E) A model Er spatial distribution; (f) B model Er spatial distribution; (g) A model EZ spatial distribution; (H) B model EZ spatial distribution (The white part in the Figure is the over range value).

    图 5  1—4 MV杆箍缩二极管阳极入射电子能谱 (a) 1 MV; (b) 2 MV; (c) 3 MV; (d) 4 MV

    Figure 5.  Incident electron spectrum of 1–4 MV rod-pinch diode anode: (a) 1 MV; (b) 2 MV; (c) 3 MV; (d) 4 MV.

    图 6  1—4 MV杆箍缩二极管阳极入射电子位置 (a) 1 MV; (b) 2 MV; (c) 3 MV; (d) 4 MV

    Figure 6.  1–4 MV rod-pinch diode anode incident electron position: (a) 1 MV; (b) 2 MV; (c) 3 MV; (d) 4 MV.

    图 7  入射角示意图

    Figure 7.  Schematic diagram of incident angle.

    图 8  1—4 MV杆箍缩二极管阳极侧面入射电子角度分布 (a) 1 MV; (b) 2 MV; (c) 3 MV; (d) 4 MV

    Figure 8.  Angle distribution of incident electrons on the anode side of 1–4 MV rod pinch diode: (a) 1 MV; (b) 2 MV; (c) 3 MV; (d) 4 MV.

    图 9  1—4 MV杆箍缩二极管阳极端面入射电子角度分布 (a) 1 MV; (b) 2 MV; (c) 3 MV; (d) 4 MV

    Figure 9.  Angle distribution of incident electrons on the anode end face of 1–4 MV rod pinch diode: (a) 1 MV; (b) 2 MV; (c) 3 MV; (d) 4 MV.

    图 10  针孔成像法焦斑计算示意图

    Figure 10.  Schematic diagram of focal spot calculation of pinhole imaging method.

    图 11  模型焦斑图像 (a) 等离子体模型焦斑图像; (b) 离子模型焦斑图像

    Figure 11.  Model focal spot images: (a) Plasma model focal spot image; (b) Ion model focal spot image.

    图 12  (a) 等离子体模型焦斑高斯拟合曲线; (b) 离子模型焦斑高斯拟合曲线

    Figure 12.  (a) Gaussian fitting curve of plasma model; (b) Gaussian fitting curve of ion model.

    表 1  杆箍缩二极管1—4 MV实验结果

    Table 1.  Results of Rod-pinch diode 1–4 MV experiment.

    发次/No.电压/MV电流/kA剂量/radrC/mmL/mm
    1—61.4257.001.236.0010.00
    4—542.0658.803.607.0010.00
    4—623.1373.709.509.0010.00
    4—814.1098.5016.609.0016.00
    DownLoad: CSV

    表 2  杆箍缩二极管电流实验与模拟结果

    Table 2.  Experimental and simulation results of rod-pinch diode current.

    发次/No.实验测量电流/kAA模型模拟电流/kAA模型电流百分差/%B模型模拟电流/kAB模型电流百分差/%
    1—657.0036.3036.3254.803.86
    4—5458.8047.8018.7163.898.66
    4—6273.7063.5013.8483.6013.43
    4—8198.5084.0014.72104.606.19
    DownLoad: CSV

    表 3  杆箍缩二极管1 m处剂量实验与模拟结果

    Table 3.  Experimental and simulation results of dose at 1 m of rod pinch diode.

    发次/No.实验测量剂量/RadA模型模拟剂量/RadA模型剂量百分差/%B模型模拟剂量/RadB模型剂量百分差/%
    1—61.230.8629.831.251.63
    4—543.603.366.673.764.44
    4—629.505.4143.098.738.11
    4—8116.6013.1220.9617.183.49
    DownLoad: CSV

    表 4  焦斑计算结果

    Table 4.  Focal spot calculation results.

    模型FWHM成像屏/mmFWHM光源/mm
    A模型4.66 ± 0.382.33 ± 0.20
    B模型2.40 ± 0.161.20 ± 0.08
    DownLoad: CSV
  • [1]

    刘军 2008 博士学位论文 (北京: 中国工程物理研究院)

    Liu J 2008 Ph. D. Dissertation (Beijing: China Academy of Engineering Physics) (in Chinese)

    [2]

    张寿云 1985 爆炸与冲击 5 89

    Zhang S Y 1985 Explos. Shock Waves 5 89

    [3]

    Duff R E, Knight H T 1956 J. Chem. Phys. 25 1301

    [4]

    耿力东, 何泱, 袁建强, 王敏华, 曹龙博, 谢卫平 2018 强激光与粒子束 30 115003Google Scholar

    Geng L D, He Y, Yuan J Q, Wang M H, Cao L B, Xie W P 2018 High Power Laser Part. Beams 30 115003Google Scholar

    [5]

    Commisso R J, Cooperstein G, Hinshelwood D D, Mosher D, Young F C 2002 IEEE Trans. Plasma Sci. 30 338Google Scholar

    [6]

    陈林, 姜巍, 谢卫平, 邓建军 2007 强激光与粒子束 19 1747

    Chen L, Jiang W, Xie W P, Deng J J 2007 High Power Laser Part. Beams 19 1747

    [7]

    高屹, 邱爱慈, 吕敏, 杨海亮, 张众, 张鹏飞 2010 核技术 33 5

    Gao Y, Qiu A C, Lü M, Yang H L, Zhang Z, Zhang P F 2010 Nucl. Tech. 33 5

    [8]

    Hinshelwood D D, Cooperstein G, Mosher D, Ottinger P F, Schumer J W, Stephanakis S J, Swanekamp S B, Weber B V, Young F C 2002 Am. Inst. Phys. Conf. Proc. 650 203

    [9]

    孙剑锋, 孙江, 邱爱慈, 张鹏飞, 杨海亮, 李静雅, 尹佳辉, 胡杨, 金亮 2014 强激光与粒子束 26 276Google Scholar

    Sun J F, Sun J, Qiu A C, Zhang P F, Yang H L, Li J Y, Yin J H, Hu Y, Jin L 2014 High Power Laser Part. Beams 26 276Google Scholar

    [10]

    孙江, 孙剑锋, 杨海亮, 张鹏飞, 苏兆锋, 周军 2013 现代应用物理 1 18Google Scholar

    Sun J, Sun J F, Yang H L, Zhang P F, Su Z F, Zhou J 2013 Mod. Appl. Phys. 1 18Google Scholar

    [11]

    Weber B V, Allen R, Comrmsso R J, Cooperstein G, Hinshelwood D D, Mosher D, Murphy D P, Ottinger PF, Phipps D G, Schumer J W 2007 IEEE 34th International Conference on Plasma Science (ICOPS) Albuquerque, NM, USA, June 17–22, 2007 p440

    [12]

    Sorokin S A 2010 Tech. Phys. Lett. 36 379Google Scholar

    [13]

    Weber B V, Cooperstein G, Hinshelwood D D, Mosher D, Schumer J W, Stephanakis S J, Strasburg S B, Swanekamp S B, Young F C 2002 AIP Conf. Proc. 650 191Google Scholar

    [14]

    徐启福 2012 博士学位论文 (长沙: 国防科学技术大学)

    Xu Q F 2012 Ph. D. Dissertation (Chang Sha: National University of Defense Science and technology) (in Chinese)

    [15]

    Poukey J W 1975 Appl. Phys. Lett. 26 145Google Scholar

    [16]

    耿力东, 谢卫平, 袁建强, 王敏华, 曹龙博, 付佳斌, 赵小明, 何泱 2018 强激光与粒子束 30 085003Google Scholar

    Geng L D, Xie W P, Yuan J Q, Wang M H, Cao L B, Fu J B, Zhao X M, He Y 2018 High Power Laser Part. Beams 30 085003Google Scholar

    [17]

    Miller C L, Welch D R, Rose D V, Oliver B V 2010 IEEE Trans. Plasma Sci. 38 2507Google Scholar

    [18]

    王宇, 李洪涛, 王文斗, 邓建军, 刘金峰, 马成刚 2015 强激光与粒子束 27 095005Google Scholar

    Wang Y, Li H T, Wang W D, Deng J J, Liu J F, Ma C G 2015 High Power Laser Part. Beams 27 095005Google Scholar

    [19]

    耿力东, 谢卫平, 袁建强, 王敏华, 曹龙博, 张思群, 赵小明, 何泱 2018 原子能科学技术 52 1512Google Scholar

    Geng L D, Xie W P, Yuan J Q, Wang M H, Cao L B, Zhang S Q, Zhao X M, He Y 2018 At. Energy Sci. Technol. 52 1512Google Scholar

    [20]

    Xie W, Xia M, Guo F, Geng L, Zhao Y, Xu L, Feng S, Zhou L, Wei B, He A, Yuan J, Chen L, Li H, Han W, Jiang J, Li F, Wang Z, Li Y, Kang J, Zhang Y, Wu W, Wang M, Zou W 2021 Phys. Rev. Accel. Beams 24 110401Google Scholar

    [21]

    Zhou J, Liu D, Chen L, Li Z 2009 IEEE Trans. Plasma Sci. 37 2002Google Scholar

    [22]

    Perl J, Shin J, Schümann J, Faddegon B, Paganetti H 2012 Med. Phys. 39 6818Google Scholar

    [23]

    Allison J, Amako K, Apostolakis J, Araujo H, Dubois P A, Asai M, Barrand G, Capra R, Chauvie S, Chytracek R 2006 IEEE Trans. Nucl. Sci. 53 270Google Scholar

    [24]

    Allison J, Amako K, Apostolakis J, Arce P, Asai M, Aso T, Bagli E, Bagulya A, Banerjee S, Barrand G, Beck B R, Bogdanov A G, Brandt D, Brown J M C, Burkhardt H, Canal P, Cano-Ott D, Chauvie S, Cho K, Cirrone G A P, Cooperman G, Cortés-Giraldo M A, Cosmo G, Cuttone G, Depaola G, Desorgher L, Dong X, Dotti A, Elvira V D, Folger G, Francis Z, Galoyan A, Garnier L, Gayer M, Genser K L, Grichine V M, Guatelli S, Guèye P, Gumplinger P, Howard A S, Hřivnáčová I, Hwang S, Incerti S, Ivanchenko A, Ivanchenko V N, Jones F W, Jun S Y, Kaitaniemi P, Karakatsanis N, Karamitros M, Kelsey M, Kimura A, Koi T, Kurashige H, Lechner A, Lee S B, Longo F, Maire M, Mancusi D, Mantero A, Mendoza E, Morgan B, Murakami K, Nikitina T, Pandola L, Paprocki P, Perl J, Petrović I, Pia M G, Pokorski W, Quesada J M, Raine M, Reis M A, Ribon A, Ristić Fira A, Romano F, Russo G, Santin G, Sasaki T, Sawkey D, Shin J I, Strakovsky I I, Taborda A, Tanaka S, Tomé B, Toshito T, Tran H N, Truscott P R, Urban L, Uzhinsky V, Verbeke J M, Verderi M, Wendt B L, Wenzel H, Wright D H, Wright D M, Yamashita T, Yarba J, Yoshida H 2016 Nucl. Instrum. Methods Phys. Res. , Sect. A 835 186Google Scholar

    [25]

    Agostinelli S, Allison J, Amako K, Apostolakis J, Zschiesche D 2003 Nucl. Instrum. Methods Phys. Res. , Sect. A 506 250Google Scholar

    [26]

    李成刚 2015 博士学位论文 (北京: 中国工程物理研究院)

    Li C G 2015 Ph. D. Dissertation (Beijing: China Academy of Engineering Physics) (in Chinese)

  • [1] Shu Pan-Pan, Zhao Peng-Cheng. Particle-in-cell-Monte Carlo collision simulation study on breakdown characteristics on gas side of high-power microwave dielectric window. Acta Physica Sinica, 2024, 73(23): 1-10. doi: 10.7498/aps.73.20241177
    [2] Hou A-Hui, Hu Yi-Hua, Fang Jia-Jie, Zhao Nan-Xiang, Xu Shi-Long. Photon echo probability distribution characteristics and range walk error of small translational target for photon ranging. Acta Physica Sinica, 2022, 71(7): 074205. doi: 10.7498/aps.71.20211998
    [3] Hu Yang, Sun Jiang, Zhang Jin-Hai, Cai Dan, Yang Hai-Liang, Su Zhao-Feng, Sun Tie-Ping, Sun Jian-Feng, Zhao Bo-Wen. Methods of calculating radial collapse velocity of short-γ diode field on Qiangguang-I accelerator. Acta Physica Sinica, 2021, 70(18): 185202. doi: 10.7498/aps.70.20210472
    [4] Wang Ao-Shuang, Xiao Qing-Quan, Chen Hao, He An-Na, Qin Ming-Zhe, Xie Quan. Design and simulation of Mg2Si/Si avalanche photodiode. Acta Physica Sinica, 2021, 70(10): 108501. doi: 10.7498/aps.70.20201923
    [5] Zhao Shen, Zhu Xin-Lei, Shi Huan-Tong, Zou Xiao-Bing, Wang Xin-Xin. Axial backlighting of two-wire Z-pinch using an X-pinch as an X-ray source. Acta Physica Sinica, 2015, 64(1): 015203. doi: 10.7498/aps.64.015203
    [6] Liu Hai-Jun, Tian Xiao-Bo, Li Qing-Jiang, Sun Zhao-Lin, Diao Jie-Tao. Research on radiation damage in titanium oxide memristors by Monte Carlo method. Acta Physica Sinica, 2015, 64(7): 078401. doi: 10.7498/aps.64.078401
    [7] Ruan Cong, Sun Xiao-Min, Song Yi-Xu. Cellular method combined with Monte Carlo method to simulate the thin film growth processes. Acta Physica Sinica, 2015, 64(3): 038201. doi: 10.7498/aps.64.038201
    [8] Wang Xiao-Han, Guo Hong-Xia, Lei Zhi-Feng, Guo Gang, Zhang Ke-Ying, Gao Li-Juan, Zhang Zhan-Gang. Calculation of single event upset based on Monte Carlo and device simulations. Acta Physica Sinica, 2014, 63(19): 196102. doi: 10.7498/aps.63.196102
    [9] Wu Feng-Juan, Zhou Wei-Min, Shan Lian-Qiang, Li Fang, Liu Dong-Xiao, Zhang Zhi-Meng, Li Bo-Yuan, Bi Bi, Wu Bo, Wang Wei-Wu, Zhang Feng, Gu Yu-Qiu, Zhang Bao-Han. Collimated electrons generated by intense laser pulse interaction with cone-structured targets using particle simulation. Acta Physica Sinica, 2014, 63(9): 094101. doi: 10.7498/aps.63.094101
    [10] Du Hai-Wei, Chen Min, Zhang Kai-Yun, Sheng Zheng-Ming, Zhang Jie. Ionization currents and terahertz emission from the interaction of few-cycle laser pulses with gas targets. Acta Physica Sinica, 2012, 61(17): 174205. doi: 10.7498/aps.61.174205
    [11] Su Dong, Tang Chang-Jian. Self-focus and transmission of relativistic electron beam in a dynamically loaded plasma. Acta Physica Sinica, 2012, 61(4): 042501. doi: 10.7498/aps.61.042501
    [12] Wu Yang, Xu Zhou, Zhou Lin, Li Wen-Jun, Tang Chuan-Xiang. Simulation and design of a W-band extended interaction klystron amplifier. Acta Physica Sinica, 2012, 61(22): 224101. doi: 10.7498/aps.61.224101
    [13] He Fu-Shun, Li Liu-He, Li Fen, Dun Dan-Dan, Tao Chan-Cai. Numerical simulation of enhanced glow discharge plasma immersion ion implantation using three-dimensional PIC/MC model. Acta Physica Sinica, 2012, 61(22): 225203. doi: 10.7498/aps.61.225203
    [14] Zhang Peng-Fei, Su Zhao-Feng, Sun Jian-Feng, Yang Hai-Liang, Li Yong-Dong, Gao Yi, Sun Jiang, Wang Hong-Guang, Yin Jia-Hui, Liang Tian-Xue, Sun Feng-Ju, Wang Zhi-Guo. Numerical investigation of x-ray energy spectrum of rod-pinch diode. Acta Physica Sinica, 2011, 60(10): 100204. doi: 10.7498/aps.60.100204
    [15] Li Wei-Jun, Zhang Bo, Xu Wen-Lan, Lu Wei. Experimental and theoretical study of blue InGaN/GaN multiple quantum well blue light-emitting diodes. Acta Physica Sinica, 2009, 58(5): 3421-3426. doi: 10.7498/aps.58.3421
    [16] Xiong Ling-Ling, Li Jian-Long, Lü Bai-Da. A novel method for simulating source-field distribution of diode laser. Acta Physica Sinica, 2009, 58(2): 975-979. doi: 10.7498/aps.58.975
    [17] Xu Han, Chang Wen-Wei, Zhuo Hong-Bin, Yin Yan. PIC simulation of the wake field accelerator driven by multiple-pulse with optim ized intervals. Acta Physica Sinica, 2003, 52(11): 2836-2841. doi: 10.7498/aps.52.2836
    [18] Lü Hong-Liang, Zhang Yi-Men, Zhang Yu-Ming. The simulation study of the tunneling effect in the breakdown of 4H-SiC pn junc tion diode. Acta Physica Sinica, 2003, 52(10): 2541-2546. doi: 10.7498/aps.52.2541
    [19] GUO HONG-XIA, CHEN YU-SHENG, ZHANG YI-MEN, WU GUO-RONG, ZHOU HUI, GUAN YING, HAN FU-BIN, GONG JIAN-CHENG. USING MULTIPLE PARALLEL PLATE ALUMINUM IONIZATION CHAMBER FOR DETERMINING DOSE DISTRIBUTION AT AND NEAR THE INTERFACE OF DIFFERENT MATERIALS AND ITS MONTE CARLO SIMULATION. Acta Physica Sinica, 2001, 50(8): 1545-1548. doi: 10.7498/aps.50.1545
    [20] XIONG JIA-GUI, WANG DE-WU. TWO-DIMENSIONAL PIC-MCC SIMULATION OF ION EXTRACTION. Acta Physica Sinica, 2000, 49(12): 2420-2426. doi: 10.7498/aps.49.2420
Metrics
  • Abstract views:  3238
  • PDF Downloads:  62
  • Cited By: 0
Publishing process
  • Received Date:  08 June 2022
  • Accepted Date:  28 July 2022
  • Available Online:  03 November 2022
  • Published Online:  20 November 2022

/

返回文章
返回