Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design and simulation of Mg2Si/Si avalanche photodiode

Wang Ao-Shuang Xiao Qing-Quan Chen Hao He An-Na Qin Ming-Zhe Xie Quan

Citation:

Design and simulation of Mg2Si/Si avalanche photodiode

Wang Ao-Shuang, Xiao Qing-Quan, Chen Hao, He An-Na, Qin Ming-Zhe, Xie Quan
PDF
HTML
Get Citation
  • InGaAs and HgCdTe materials are widely used in short wave infrared photodetectors, which contain heavy metal elements. The massive use of the heavy metal elements naturally results in their scarcity, and the nonnegligible environmental pollution. Searching for other suitable materials for infrared devices becomes a key to solving the above problems. As a kind of abundant and eco-friendly material, Mg2Si has a high absorption coefficient in the near-infrared band. Its application in infrared detector makes it possible to replace the infrared devices containing toxic elements on the market in the future. The Mg2Si/Si avalanche photodiode(APD) with separation structure of absorption layer, charge layer and multiplication layer, with Mg2Si serving as the absorption layer, is constructed by using the Atlas module in Silvaco software. The effects of the thickness and doping concentration of the charge layer and multiplier layer on the distribution of internal electric field, punch-through voltage, breakdown voltage (Vb), C-V characteristics, and transient response of Mg2Si/Si SACM-APD are simulated. The effects of bias voltage on the I-V characteristics and spectral response are analyzed. The punch-through voltage, breakdown voltage, dark current density, gain coefficient (Mn) and the current amplification factor (M) after avalanche effect of APD are obtained after the structure optimization. According to the simulation results, the spectral response wavelength of the device is extended to 1.6 μm, so the selection of Mg2Si as the absorption layer effectively extends the spectral response band of Si based APD. When the wavelength of incident light is 1.31 µm and the optical power is 10 mW/cm2, the obtained punch-through voltage is 17.5 V, and the breakdown voltage is 50 V. When the bias voltage is 47.5 V (0.95Vb), the peak value of spectral response is 25 A/W at a wavelength of 1.1 μm, a density of dark current is about 3.6 × 10–5 A/cm2, a multiplication factor Mn is 19.6, and Mn achieves a maximum value of 102 when the device is broken down. Meanwhile, the current amplification factor M after avalanche effect is 75.4, and the current gain effect of the SACM structure is obvious. The peak value of spectral response for the pin-type photodiode in the previous study is only 0.742 A/W. Comparing with the pin-type photodiode, the spectral response of Mg2Si/Si SACM-APD is greatly improved. In this work, the structure parameters of the device are optimized, which lays a nice foundation for fabricating the high-performance devices.
      Corresponding author: Xiao Qing-Quan, qqxiao@gzu.edu.cn
    • Funds: Project supported by the Foundation for Sci-tech Activities for the Overseas Chinese Returnees in Guizhou Province, China (Grant No. [2018]09), the High-level Creative Talent Training Program in Guizhou Province of China (Grant No. [2015]4015), and the Graduate Research Fund in Guizhou Province of China (Grant No. [2020]035)
    [1]

    莫秋燕, 赵彦立 2011 物理学报 60 072902Google Scholar

    Mo Q Y, Zhao Y L 2011 Acta Phys. Sin. 60 072902Google Scholar

    [2]

    Park S M, Grein C H 2019 J. Electron. Mater. 48 8163Google Scholar

    [3]

    Rogalski A 2005 Rep. Prog. Phys. 68 2267Google Scholar

    [4]

    Xu S J, Chua S J, Mei T, Wang X C, Zhang X H, Karunasiri G, Fan W J, Wang C H, Jiang J, Wang S, Xie X G 1998 Appl. Phys. Lett. 73 3153Google Scholar

    [5]

    Rogalski A 2002 Infrared. Phys. Technol. 43 187Google Scholar

    [6]

    Rogalski A 2011 Infrared. Phys. Technol. 54 136Google Scholar

    [7]

    胡伟达, 李庆, 陈效双, 陆卫 2019 物理学报 68 120701Google Scholar

    Hu W D, Li Q, Chen X S, Lu W 2019 Acta Phys. Sin. 68 120701Google Scholar

    [8]

    LaBotz R 1963 J. Electrochem. Soc. 110 127Google Scholar

    [9]

    Kato T, Sago Y, Fujiwara H 2011 J. Appl. Phys. 110 063723Google Scholar

    [10]

    Borisenko V E 2000 Semiconducting Silicides (New York: Springer) pp137−179

    [11]

    Au-Yang M Y, Cohen M L 1969 Phys. Rev. 178 1358Google Scholar

    [12]

    Liao Y F, Fan M H, Xie Q, Xiao Q Q, Xie J, Yu H, Wang S L, Ma X Y 2018 Appl. Surf. Sci. 403 302Google Scholar

    [13]

    Janega P L, McCaffrey J, Landheer D, Buchanan M, Denhoff M, Mitchel D 1988 Appl. Phys. Lett. 53 2056Google Scholar

    [14]

    Udono H, Tajima H, Uchikoshi M, Itakura M 2015 Jpn. J. Appl. Phys. 54 07JB06Google Scholar

    [15]

    Udono H, Yamanaka Y, Uchikoshi M, Isshiki M 2013 J. Phys. Chem. Solids. 74 311Google Scholar

    [16]

    El-Amir A A M, Ohsawa T, Nabatame T, Ohia A, Wadaa Y, Nakamuraa M, Fua K, Shimamuraa K, Ohashia N 2019 Mater. Sci. Semicond. Process. 91 222Google Scholar

    [17]

    陈豪, 肖清泉, 谢泉, 王坤, 史娇娜 2019 材料导报 33 3358Google Scholar

    Chen H, Xiao Q Q, Xie Q, Wang K, Shi J N, 2019 Mater. Rep. 33 3358Google Scholar

    [18]

    Forrest S R, Kim O K, Smith R G 1982 Appl. Phys. Lett. 41 95Google Scholar

    [19]

    张海燕, 汪琳莉, 吴琛怡, 王煜蓉, 杨雷, 潘海峰, 刘巧莉, 郭霞, 汤凯, 张忠萍, 吴光 2020 物理学报 69 074204Google Scholar

    Zhang H Y, Wang L L, Wu C Y, Wang Y R, Yang L, Pang H F, Liu Q L, Guo X, Tang K, Zhang Z P, Wu G 2020 Acta Phys. Sin. 69 074204Google Scholar

    [20]

    Nishida K, Taguchi K, Matsumoto Y 1979 Appl. Phys. Lett. 35 251Google Scholar

    [21]

    Deng Q, Wang Z, Wang S, Shao G D 2017 Sol. Energy 158 654Google Scholar

    [22]

    Sekino K, Midonoya M, Udono H, Yamada Y Udono H 2011 Phys. Procedia 11 171Google Scholar

    [23]

    Martin A G 2008 Sol. Energy Mater. Sol. Cells 92 1305Google Scholar

    [24]

    Park C Y, Hyun K, Kang S G, Kim H M 1995 Appl. Phys. Lett. 67 3789Google Scholar

    [25]

    Smetona S, Matukas J, Palenskis V, Olechnovicius M, A. Kaminskas K, Mallard R 2004 Proceedings of SPIE-Photonics North 2004: Optical Components and Devices Ottawa, Canada, September 26–29, 2004 p834

    [26]

    谢天, 叶新辉, 夏辉, 李菊柱, 张帅君, 姜新洋, 邓伟杰, 王文静, 李玉莹, 刘伟伟, 李翔, 李天信 2020 红外与毫米波学报 39 0583Google Scholar

    Xie T, Ye X H, Xia H, Li J Z, Zhang S J, Jiang X Y, Deng W J, Wang W J, Li Y Y, Liu W W, Li X, Li T X 2020 J. Infrared Millim. W. 39 0583Google Scholar

    [27]

    Yuan H, Zhang J, Kim J, Meyer C, Laquindanum J, Kimchi J, Lei J 2018 Proceedings of SPIE -Infrared Sensors, Devices, and Applications VIII San Diego, United States, August 22–23, 2018 p107660 J-1

    [28]

    Wang Y D, Chen J, Xu J D, Li X Y 2018 Infrared Phys. Technol. 89 41Google Scholar

    [29]

    施敏, 伍国珏 著 (耿莉, 张瑞智 译) 2008 半导体器件物理 (第3版) (西安: 西安交通大学出版社) 第514−523页

    Sze S M, K. Ng K (translated by Geng L, Wu G J) 2008 Physics of Semiconductor Devices (3rd Ed.) (Xi’an: Xi’an Jiaotong University Press) pp514−523 (in Chinese)

    [30]

    Lee M J, Rucker H, Choi W Y 2012 IEEE Electron Device Lett. 33 80Google Scholar

  • 图 1  SACM-APD结构示意图

    Figure 1.  Schematic diagram of SACM-APD.

    图 2  APD的能带结构图

    Figure 2.  Energy band structure diagram of the APD.

    图 3  Mg2Si与c-Si的光学特性 (a) Mg2Si与c-Si的吸收系数(cm–1)与入射能量的关系; (b) Mg2Si与c-Si的折射率与波长的关系

    Figure 3.  Optical properties of Mg2Si and c-Si: (a) Absorption coefficient(cm–1) of the poly-Mg2Si and c-Si; (b) refractive Index of the poly-Mg2Si and c-Si.

    图 4  (a) 电荷层厚度为0.1 µm时器件的电场分布; (b) 电荷层厚度为0.2 µm时器件的电场分布

    Figure 4.  (a) Electric field distribution of the device with charge layer thickness of 0.1 µm; (b) electric field distribution of the device with charge layer thickness of 0.2 µm.

    图 5  Mg2Si/Si SACM-APD器件在不同偏压下内部的载流子生成率

    Figure 5.  The influence of the different Bias voltage on the carrier generation rate.

    图 6  倍增层不同掺杂浓度时倍增层的电场分布

    Figure 6.  Electric field distribution of the multiplier layer under different doping concentrations.

    图 7  电荷层厚度、掺杂浓度与击穿电压和穿通电压之间的关系

    Figure 7.  The relation between the thickness and doping concentration of charge layer and the breakdown voltage, the punch-through voltage.

    图 8  不同倍增层厚度时的击穿电压与穿通电压

    Figure 8.  Breakdown voltage and penetration voltage at different thicknesses of the multiplier layer.

    图 9  倍增层不同掺杂浓度与穿通电压和击穿电压关系

    Figure 9.  Breakdown voltage and penetration voltage at different doping concentration of the multiplier layer.

    图 10  APD的I-V特性与增益系数

    Figure 10.  I-V characteristics and gain coefficient of APD.

    图 11  不同的偏置电压对APD光谱响应的影响

    Figure 11.  Effect of different bias voltages on the spectral response of APD.

    图 12  倍增层厚度对器件电容的影响

    Figure 12.  The influence of the thickness of multiplication layer on the capacitance of the device.

    图 13  不同倍增层厚度时器件的瞬态响应

    Figure 13.  Transient response of the device for different thickness of the multiplication layer.

    表 1  APD的结构参数

    Table 1.  Structural parameters of the APD.

    层名符号厚度/μm符号浓度掺杂/
    × 1016 cm–3
    金属电极层0.10
    Mg2Si接触层Wp0.15Np500
    Mg2Si吸收层Wa0.6—4Na0.1
    Si电荷层Wc0.1—0.3Nc6—14
    Si倍增层Wm1Nm0.01—1
    Si缓冲层Wb0.5Nb100
    Si衬底Ws3.5Ns1000
    DownLoad: CSV

    表 2  模拟计算中采用的各层基本参数

    Table 2.  The parameters of different layers in the simulation.

    参数Mg2Sic-Si[21]
    相对介电常数20[21]11.9
    电子迁移率/(cm2·V–1·S–1) 550[21]1350
    空穴迁移率/(cm2·V–1·S–1)70[15]500
    材料带隙/eV0.77[9,21]1.12
    导带有效态密度/cm–3 7.8 × 10182.8 × 1019
    价带有效态密度/cm–3 2.06 × 10191.04 × 1019
    电子亲和力/eV4.37[21,22]4.05
    DownLoad: CSV

    表 3  模拟结果与目前国际水平对比

    Table 3.  Comparison of simulation results with current international level.

    材料暗电流密度/(A·cm–2)光谱响应/(A·W–1)
    InGaAs5 × 10–4[26]1.2[26]
    InGaAs/InP7 × 10–10[26]
    HgCdTe/CdTe/Si0.007[26]
    HgCdTe/CdZnTe2.7 × 10–5[27]1.45[27]
    Mg2Si0.04[14,16]0.014[14,16]
    Mg2Si/Si-pn6 × 10–7[17]0.32[17]
    Mg2Si/Si-pin1 × 10–6[17]0.742[17]
    Mg2Si/Si-SACM3.6 × 10–525
    DownLoad: CSV
  • [1]

    莫秋燕, 赵彦立 2011 物理学报 60 072902Google Scholar

    Mo Q Y, Zhao Y L 2011 Acta Phys. Sin. 60 072902Google Scholar

    [2]

    Park S M, Grein C H 2019 J. Electron. Mater. 48 8163Google Scholar

    [3]

    Rogalski A 2005 Rep. Prog. Phys. 68 2267Google Scholar

    [4]

    Xu S J, Chua S J, Mei T, Wang X C, Zhang X H, Karunasiri G, Fan W J, Wang C H, Jiang J, Wang S, Xie X G 1998 Appl. Phys. Lett. 73 3153Google Scholar

    [5]

    Rogalski A 2002 Infrared. Phys. Technol. 43 187Google Scholar

    [6]

    Rogalski A 2011 Infrared. Phys. Technol. 54 136Google Scholar

    [7]

    胡伟达, 李庆, 陈效双, 陆卫 2019 物理学报 68 120701Google Scholar

    Hu W D, Li Q, Chen X S, Lu W 2019 Acta Phys. Sin. 68 120701Google Scholar

    [8]

    LaBotz R 1963 J. Electrochem. Soc. 110 127Google Scholar

    [9]

    Kato T, Sago Y, Fujiwara H 2011 J. Appl. Phys. 110 063723Google Scholar

    [10]

    Borisenko V E 2000 Semiconducting Silicides (New York: Springer) pp137−179

    [11]

    Au-Yang M Y, Cohen M L 1969 Phys. Rev. 178 1358Google Scholar

    [12]

    Liao Y F, Fan M H, Xie Q, Xiao Q Q, Xie J, Yu H, Wang S L, Ma X Y 2018 Appl. Surf. Sci. 403 302Google Scholar

    [13]

    Janega P L, McCaffrey J, Landheer D, Buchanan M, Denhoff M, Mitchel D 1988 Appl. Phys. Lett. 53 2056Google Scholar

    [14]

    Udono H, Tajima H, Uchikoshi M, Itakura M 2015 Jpn. J. Appl. Phys. 54 07JB06Google Scholar

    [15]

    Udono H, Yamanaka Y, Uchikoshi M, Isshiki M 2013 J. Phys. Chem. Solids. 74 311Google Scholar

    [16]

    El-Amir A A M, Ohsawa T, Nabatame T, Ohia A, Wadaa Y, Nakamuraa M, Fua K, Shimamuraa K, Ohashia N 2019 Mater. Sci. Semicond. Process. 91 222Google Scholar

    [17]

    陈豪, 肖清泉, 谢泉, 王坤, 史娇娜 2019 材料导报 33 3358Google Scholar

    Chen H, Xiao Q Q, Xie Q, Wang K, Shi J N, 2019 Mater. Rep. 33 3358Google Scholar

    [18]

    Forrest S R, Kim O K, Smith R G 1982 Appl. Phys. Lett. 41 95Google Scholar

    [19]

    张海燕, 汪琳莉, 吴琛怡, 王煜蓉, 杨雷, 潘海峰, 刘巧莉, 郭霞, 汤凯, 张忠萍, 吴光 2020 物理学报 69 074204Google Scholar

    Zhang H Y, Wang L L, Wu C Y, Wang Y R, Yang L, Pang H F, Liu Q L, Guo X, Tang K, Zhang Z P, Wu G 2020 Acta Phys. Sin. 69 074204Google Scholar

    [20]

    Nishida K, Taguchi K, Matsumoto Y 1979 Appl. Phys. Lett. 35 251Google Scholar

    [21]

    Deng Q, Wang Z, Wang S, Shao G D 2017 Sol. Energy 158 654Google Scholar

    [22]

    Sekino K, Midonoya M, Udono H, Yamada Y Udono H 2011 Phys. Procedia 11 171Google Scholar

    [23]

    Martin A G 2008 Sol. Energy Mater. Sol. Cells 92 1305Google Scholar

    [24]

    Park C Y, Hyun K, Kang S G, Kim H M 1995 Appl. Phys. Lett. 67 3789Google Scholar

    [25]

    Smetona S, Matukas J, Palenskis V, Olechnovicius M, A. Kaminskas K, Mallard R 2004 Proceedings of SPIE-Photonics North 2004: Optical Components and Devices Ottawa, Canada, September 26–29, 2004 p834

    [26]

    谢天, 叶新辉, 夏辉, 李菊柱, 张帅君, 姜新洋, 邓伟杰, 王文静, 李玉莹, 刘伟伟, 李翔, 李天信 2020 红外与毫米波学报 39 0583Google Scholar

    Xie T, Ye X H, Xia H, Li J Z, Zhang S J, Jiang X Y, Deng W J, Wang W J, Li Y Y, Liu W W, Li X, Li T X 2020 J. Infrared Millim. W. 39 0583Google Scholar

    [27]

    Yuan H, Zhang J, Kim J, Meyer C, Laquindanum J, Kimchi J, Lei J 2018 Proceedings of SPIE -Infrared Sensors, Devices, and Applications VIII San Diego, United States, August 22–23, 2018 p107660 J-1

    [28]

    Wang Y D, Chen J, Xu J D, Li X Y 2018 Infrared Phys. Technol. 89 41Google Scholar

    [29]

    施敏, 伍国珏 著 (耿莉, 张瑞智 译) 2008 半导体器件物理 (第3版) (西安: 西安交通大学出版社) 第514−523页

    Sze S M, K. Ng K (translated by Geng L, Wu G J) 2008 Physics of Semiconductor Devices (3rd Ed.) (Xi’an: Xi’an Jiaotong University Press) pp514−523 (in Chinese)

    [30]

    Lee M J, Rucker H, Choi W Y 2012 IEEE Electron Device Lett. 33 80Google Scholar

  • [1] Wang Dong-Zhi, Zhang Yi-Jun, Li Shi-Man, Tong Ze-Hao, Tang Song, Shi Feng, Jiao Gang-Cheng, Cheng Hong-Chang, Fu Rong-Guo, Qian Yun-Sheng, Zeng Yu-Gang. AlGaAs photocathode with enhanced response at 532 nm. Acta Physica Sinica, 2024, 73(11): 118503. doi: 10.7498/aps.73.20240253
    [2] Fu Zheng-Hong, Li Ting, Shan Mei-Le, Guo Kang, Gou Guo-Qing. Effect of H on elastic properties of Mg2Si by the first principles calculation. Acta Physica Sinica, 2019, 68(17): 177102. doi: 10.7498/aps.68.20190368
    [3] Guo Yin, Shu Bi-Fen, Wang Jing, Yang Qing-Chuan, Jiang Jing-Xiang, Huang Yan, Zhou Zheng-Long. Concentrating characteristics of Fresnel lens with prism secondary concentrator and optimization of high concentrating photovoltaic module with triple-junction cell. Acta Physica Sinica, 2018, 67(10): 108801. doi: 10.7498/aps.67.20172778
    [4] Liu Tao, Zhao Yong-Peng, Ding Yu-Jie, Li Xiao-Qiang, Cui Huai-Yu, Jiang Shan. Characteristics of gain in Ne-like Ar 69.8 nm laser pumped by capillary discharge. Acta Physica Sinica, 2017, 66(15): 155201. doi: 10.7498/aps.66.155201
    [5] Zhu Yan, Zhang Xin-Yu, Zhang Su-Hong, Ma Ming-Zhen, Liu Ri-Ping, Tian Hong-Yan. Electron transport properties of Mg2Si under hydrostatic pressures. Acta Physica Sinica, 2015, 64(7): 077103. doi: 10.7498/aps.64.077103
    [6] Chai Xiang-Xu, Li Fu-Quan, Wang Sheng-Lai, Feng Bin, Zhu Qi-Hua, Liu Bao-An, Sun Xun, Xu Xin-Guang. Influence of deuteration degree on the transverse stimulated Raman scattering gain coefficient of DKDP crystal. Acta Physica Sinica, 2015, 64(3): 034213. doi: 10.7498/aps.64.034213
    [7] Zhang Yi-Jun, Gan Zhuo-Xin, Zhang Han, Huang Fan, Xu Yuan, Feng Cheng. Recesiation of GaAlAs photocathodes in an ultrahigh vacuum system. Acta Physica Sinica, 2014, 63(17): 178502. doi: 10.7498/aps.63.178502
    [8] Chen Wei, Chen Xue-Gang, Shi Jiu-Lin, He Xing-Dao, Mo Xiao-Feng, Liu Juan. Measurement of gain coefficients of stimulated Brillouin scattering in water at different temperatures. Acta Physica Sinica, 2013, 62(10): 104213. doi: 10.7498/aps.62.104213
    [9] Qiao Jian-Liang, Chang Ben-Kang, Qian Yun-Sheng, Gao Pin, Wang Xiao-Hui, Xu Yuan. Comprehensive Survey for the Frontier Disciplines. Acta Physica Sinica, 2011, 60(10): 107901. doi: 10.7498/aps.60.107901
    [10] Mo Qiu-Yan, Zhao Yan-Li. Frequency responses of communication avalanche photodiodes. Acta Physica Sinica, 2011, 60(7): 072902. doi: 10.7498/aps.60.072902
    [11] Peng Hua, Wang Chun-Lei, Li Ji-Chao, Wang Hong-Chao, Wang Mei-Xiao. Theoretical investigation of the electronic structure and thermoelectric transport property of Mg2Si. Acta Physica Sinica, 2010, 59(6): 4123-4129. doi: 10.7498/aps.59.4123
    [12] Liu Wen-Bao, Zhao De-Gang, Jiang De-Sheng, Liu Zong-Shun, Zhu Jian-Jun, Zhang Shu-Ming, Yang Hui. Abnormal photoabsorption in high resistance GaN epilayer. Acta Physica Sinica, 2010, 59(11): 8048-8051. doi: 10.7498/aps.59.8048
    [13] Qiao Jian-Liang, Chang Ben-Kang, Qian Yun-Sheng, Du Xiao-Qing, Zhang Yi-Jun, Gao Pin, Wang Xiao-Hui, Guo Xiang-Yang, Niu Jun, Gao You-Tang. Study of spectral response characteristics of negative electron affinity GaN photocathode. Acta Physica Sinica, 2010, 59(5): 3577-3582. doi: 10.7498/aps.59.3577
    [14] Yu Zhi-Qiang, Xie Quan, Xiao Qing-Quan, Zhao Ke-Jie. Structure and extinction properties of Mg2Si crystal. Acta Physica Sinica, 2009, 58(10): 6889-6893. doi: 10.7498/aps.58.6889
    [15] Hu Jian-Min, Wu Yi-Yong, Qian Yong, Yang De-Zhuang, He Shi-Yu. Damage of electron irradiation to the GaInP/GaAs/Ge triple-junction solar cell. Acta Physica Sinica, 2009, 58(7): 5051-5056. doi: 10.7498/aps.58.5051
    [16] Zhang Wei-Ying, Wu Xiao-Peng, Sun Li-Jie, Lin Bi-Xia, Fu Zhu-Xi. Study on the photovoltaic conversion of ZnO/Si heterojunction. Acta Physica Sinica, 2008, 57(7): 4471-4475. doi: 10.7498/aps.57.4471
    [17] Xu Xiang-Yan, Ye Zhen-Hua, Li Zhi-Feng, Lu Wei. Optimizing modeling of two-color middle wavelength infrared photovoltaic HgCdTe detectors. Acta Physica Sinica, 2007, 56(5): 2882-2889. doi: 10.7498/aps.56.2882
    [18] Qiao Xiu-Mei, Zhang Guo-Ping. Theoretical study of TCE Ne-like Ge 19.6nm X-ray laser. Acta Physica Sinica, 2007, 56(9): 5248-5251. doi: 10.7498/aps.56.5248
    [19] Yang Wen-Zheng, Hou Xun, Chen Feng, Yang Qing. Experimental study of enhancement of the light-modulated absorption of bacteriorhodopsin-D96N films. Acta Physica Sinica, 2004, 53(1): 296-300. doi: 10.7498/aps.53.296
    [20] Yuan Bao-Hong, Chen Zhong-Xian, Jiang Yong-Yuan, Sun Xiu-Dong, Zhou Zhong-Xiang, Yao Feng-Feng. . Acta Physica Sinica, 2002, 51(7): 1512-1516. doi: 10.7498/aps.51.1512
Metrics
  • Abstract views:  8121
  • PDF Downloads:  171
  • Cited By: 0
Publishing process
  • Received Date:  16 November 2020
  • Accepted Date:  17 December 2020
  • Available Online:  11 May 2021
  • Published Online:  20 May 2021

/

返回文章
返回