Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Characteristics of gain in Ne-like Ar 69.8 nm laser pumped by capillary discharge

Liu Tao Zhao Yong-Peng Ding Yu-Jie Li Xiao-Qiang Cui Huai-Yu Jiang Shan

Citation:

Characteristics of gain in Ne-like Ar 69.8 nm laser pumped by capillary discharge

Liu Tao, Zhao Yong-Peng, Ding Yu-Jie, Li Xiao-Qiang, Cui Huai-Yu, Jiang Shan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper, the theoretical calculation model of the gain coefficient of Ne-like Ar 69.8 nm laser is established. With the collisional-radiative model, the rate equations for the 46.9 nm and 69.8 nm lasers are built by considering the 4 levels of the 2s2p6 1S0, 2p53p 1S0, 2p53p 3P2, and 2p53s 1P1. The gain coefficients per ion density of 46.9 nm and 69.8 nm lasers are calculated on the basis of the rate equations. The results show that the 46.9 nm laser has potential of higher gain than the 69.8 nm laser at an electron temperature of 200 eV. The gain coefficients per ion density at different electron temperatures are also calculated. Under the same electron density, the higher electron temperature is favorable for increasing the gain coefficients per ion density of the 69.8 nm laser. Meanwhile there is also an optimal electron density corresponding to the maximum gain coefficient per ion density of the 69.8 nm laser at a given electron temperature. Then a one-dimensional cylindrical symmetry Lagrangian magneto-hydrodynamics (MHD) code is utilized to simulate the Z-pinch process. The radial distributions of the electron temperatures, the electron densities and the Ne-like Ar ion densities are calculated with the MHD code at the different initial pressures. According to the rate equations for the 69.8 nm laser and the simulation results of the MHD code, the gain coefficient distribution of 69.8 nm laser in the radial direction of the plasma can be determined when the plasma is compressed to a minimum radius. According to the experimental parameters, the maximum gain coefficient of 69.8 nm laser is calculated to be 0.32 cm-1 when the main pulse current is 12 kA. The relationship between the radial distribution of gain coefficient of 69.8 nm laser and the initial pressure is also simulated. The theoretical results show that the optimal initial pressure is in a range of 12-14 Pa, in which the amplitude of gain coefficient is maximum. The experiments about 69.8 nm laser are conducted with Al2O3 capillary which has an inner diameter of 3.2 mm and a length of 35 cm. A main current of 12 kA with a rise time of 32 ns is produced by the main pulse generator, which consists of a Marx generator and a Blumlein line filled with de-ionized water. The Blumlein line is pulse-charged by a ten-stage Marx generator and discharges through the capillary by a self-breakdown main switch pressurized with N2 gas. To reduce the amplitude of main current, we reduce the charging voltage of the Marx generator and increase the conducting inductance of the main switch. Prior to the operation of the main current pulse, the capillary filled with Ar is predischarged by a current of~20 A. The 69.8 nm laser intensity as a function of initial pressure is measured by a 1-m grazing incidence Rowland spectrograph. The experimental results show that the optimum pressure is 16 Pa which is similar to the theoretical result. In addition, the gain coefficient (0.4 cm-1) measured in experiment is slightly higher than that (0.32 cm-1) of the theoretical calculation.
      Corresponding author: Zhao Yong-Peng, zhaoyp3@hit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.61275139).
    [1]

    Matthews D L, Hagelstein P L, Rosen M D, Eckart M J, Ceglio N M, Hazi A U, Medecki H, Macgowan B J, Trebes J E, Whitten B L 1985 Phys. Rev. Lett. 54 110

    [2]

    Rocca J J, Shlyaptsev V, Tomasel F G, Cortazar O D, Hartshorn D, Chilla J L 1994 Phys. Rev. Lett. 73 2192

    [3]

    Tomasel F G, Rocca J J, Shlyaptsev V N, Macchietto C D 1997 Phys. Rev. A 55 1437

    [4]

    Frati M, Seminario M, Rocca J J 2000 Opt. Lett. 25 1022

    [5]

    ZhaoY P, Jiang S, Xie Y, Yang D W, Teng S P, Chen D Y, Wang Q 2011 Opt. Lett. 36 3458

    [6]

    Moreno C H, Marconi M C, Shlyaptsev V N, Benware B R, Macchietto C D, Chilla J L A, Rocca J J 1998 Phys. Rev. A 58 1509

    [7]

    Kim D E, Kim D S, Osterheld A L 1998 J. Appl. Phys. 84 5862

    [8]

    Kukhlevsky S V, Ritucci A, Kozma I Z, Kaiser J, Shlyaptseva A, Tomassetti G, Samek O 2002 Contrib. Plasm. Phys. 42 109

    [9]

    Lan K, Zhang Y Q, Zheng W D 1999 Phys. Plasma 6 4343

    [10]

    Zheng W D, Peng H M 2002 High Pow. Laser Par. Beams 14 1 (in Chinese) [郑无敌, 彭惠民 2002 强激光与粒子束 14 1]

    [11]

    Zhao Y P, Liu T, Jiang S, Cui H Y, Ding Y J, Li L B 2016 Appl. Phys. B 122 107

    [12]

    Elton R C (translated by Fan P Z) 1996X-Ray Lasers(Beijing: Science Press) pp21-25 (in Chinese) [埃尔顿 著 (范品忠 译) 1996 X射线激光(北京: 科学出版社)第2125页]

    [13]

    Jiang S, Zhao Y P, Cui H Y, Li L B, Ding Y J, Zhang W H, Li W 2015 Contrib. Plasma Phys. 55 570

    [14]

    Zhao Y P, Liu T, Zhang W H, Li W, Cui H Y 2016 Opt. Lett. 41 3779

  • [1]

    Matthews D L, Hagelstein P L, Rosen M D, Eckart M J, Ceglio N M, Hazi A U, Medecki H, Macgowan B J, Trebes J E, Whitten B L 1985 Phys. Rev. Lett. 54 110

    [2]

    Rocca J J, Shlyaptsev V, Tomasel F G, Cortazar O D, Hartshorn D, Chilla J L 1994 Phys. Rev. Lett. 73 2192

    [3]

    Tomasel F G, Rocca J J, Shlyaptsev V N, Macchietto C D 1997 Phys. Rev. A 55 1437

    [4]

    Frati M, Seminario M, Rocca J J 2000 Opt. Lett. 25 1022

    [5]

    ZhaoY P, Jiang S, Xie Y, Yang D W, Teng S P, Chen D Y, Wang Q 2011 Opt. Lett. 36 3458

    [6]

    Moreno C H, Marconi M C, Shlyaptsev V N, Benware B R, Macchietto C D, Chilla J L A, Rocca J J 1998 Phys. Rev. A 58 1509

    [7]

    Kim D E, Kim D S, Osterheld A L 1998 J. Appl. Phys. 84 5862

    [8]

    Kukhlevsky S V, Ritucci A, Kozma I Z, Kaiser J, Shlyaptseva A, Tomassetti G, Samek O 2002 Contrib. Plasm. Phys. 42 109

    [9]

    Lan K, Zhang Y Q, Zheng W D 1999 Phys. Plasma 6 4343

    [10]

    Zheng W D, Peng H M 2002 High Pow. Laser Par. Beams 14 1 (in Chinese) [郑无敌, 彭惠民 2002 强激光与粒子束 14 1]

    [11]

    Zhao Y P, Liu T, Jiang S, Cui H Y, Ding Y J, Li L B 2016 Appl. Phys. B 122 107

    [12]

    Elton R C (translated by Fan P Z) 1996X-Ray Lasers(Beijing: Science Press) pp21-25 (in Chinese) [埃尔顿 著 (范品忠 译) 1996 X射线激光(北京: 科学出版社)第2125页]

    [13]

    Jiang S, Zhao Y P, Cui H Y, Li L B, Ding Y J, Zhang W H, Li W 2015 Contrib. Plasma Phys. 55 570

    [14]

    Zhao Y P, Liu T, Zhang W H, Li W, Cui H Y 2016 Opt. Lett. 41 3779

  • [1] Zhuang Ying-Hao, Fu Yun, Cai Wei, Zhang Qing-Song, Wu Zhen, Guo Lin-Hui, Zhong Zhe-Qiang, Zhang Bin. Analysis of physical mechanism of beam crosstalk in semiconductor laser array spectral-beam-combined system. Acta Physica Sinica, 2023, 72(2): 024206. doi: 10.7498/aps.72.20221783
    [2] Wang Ya-Nan, Ren Lin-Yuan, Ding Wei-Dong, Sun An-Bang, Geng Jin-Yue. Influence of cavity configuration parameters on discharge characteristics of capillary discharge based pulsed plasma thruster. Acta Physica Sinica, 2021, 70(23): 235204. doi: 10.7498/aps.70.20211198
    [3] Liu Tao, Zhao Yong-Peng, Cui Huai-Yu, Liu Xiao-Lin. Characteristics of gain in Ne-like Ar 69.8 nm laser pumped by capillary discharge based on double-pass amplification. Acta Physica Sinica, 2019, 68(2): 025201. doi: 10.7498/aps.68.20181617
    [4] Zhao Yong-Peng, Li Lian-Bo, Cui Huai-Yu, Jiang Shan, Liu Tao, Zhang Wen-Hong, Li Wei. Intensity distribution of 69.8 nm laser pumped by capillary discharge. Acta Physica Sinica, 2016, 65(9): 095201. doi: 10.7498/aps.65.095201
    [5] Chai Xiang-Xu, Li Fu-Quan, Wang Sheng-Lai, Feng Bin, Zhu Qi-Hua, Liu Bao-An, Sun Xun, Xu Xin-Guang. Influence of deuteration degree on the transverse stimulated Raman scattering gain coefficient of DKDP crystal. Acta Physica Sinica, 2015, 64(3): 034213. doi: 10.7498/aps.64.034213
    [6] Ruan Peng, Xie Ji-Jiang, Pan Qi-Kun, Zhang Lai-Ming, Guo Jin. Dynamical model of non-chain pulsed DF laser. Acta Physica Sinica, 2013, 62(9): 094208. doi: 10.7498/aps.62.094208
    [7] Chen Wei, Chen Xue-Gang, Shi Jiu-Lin, He Xing-Dao, Mo Xiao-Feng, Liu Juan. Measurement of gain coefficients of stimulated Brillouin scattering in water at different temperatures. Acta Physica Sinica, 2013, 62(10): 104213. doi: 10.7498/aps.62.104213
    [8] Zhao Jian-Tao, Feng Guo-Ying, Yang Huo-Mu, Tang Chun, Chen Nian-Jiang, Zhou Shou-Huan. Analysis of thermal effect and its influence on output power of thin disk laser. Acta Physica Sinica, 2012, 61(8): 084208. doi: 10.7498/aps.61.084208
    [9] Lin Yan-Feng, Zhang Ge, Zhu Hai-Yong, Huang Cheng-Hui, Li Ai-Hong, Wei Yong. Mechanism of dual-wavelength oscillation in Nd:YAG Q-switched laser. Acta Physica Sinica, 2009, 58(6): 3909-3914. doi: 10.7498/aps.58.3909
    [10] Wang Hao, Liu Guo-Quan, Yue Jing-Chao, Luan Jun-Hua, Qin Xiang-Ge. Study on MacPherson-Srolovitz's grain growth rate equation with Monte Carlo simulation. Acta Physica Sinica, 2009, 58(13): 137-S140. doi: 10.7498/aps.58.137
    [11] Zhang Xin-Lu, Wang Yue-Zhu, Li Li, Cui Jin-Hui, Ju You-Lun. Laser parameter optimization and experimental study of end-pumped continuous wave Tm,Ho∶YLF lasers. Acta Physica Sinica, 2008, 57(6): 3519-3524. doi: 10.7498/aps.57.3519
    [12] Chen Gang, Zhuang De-Wen, Zhang Hang, Xu Jun, Cheng Cheng. A difference method to solve the laser kinetic model involving temporal-special evolution. Acta Physica Sinica, 2008, 57(8): 4953-4959. doi: 10.7498/aps.57.4953
    [13] Qiao Xiu-Mei, Zhang Guo-Ping. Theoretical study of TCE Ne-like Ge 19.6nm X-ray laser. Acta Physica Sinica, 2007, 56(9): 5248-5251. doi: 10.7498/aps.56.5248
    [14] Zhang Xin-Lu, Wang Yue-Zhu, Li Li, Ju You-Lun. Fractional thermal loading and thermal lensing in end-pumped Tm,Ho:YLF lasers. Acta Physica Sinica, 2007, 56(4): 2196-2201. doi: 10.7498/aps.56.2196
    [15] Zhang Xin-Lu, Wang Yue-Zhu, Ju You-Lun. Influence of energy-transfer up-conversion on Tm, Ho:YLF laser threshold. Acta Physica Sinica, 2005, 54(1): 117-122. doi: 10.7498/aps.54.117
    [16] Song Feng, Su Rui-Yuan, Fu Qiang, Qin Bin, Tian Jian-Guo, Zhang Guang-Yin. Gain characteristics of high-concentration Er3+/Yb3+-codoped phosphate fiber amplifier. Acta Physica Sinica, 2005, 54(11): 5228-5232. doi: 10.7498/aps.54.5228
    [17] Zhao Yong-Peng, Cheng Yuan-Li, Wang Qi, Hayashi Yasushi, Hotta Eiki. The lasing time of soft x-ray laser pumped by capillary discharge. Acta Physica Sinica, 2005, 54(6): 2731-2734. doi: 10.7498/aps.54.2731
    [18] Cheng Yuan-Li, Luan Bo-Han, Wu Yin-Chu, Zhao Yong-Peng, Wang Qi, Zheng Wu-Di, Peng Hui-Min, Yang Da-Wei. Effect of pre-pulses on capillary discharge soft x-ray laser. Acta Physica Sinica, 2005, 54(10): 4979-4984. doi: 10.7498/aps.54.4979
    [19] Yuan Bao-Hong, Chen Zhong-Xian, Jiang Yong-Yuan, Sun Xiu-Dong, Zhou Zhong-Xiang, Yao Feng-Feng. . Acta Physica Sinica, 2002, 51(7): 1512-1516. doi: 10.7498/aps.51.1512
    [20] Song Feng, Meng Fan-Zhen, Ding Xin, Zhang Chao-Bo, Yang Jia, Zhang Guang-Yin. . Acta Physica Sinica, 2002, 51(6): 1233-1238. doi: 10.7498/aps.51.1233
Metrics
  • Abstract views:  5677
  • PDF Downloads:  81
  • Cited By: 0
Publishing process
  • Received Date:  13 February 2017
  • Accepted Date:  23 May 2017
  • Published Online:  05 August 2017

/

返回文章
返回