-
In this paper, a double-pass amplification experiment of a Ne-like Ar C line 69.8 nm laser is established. The 45-cmlong capillary is used as the discharge load to obtain a double-pass amplification output of a Ne-like Ar C line 69.8 nm laser. Under the same initial experimental conditions that the initial pressure is 15.4 Pa and the main pulse current amplitude is 13.5 kA, the laser pulse intensity and the full width at half maximum (FWHM) of the laser pulse of the single-pass amplification output and the double-pass amplification output are measured by a vacuum X-ray diode (XRD) behind a vacuum ultraviolet (VUV) monochromator (Acton VSN-515) which is used to disperse the extreme ultraviolet (EUV) emission. And then the laser beam divergence of single-pass amplification output and double-pass amplification output are also measured by a space-resolving flat-field EUV spectrograph combined with an EUV CCD (Andor Newton DO920P-BN). The amplitude of the double-pass amplification laser output is 9 times larger than that of single-pass amplification output, and the FWHM of the double-pass amplification laser pulse is nearly 2.4 ns. While the laser beam divergence angle of the double-pass amplification output is 6.6 times wider than that of single-pass amplification output. By comparing the single-pass amplification and double-pass amplification output experimental results, the gain duration of the gain medium in the double-pass amplification and the radial distribution characteristics of the gain medium are analyzed by using the calculation formula of the double-pass amplification laser intensity. The gain duration is more than 4 ns, during this time the gain coefficient decreases at 1.6 ns. And the gain coefficient is the smallest at 2.8 ns, meanwhile the intensity of the single-pass amplification laser is maximum, and the gain medium is in the gain saturation state. So this result indicates that the minimum gain coefficient at this moment is due to the gain saturation effect. Using a similar calculation method to analyze the spatial distribution of gain coefficients, the gain on the plasma axis is larger than that off the plasma axis. These results lay a foundation for the subsequent establishment of resonant cavity and the multi-pass amplification experiment of capillary discharge Ne-like Ar laser.
-
Keywords:
- capillary discharge /
- 69.8 nm laser /
- double-pass amplification /
- gain medium
[1] Carbajo S, Howlett I D, Brizuela F, Buchanan K S, Marconi M C 2012 Opt. Lett. 37 2994Google Scholar
[2] Nejdl J, Howlett I D, Carlton D, Anderson E H, Chao W, Marconi M C, Rocca J J, Menoni C S 2015 IEEE Photon. J. 7 1
[3] Rocca J J, Shlyaptsev V, Tomasel F G, Cortazar O D, Hartshorn D, Chilla J L 1994 Phys. Rev. Lett. 73 2192Google Scholar
[4] Zhao Y P, Jiang S, Xie Y, Yang D W, Teng S P, Chen D Y, Wang Q 2011 Opt. Lett. 36 3458Google Scholar
[5] Frati M, Seminario M, Rocca J J 2000 Opt. Lett. 25 1022Google Scholar
[6] Tomasel F G, Rocca J J, Shlyaptsev V N, Macchietto C D 1997 Phys. Rev. A 55 1437Google Scholar
[7] Elton R C, Datla R U, Roberts J R, Bhatia A K 1989 Phys. Rev. A 40 4142Google Scholar
[8] Bernstein E R, Dong F, Guo Y Q, Shin J W, Heinbuch S, Rocca J J 2016 X-Ray Laser (Switzerland: Springer) p359
[9] Menoni C S, Nejdl J, Monserud N, Howleet I D, Carlton D, Anderson E H, Chao W, Marconi M C, Rocca J J 2016 X-Ray Laser 2014 (Switzerland: Springer) p259
[10] Suckewer S, Skinner C H, Milchberg H, Keane C, Voorhee D 1985 Phys. Rev. Lett. 55 1753Google Scholar
[11] Ceglio N M, Gaines D P, Trebes J E, London R A, Stearns D G 1988 Appl. Opt. 27 5022Google Scholar
[12] Murai K, Yuan G, Kodama R, Daido H, Kato Y, Niibe M, Miyake A, Tsukamoto M, Fukuda Y, Neely D, Macphee A G 1994 Jpn. J. Appl. Phys. 33 L600Google Scholar
[13] Carillon A, Chen H Z, Dhez P, Dwivedi L, Jacoby J, Jaegle P, Jamelot G, Zhang J, Key M H, Kidd A, Klisnick A, Kodama R, Krishnan J, Lewis C, Neely D, Norreys P, O’Neill D, Pert G J, Ramsden S, Raucourt J P, Tallents G, Uhomoibhi J O 1992 Phys. Rev. Lett. 68 2917Google Scholar
[14] He S T, Chunyu S T, Zhang Q R, He A, Shen H Z, Ni Y L, Yu S Y 1992 Phys. Rev. A 46 1610Google Scholar
[15] 安红海, 王琛, 方智恒, 熊俊, 孙今人, 王伟, 傅思祖, 乔秀梅, 郑无敌, 张国平 2011 物理学报 60 104207Google Scholar
An H H, Wang C, Fang Z H, Xiong J, Sun J R, Wang W, Fu S Z, Qiao X M, Zheng W D, Zhang G P 2011 Acta Phys. Sin. 60 104207Google Scholar
[16] Ceglio N M, Gaines D P, Stearns D G, Hawryluk A M 1989 Opt. Commun. 69 285Google Scholar
[17] Rus B, Mocek T, Präg A R, Kozlová M, Jamelot G, Carillon A, Ros D, Joyeux D, Phalippou D 2002 Phys. Rev. A 66 063806Google Scholar
[18] Rocca J J, Clark D P, Chilla J L A, Shlyaptsev V N 1996 Phys. Rev. Lett. 77 1476Google Scholar
[19] Zhao Y P, Liu T, Zhang W H, Li W, Cui H Y 2016 Opt. Lett. 41 3779Google Scholar
[20] Rus B, Carillon A, Dhez P, Jaegle´ P, Jamelot G, Klisnick A, Nantel M, Zeitoun P 1997 Phys. Rev. A 55 3858Google Scholar
[21] Zhao Y P, Liu T, Jiang S, Cui H Y, Ding Y J, Li L 2016 Appl. Phys. B 122 107
-
表 1 单程放大与双程放大尖峰位置处激光强度
Table 1. The peak position laser intensity of single-pass amplification and double-pass amplification.
尖峰位置/mrad −1.41 −0.92 −0.49 0 0.25 0.68 1.23 单程放大强度/arb.units 2345 4525 6708 15712 9964 7076 7017 双程放大强度/arb.units 55844 56762 56128 51205 54803 50772 44720 增长倍数 23.8 12.5 8.4 3.3 5.5 7.2 6.4 -
[1] Carbajo S, Howlett I D, Brizuela F, Buchanan K S, Marconi M C 2012 Opt. Lett. 37 2994Google Scholar
[2] Nejdl J, Howlett I D, Carlton D, Anderson E H, Chao W, Marconi M C, Rocca J J, Menoni C S 2015 IEEE Photon. J. 7 1
[3] Rocca J J, Shlyaptsev V, Tomasel F G, Cortazar O D, Hartshorn D, Chilla J L 1994 Phys. Rev. Lett. 73 2192Google Scholar
[4] Zhao Y P, Jiang S, Xie Y, Yang D W, Teng S P, Chen D Y, Wang Q 2011 Opt. Lett. 36 3458Google Scholar
[5] Frati M, Seminario M, Rocca J J 2000 Opt. Lett. 25 1022Google Scholar
[6] Tomasel F G, Rocca J J, Shlyaptsev V N, Macchietto C D 1997 Phys. Rev. A 55 1437Google Scholar
[7] Elton R C, Datla R U, Roberts J R, Bhatia A K 1989 Phys. Rev. A 40 4142Google Scholar
[8] Bernstein E R, Dong F, Guo Y Q, Shin J W, Heinbuch S, Rocca J J 2016 X-Ray Laser (Switzerland: Springer) p359
[9] Menoni C S, Nejdl J, Monserud N, Howleet I D, Carlton D, Anderson E H, Chao W, Marconi M C, Rocca J J 2016 X-Ray Laser 2014 (Switzerland: Springer) p259
[10] Suckewer S, Skinner C H, Milchberg H, Keane C, Voorhee D 1985 Phys. Rev. Lett. 55 1753Google Scholar
[11] Ceglio N M, Gaines D P, Trebes J E, London R A, Stearns D G 1988 Appl. Opt. 27 5022Google Scholar
[12] Murai K, Yuan G, Kodama R, Daido H, Kato Y, Niibe M, Miyake A, Tsukamoto M, Fukuda Y, Neely D, Macphee A G 1994 Jpn. J. Appl. Phys. 33 L600Google Scholar
[13] Carillon A, Chen H Z, Dhez P, Dwivedi L, Jacoby J, Jaegle P, Jamelot G, Zhang J, Key M H, Kidd A, Klisnick A, Kodama R, Krishnan J, Lewis C, Neely D, Norreys P, O’Neill D, Pert G J, Ramsden S, Raucourt J P, Tallents G, Uhomoibhi J O 1992 Phys. Rev. Lett. 68 2917Google Scholar
[14] He S T, Chunyu S T, Zhang Q R, He A, Shen H Z, Ni Y L, Yu S Y 1992 Phys. Rev. A 46 1610Google Scholar
[15] 安红海, 王琛, 方智恒, 熊俊, 孙今人, 王伟, 傅思祖, 乔秀梅, 郑无敌, 张国平 2011 物理学报 60 104207Google Scholar
An H H, Wang C, Fang Z H, Xiong J, Sun J R, Wang W, Fu S Z, Qiao X M, Zheng W D, Zhang G P 2011 Acta Phys. Sin. 60 104207Google Scholar
[16] Ceglio N M, Gaines D P, Stearns D G, Hawryluk A M 1989 Opt. Commun. 69 285Google Scholar
[17] Rus B, Mocek T, Präg A R, Kozlová M, Jamelot G, Carillon A, Ros D, Joyeux D, Phalippou D 2002 Phys. Rev. A 66 063806Google Scholar
[18] Rocca J J, Clark D P, Chilla J L A, Shlyaptsev V N 1996 Phys. Rev. Lett. 77 1476Google Scholar
[19] Zhao Y P, Liu T, Zhang W H, Li W, Cui H Y 2016 Opt. Lett. 41 3779Google Scholar
[20] Rus B, Carillon A, Dhez P, Jaegle´ P, Jamelot G, Klisnick A, Nantel M, Zeitoun P 1997 Phys. Rev. A 55 3858Google Scholar
[21] Zhao Y P, Liu T, Jiang S, Cui H Y, Ding Y J, Li L 2016 Appl. Phys. B 122 107
Catalog
Metrics
- Abstract views: 6447
- PDF Downloads: 31
- Cited By: 0