搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于激光尾波加速的弯曲毛细管内气流运动的模拟研究

赵月琪 崔佩霖 李建龙 李博原 祝昕哲 陈民 刘振宇

引用本文:
Citation:

用于激光尾波加速的弯曲毛细管内气流运动的模拟研究

赵月琪, 崔佩霖, 李建龙, 李博原, 祝昕哲, 陈民, 刘振宇

Simulation study on gas flow in curved capillary used in laser wakefield acceleration

Zhao Yue-Qi, Cui Pei-Lin, Li Jian-Long, Li Bo-Yuan, Zhu Xin-Zhe, Chen Min, Liu Zhen-Yu
PDF
HTML
导出引用
  • 高压放电充气毛细管可产生等离子体通道, 用于激光尾波加速. 为探究尾波级联加速所使用毛细管内的气体流动及分布规律, 本文建立了基于标准k-ε模型的弯曲毛细管内气体流动计算模型. 以氦气为工质, 对弯曲毛细管内可压气体流动过程进行数值模拟, 分析了不同结构、充气背压、充气口位置对毛细管内气体密度分布及速度场的影响. 结果表明: 双侧对冲弯曲毛细管在充气口之间管段具有较为稳定的气体密度分布, 充气口附近气体密度波动随充气口与毛细管两端距离的增大而减小; 在“直+弯”结构的级联加速毛细管中, 负责电子注入的直通道口径会对弯管内气体密度分布造成影响, 当电子注入通道口径小于150 μm时, 弯曲毛细管内气体流动受到直通道的影响较小, 可作为级联结构中的电子束导引通道.
    Based on the standard k-ε model, a gas flow calculation model in a curved capillary is established, and the flow process of helium working medium in a curved capillary with gradually changing curvature is numerically simulated. Compared with other methods of studying micro-scale gas flow, this simulation obtains the gas density distribution in the curved capillary more conveniently, and has the same variation trend as the experimental measurement of the plasma electron density distribution, and can predict the gas flow distribution in the tube more accurately. The situation provides a theoretical basis for designing the discharge capillary experiment. Based on this model, the gas flow process in the capillary of the one-sided direct flushing, double-sided hedging and “straight + curved” cascade acceleration structures are numerically simulated. The results and conclusions are summarized as follows.1) Comparing with the single-sided straight-bent capillary structure, the gas density fluctuation between the left gas inlet and the right gas inlet of the double-sided hedging-bend capillary is smaller, the gas flow is more stable, and a relatively stable plasma density channel can be generated.2) In the double-sided hedged curved capillary, a relatively uniform gas density distribution is formed between the two inlets of the capillary under the same inflation back pressure; further research results show that a more uniform plasma density distribution with different lengths can be obtained by controlling the position of the gas inlet.3) In the “traight + curved” cascaded accelerating capillary structure, the diameter of the electron injection channel will affect the gas density distribution in the bend. When the diameter of the electron injection channel is small, the absolute pressure in the capillary is low. The larger pressure difference between them will lead to a higher gas flow rate in the elbow, which will increase the fluctuation of the gas density in the elbow; the final research shows that the diameters of the electron injection channel, 100 μm and 150 μm are more suitable for the application in the “direct + bend” cascade acceleration capillary structure design.In summary, the calculation model of gas flow in the curved capillary constructed in this paper can accurately predict the gas flow distribution in the tube. The double-sided hedged curved capillary can generate a relatively stable plasma density channel, and the electron injection channel diameters, 100 μm and 150 μm, are more suitable for application in the “straight + curved” cascade accelerating capillary structure design. The research results obtained are expected to provide theoretical guidance and technical support for the laser wake cascade acceleration experiment based on the curved capillary with gradually changing curvature.
      通信作者: 刘振宇, zhenyu.liu@sjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11991074)和上海交通大学激光等离子体教育部重点实验室2022年度开放课题资助的课题.
      Corresponding author: Liu Zhen-Yu, zhenyu.liu@sjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11991074) and the 2022 Open Project of Key Laboratory for Laser Plasma (Ministry of Education), Shanghai Jiao Tong University, China.
    [1]

    陈民, 刘峰, 李博原, 翁苏明, 陈黎明, 盛政明, 张杰 2020 强激光与粒子束 32 7Google Scholar

    Chen M, Liu F, Li B Y, Weng S M, Chen L M, Sheng Z M, Zhang J 2020 High Power Laser Particle Beams 32 7Google Scholar

    [2]

    Esarey E, Schroeder C B, Leemans W P 2009 Rev. Mod. Phys. 81 1229Google Scholar

    [3]

    Geddes C G R, Toth C, van Tilborg J, Esarey E, Schroeder C B, Bruhwiler D, Nieter C, Cary J, Leemans W P 2004 Nature 431 538Google Scholar

    [4]

    Leemans W, Esarey E 2009 Phys. Today 62 44Google Scholar

    [5]

    Gonsalves A J, Rowlands-Rees T P, Broks B H, van der Mullen J J, Hooker S M 2007 Phys. Rev. Lett. 98 025002Google Scholar

    [6]

    Zigler A, Botton M, Ferber Y, Johansson G, Pollak O, Dekel E, Filippi F, Anania M P, Bisesto F, Pompili R, Ferrario M 2018 Appl. Phys. Lett. 113 183505Google Scholar

    [7]

    祝昕哲, 李博原, 刘峰, 李建龙, 毕择武, 鲁林, 远晓辉, 闫文超, 陈民, 陈黎明, 盛政明, 张杰 2022 物理学报71 095202Google Scholar

    Zhu X Z, Li B Y, Liu F, Li J L, Bi Z W, Lu L, Yuan X H, Yan W C, Chen M, Chen L M, Sheng Z M, Zhang J 2022 Acta Phys. Sin. 71 095202Google Scholar

    [8]

    Gonsalves A J, Nakamura K, Daniels J, Benedetti C, Pieronek C, de Raadt T C H, Steinke S, Bin J H, Bulanov S S, van Tilborg J, Geddes C G R, Schroeder C B, Toth C, Esarey E, Swanson K, Fan-Chiang L, Bagdasarov G, Bobrova N, Gasilov V, Korn G, Sasorov P, Leemans W P 2019 Phys. Rev. Lett. 122 084801Google Scholar

    [9]

    Steinke S, van Tilborg J, Benedetti C, Geddes C G, Schroeder C B, Daniels J, Swanson K K, Gonsalves A J, Nakamura K, Matlis N H, Shaw B H, Esarey E, Leemans W P 2016 Nature 530 190Google Scholar

    [10]

    Luo J, Chen M, Wu W Y, Weng S M, Sheng Z M, Schroeder C B, Jaroszynski D A, Esarey E, Leemans W P, Mori W B, Zhang J 2018 Phys. Rev. Lett. 120 154801Google Scholar

    [11]

    Biagioni A, Anania M P, Arjmand S, Behar E, Costa G, Del Dotto A, Ferrario M, Galletti M, Lollo V, Pellegrini D, Di Pirro G, Pompili R, Raz Y, Russo G, Zigler A 2021 Plasma Phys. Control. Fusion 63 115013Google Scholar

    [12]

    Yang Y, Wen C 2017 Sep. Purif. Technol. 174 22Google Scholar

    [13]

    Peng M, Chen L, Ji W T, Tao W Q 2020 Int. J. Heat Mass Transf. 157 119982Google Scholar

    [14]

    Qin M, Liao K, Chen S, He G, Zhang S 2023 Chem. Eng. Res. Des. 190 605Google Scholar

    [15]

    闫寒, 张文明, 胡开明, 刘岩, 孟光 2013 物理学报 62 174701Google Scholar

    Yan H, Zhang W M, Hu K M, Liu Y, Meng G 2013 Acta Phys. Sin. 62 174701Google Scholar

    [16]

    闫晨帅, 徐进良 2020 物理学报 69 044401Google Scholar

    Yan C S, Xu J L 2020 Acta Phys. Sin. 69 044401Google Scholar

    [17]

    顾娟, 黄荣宗, 刘振宇, 吴慧英 2017 物理学报 66 114701Google Scholar

    Gu J, Huang R Z, Liu Z Y, Wu H Y 2017 Acta Phys. Sin. 66 114701Google Scholar

    [18]

    Dai W, Wu H, Liu Z Y, Zhang S 2022 Phys. Rev. E 105 025310Google Scholar

    [19]

    Jeong N, Lin C L, Choi D H 2006 J. Micromech. Microeng. 16 1741Google Scholar

    [20]

    王佐, 刘雁, 张家忠 2016 物理学报 65 014703Google Scholar

    Wang Z, Liu Y, Zhang J Z 2016 Acta Phys. Sin. 65 014703Google Scholar

    [21]

    Xue H, Fan Q, Shu C 2000 Probab. Eng. Eng. Mech. 15 213Google Scholar

    [22]

    Wang M, Li Z 2004 Int. J. Heat Fluid Flow 25 975Google Scholar

    [23]

    Shariati V, Ahmadian M H, Roohi E 2019 Sci. Rep. 9 17183Google Scholar

    [24]

    Li J L, Li B Y, Zhu X Z, Bi Z W, Wen X H, Lu L, Yuan X H, Liu F, Chen M 2023 High Power Laser Sci. Eng. 11 E58Google Scholar

    [25]

    Deng H, Zhang Z, Chen M, Li J, Cao Q, Hu X 2023 Materials 16 3278Google Scholar

    [26]

    Zhu X Z, Li B Y, Liu F, Li J L, Bi Z W, Ge X L, Deng H Y, Zhang Z Y, Cui P L, Lu L, Yan W C, Yuan X H, Chen L M, Cao Q, Liu Z Y, Sheng Z M, Chen M, Zhang J 2023 Phys. Rev. Lett. 130 215001Google Scholar

  • 图 1  放电毛细管结构示意图

    Fig. 1.  Schematic diagram of discharge capillary structure.

    图 2  弯曲毛细管结构网格划分及边界设置

    Fig. 2.  Mesh division and boundary setting of curved capillary structure.

    图 3  实验等离子体密度与模拟气体密度对比图 (a)实验等离子体密度; (b)模拟毛细管中心轴线上气体密度

    Fig. 3.  Comparison of experimental plasma density and simulated gas density: (a) Experimental plasma density; (b) simulated gas density on the central axis of the capillary.

    图 4  模拟计算域气体流速分布

    Fig. 4.  Gas flow velocity distribution in the simulated computational domain.

    图 5  不同充气方式和充气压力下模拟管内气体密度 (a)单侧直冲; (b)双侧对冲

    Fig. 5.  Gas density in the simulated tube under different inflation methods and inflation pressures: (a) One-side inflation; (b) double-side inflation

    图 6  不同充气压力下, 不同充气方式管内气体流线图 (a) 68950 Pa单侧直冲; (b) 68950 Pa双侧对冲; (c) 137900 Pa单侧直冲; (d) 137900 Pa双侧对冲

    Fig. 6.  Gas streamlines in the simulated pipe with different inflation methods: (a) One-side inflation under 68950 Pa; (b) double-side inflation under 68950 Pa; (c) one-side inflation under 137900 Pa; (d) double-side inflation under 137900 Pa.

    图 7  不同充气口位置毛细管中心轴线上气体密度

    Fig. 7.  Gas density on the central axis of the capillary at different gas filling positions.

    图 8  充气位置距毛细管两端12 mm时, 充气口之间流线图

    Fig. 8.  Streamline diagram between the left and right inflation port at 12 mm from both ends of the capillary.

    图 9  充气位置距毛细管两端12 mm时, 充气口之间压力云图

    Fig. 9.  Pressure cloud diagram between the left and right inflation port at 12 mm from both ends of the capillary.

    图 10  “直+弯”放电毛细管结构示意图

    Fig. 10.  Schematic diagram of the “straight + curved” discharge capillary.

    图 11  不同电子注入通道口径下弯曲毛细管内的气体密度分布 (a)直管径50 μm; (b)直管径100 μm; (c)直管径150 μm; (d)直管径200 μm; (e)直管径300 μm

    Fig. 11.  Gas density distribution in curved capillary tubes with different electron injection channel diameters: (a) 50 μm diameter; (b) 100 μm diameter; (c) 150 μm diameter; (d) 200 μm diameter; (e) 300 μm diameter.

    图 12  不同电子注入通道口径下弯曲毛细管内的气体流速分布图 (a)直管径50 μm; (b)直管径100 μm; (c)直管径150 μm; (d)直管径200 μm; (e)直管径300 μm

    Fig. 12.  Gas velocity distribution in curved capillary tubes with different electron injection channel diameters: (a) 50 μm diameter; (b) 100 μm diameter; (c) 150 μm diameter; (d) 200 μm diameter; (e) 300 μm diameter.

    表 1  网格无关性验证

    Table 1.  Grid independence verification.

    网格数 管内气体
    流速/(m·s–1)
    与前计算值的相对
    误差绝对值/%
    6581 586 59.23
    11524 368 29.50
    26044 533 15.48
    39977 452 4.63
    70628 432 3.57
    160003 448
    下载: 导出CSV

    表 2  物性参数表

    Table 2.  Physical parameters.

    比热容/
    (J·kg–1)
    导热系数/
    (W·m–1·K–1)
    黏度/
    (Pa·s)
    分子质量/
    (kg·kmol–1)
    氦气 5193 0.152 1.99 × 10–5 4.0026
    下载: 导出CSV
  • [1]

    陈民, 刘峰, 李博原, 翁苏明, 陈黎明, 盛政明, 张杰 2020 强激光与粒子束 32 7Google Scholar

    Chen M, Liu F, Li B Y, Weng S M, Chen L M, Sheng Z M, Zhang J 2020 High Power Laser Particle Beams 32 7Google Scholar

    [2]

    Esarey E, Schroeder C B, Leemans W P 2009 Rev. Mod. Phys. 81 1229Google Scholar

    [3]

    Geddes C G R, Toth C, van Tilborg J, Esarey E, Schroeder C B, Bruhwiler D, Nieter C, Cary J, Leemans W P 2004 Nature 431 538Google Scholar

    [4]

    Leemans W, Esarey E 2009 Phys. Today 62 44Google Scholar

    [5]

    Gonsalves A J, Rowlands-Rees T P, Broks B H, van der Mullen J J, Hooker S M 2007 Phys. Rev. Lett. 98 025002Google Scholar

    [6]

    Zigler A, Botton M, Ferber Y, Johansson G, Pollak O, Dekel E, Filippi F, Anania M P, Bisesto F, Pompili R, Ferrario M 2018 Appl. Phys. Lett. 113 183505Google Scholar

    [7]

    祝昕哲, 李博原, 刘峰, 李建龙, 毕择武, 鲁林, 远晓辉, 闫文超, 陈民, 陈黎明, 盛政明, 张杰 2022 物理学报71 095202Google Scholar

    Zhu X Z, Li B Y, Liu F, Li J L, Bi Z W, Lu L, Yuan X H, Yan W C, Chen M, Chen L M, Sheng Z M, Zhang J 2022 Acta Phys. Sin. 71 095202Google Scholar

    [8]

    Gonsalves A J, Nakamura K, Daniels J, Benedetti C, Pieronek C, de Raadt T C H, Steinke S, Bin J H, Bulanov S S, van Tilborg J, Geddes C G R, Schroeder C B, Toth C, Esarey E, Swanson K, Fan-Chiang L, Bagdasarov G, Bobrova N, Gasilov V, Korn G, Sasorov P, Leemans W P 2019 Phys. Rev. Lett. 122 084801Google Scholar

    [9]

    Steinke S, van Tilborg J, Benedetti C, Geddes C G, Schroeder C B, Daniels J, Swanson K K, Gonsalves A J, Nakamura K, Matlis N H, Shaw B H, Esarey E, Leemans W P 2016 Nature 530 190Google Scholar

    [10]

    Luo J, Chen M, Wu W Y, Weng S M, Sheng Z M, Schroeder C B, Jaroszynski D A, Esarey E, Leemans W P, Mori W B, Zhang J 2018 Phys. Rev. Lett. 120 154801Google Scholar

    [11]

    Biagioni A, Anania M P, Arjmand S, Behar E, Costa G, Del Dotto A, Ferrario M, Galletti M, Lollo V, Pellegrini D, Di Pirro G, Pompili R, Raz Y, Russo G, Zigler A 2021 Plasma Phys. Control. Fusion 63 115013Google Scholar

    [12]

    Yang Y, Wen C 2017 Sep. Purif. Technol. 174 22Google Scholar

    [13]

    Peng M, Chen L, Ji W T, Tao W Q 2020 Int. J. Heat Mass Transf. 157 119982Google Scholar

    [14]

    Qin M, Liao K, Chen S, He G, Zhang S 2023 Chem. Eng. Res. Des. 190 605Google Scholar

    [15]

    闫寒, 张文明, 胡开明, 刘岩, 孟光 2013 物理学报 62 174701Google Scholar

    Yan H, Zhang W M, Hu K M, Liu Y, Meng G 2013 Acta Phys. Sin. 62 174701Google Scholar

    [16]

    闫晨帅, 徐进良 2020 物理学报 69 044401Google Scholar

    Yan C S, Xu J L 2020 Acta Phys. Sin. 69 044401Google Scholar

    [17]

    顾娟, 黄荣宗, 刘振宇, 吴慧英 2017 物理学报 66 114701Google Scholar

    Gu J, Huang R Z, Liu Z Y, Wu H Y 2017 Acta Phys. Sin. 66 114701Google Scholar

    [18]

    Dai W, Wu H, Liu Z Y, Zhang S 2022 Phys. Rev. E 105 025310Google Scholar

    [19]

    Jeong N, Lin C L, Choi D H 2006 J. Micromech. Microeng. 16 1741Google Scholar

    [20]

    王佐, 刘雁, 张家忠 2016 物理学报 65 014703Google Scholar

    Wang Z, Liu Y, Zhang J Z 2016 Acta Phys. Sin. 65 014703Google Scholar

    [21]

    Xue H, Fan Q, Shu C 2000 Probab. Eng. Eng. Mech. 15 213Google Scholar

    [22]

    Wang M, Li Z 2004 Int. J. Heat Fluid Flow 25 975Google Scholar

    [23]

    Shariati V, Ahmadian M H, Roohi E 2019 Sci. Rep. 9 17183Google Scholar

    [24]

    Li J L, Li B Y, Zhu X Z, Bi Z W, Wen X H, Lu L, Yuan X H, Liu F, Chen M 2023 High Power Laser Sci. Eng. 11 E58Google Scholar

    [25]

    Deng H, Zhang Z, Chen M, Li J, Cao Q, Hu X 2023 Materials 16 3278Google Scholar

    [26]

    Zhu X Z, Li B Y, Liu F, Li J L, Bi Z W, Ge X L, Deng H Y, Zhang Z Y, Cui P L, Lu L, Yan W C, Yuan X H, Chen L M, Cao Q, Liu Z Y, Sheng Z M, Chen M, Zhang J 2023 Phys. Rev. Lett. 130 215001Google Scholar

  • [1] 万城亮, 潘俞舟, 朱丽萍, 李鹏飞, 张浩文, 赵卓彦, 袁华, 樊栩宏, 孙文胜, 杜战辉, 陈乾, 崔莹, 廖天发, 魏晓慧, 王天琦, 陈熙萌, 李公平, ReinholdSchuch, 张红强. 基于玻璃毛细管的大气环境MeV质子微束的产生与测量. 物理学报, 2024, 73(10): 104101. doi: 10.7498/aps.73.20240301
    [2] 石志奇, 何晓, 刘琳, 陈德华, 王秀明. 毛细管压力作用下的非饱和双重孔隙介质中弹性波传播. 物理学报, 2023, 72(6): 069101. doi: 10.7498/aps.72.20222063
    [3] 祝昕哲, 李博原, 刘峰, 李建龙, 毕择武, 鲁林, 远晓辉, 闫文超, 陈民, 陈黎明, 盛政明, 张杰. 面向激光等离子体尾波加速的毛细管放电实验研究. 物理学报, 2022, 71(9): 095202. doi: 10.7498/aps.71.20212435
    [4] 刘涛, 赵永蓬, 崔怀愈, 刘晓琳. 基于双程放大的毛细管放电69.8 nm激光增益特性. 物理学报, 2019, 68(2): 025201. doi: 10.7498/aps.68.20181617
    [5] 吕月兰, 尹向宝, 孙伟民, 刘永军, 苑立波. 染料掺杂液晶填充毛细管的激光发射特性研究. 物理学报, 2018, 67(4): 044204. doi: 10.7498/aps.67.20171844
    [6] 刘涛, 赵永蓬, 丁宇洁, 李小强, 崔怀愈, 姜杉. 毛细管放电类氖氩69.8 nm激光增益特性研究. 物理学报, 2017, 66(15): 155201. doi: 10.7498/aps.66.155201
    [7] 王通, 王晓方. 激光尾场加速电子的密度梯度注入的解析处理. 物理学报, 2016, 65(4): 044102. doi: 10.7498/aps.65.044102
    [8] 赵永蓬, 李连波, 崔怀愈, 姜杉, 刘涛, 张文红, 李伟. 毛细管放电69.8nm激光强度空间分布特性研究. 物理学报, 2016, 65(9): 095201. doi: 10.7498/aps.65.095201
    [9] 周宏伟, 王林伟, 徐升华, 孙祉伟. 微重力条件下与容器连通的毛细管中的毛细流动研究. 物理学报, 2015, 64(12): 124703. doi: 10.7498/aps.64.124703
    [10] 董克攻, 吴玉迟, 郑无敌, 朱斌, 曹磊峰, 何颖玲, 马占南, 刘红杰, 洪伟, 周维民, 赵宗清, 焦春晔, 温贤伦, 魏来, 臧华平, 余金清, 谷渝秋, 张保汉, 王晓方. 充气型放电毛细管的密度测量及磁流体模拟. 物理学报, 2011, 60(9): 095202. doi: 10.7498/aps.60.095202
    [11] 郭铁英, 娄淑琴, 李宏雷, 简水生. 用于制作光子晶体光纤的毛细管的拉制理论与实验分析. 物理学报, 2009, 58(7): 4724-4730. doi: 10.7498/aps.58.4724
    [12] 王 剑, 谷渝秋, 蔡达峰, 焦春晔, 吴玉迟, 何颖玲, 滕 建, 杨向东, 王 磊, 赵宗清. 激光尾波场中光子加速研究. 物理学报, 2008, 57(10): 6471-6475. doi: 10.7498/aps.57.6471
    [13] 韦中超, 戴峭峰, 汪河洲. 毛细管中柱对称类面心结构胶体晶体的光谱特性. 物理学报, 2006, 55(2): 733-736. doi: 10.7498/aps.55.733
    [14] 陈 民, 盛政明, 郑 君, 张 杰. 强激光与高密度气体相互作用中电子和离子加速的数值模拟. 物理学报, 2006, 55(5): 2381-2388. doi: 10.7498/aps.55.2381
    [15] 曹士英, 张志刚, 柴 路, 王清月, 杨建军, 朱晓农. 束缚高压强气体中成丝的空心毛细管芯径对光谱展宽的影响. 物理学报, 2006, 55(10): 5294-5297. doi: 10.7498/aps.55.5294
    [16] 曹士英, 王 颖, 张志刚, 柴 路, 王清月, 杨建军, 朱晓农. 空心毛细管束缚高压气体成丝的光谱演变. 物理学报, 2006, 55(9): 4734-4738. doi: 10.7498/aps.55.4734
    [17] 陈宝振, 黄祖洽. 飞秒强激光在充气毛细管中产生三次谐波的效率. 物理学报, 2005, 54(1): 113-116. doi: 10.7498/aps.54.113
    [18] 赵永蓬, 程元丽, 王 骐, 林 靖, 崛田荣喜. 毛细管放电激励软x射线激光的产生时间. 物理学报, 2005, 54(6): 2731-2734. doi: 10.7498/aps.54.2731
    [19] 程元丽, 栾伯含, 吴寅初, 赵永蓬, 王 骐, 郑无敌, 彭惠民, 杨大为. 预脉冲在毛细管快放电软x射线激光中的作用. 物理学报, 2005, 54(10): 4979-4984. doi: 10.7498/aps.54.4979
    [20] 陈宝振, 黄祖洽. 充气毛细管中飞秒激光四波混频的理论描述. 物理学报, 2004, 53(12): 4218-4223. doi: 10.7498/aps.53.4218
计量
  • 文章访问数:  4009
  • PDF下载量:  140
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-30
  • 修回日期:  2023-07-01
  • 上网日期:  2023-07-22
  • 刊出日期:  2023-09-20

/

返回文章
返回