Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ultrafast carrier kinetics at surface and interface of Sb2Se3 film by transient reflectance

Huang Hao Niu Ben Tao Ting-Ting Luo Shi-Ping Wang Ying Zhao Xiao-Hui Wang Kai Li Zhi-Qiang Dang Wei

Citation:

Ultrafast carrier kinetics at surface and interface of Sb2Se3 film by transient reflectance

Huang Hao, Niu Ben, Tao Ting-Ting, Luo Shi-Ping, Wang Ying, Zhao Xiao-Hui, Wang Kai, Li Zhi-Qiang, Dang Wei
PDF
HTML
Get Citation
  • Antimony selenide (Sb2Se3) is a promising low-cost and environmentally-friendly semiconductor photovoltaic material. The power conversion efficiency of Sb2Se3 solar cells has been improved to $ \sim $10% in the past few years. The carrier recombination transfer dynamics is significant factor that affects the efficiency of Sb2Se3 solar cells. In this work, carrier recombination on the Sb2Se3 surface and carrier transfer dynamics at the CdS/Sb2Se3 heterojunction interface are systematically investigated by surface transient reflectance. According to the evolution of relative reflectance change ${{\Delta }{R}}/{{R}}$, the carrier thermalization and band gap renormalization time of Sb2Se3 are determined to be in a range from 0.2 to 0.5 ps, and carrier cooling time is estimated to be about 3-4 ps. Our results also demonstrate that both free electron and shallow-trapped electron transfer occur at the Sb2Se3/CdS interface after photo excitation. Our results present a method of explaining the transient reflectance of Sb2Se3 and enhancing the understanding of carrier kinetics at Sb2Se3 surface and Sb2Se3/CdS interface.
      Corresponding author: Dang Wei, dangwei@hbu.edu.cn
    • Funds: Project supported by the National Key Technologies Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2019YFB503404), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 21503066), the Research Foundation of Education Bureau of Hebei Province, China (Grant No. ZD2019037), the Natural Science Foundation for Distinguished Young Scholars of Hebei Province, China (Grant No. F2019201289), and the Young Scientists Fund of the Natural Science Foundation of Hebei Province, China (Grant No. F2017201136)
    [1]

    Chen C, Li W Q, Zhou Y, Chen C, Luo M, Liu X S, Zeng K, Yang B, Zhang C W, Han J B, Tang J 2015 Appl. Phys. Lett. 107 043905

    [2]

    Kosek F, Tulka J, Štourač L 1978 Czech. J. Phys. B 28 325Google Scholar

    [3]

    Madelung O, Rössler U, Schulz M 2004 Semiconductor: Data Handbook (Vol. 41) (New York: Springer-Verlag Berlin Heidelbergy) pp622–623

    [4]

    Zhou Y, Leng M Y, Xia Z, Zhong J, Song H B, Liu X S, Yang B, Zhang J P, Chen J, Zhou K H, Han J B, Cheng Y B, Tang J 2014 Adv. Energy Mater. 4 1301846Google Scholar

    [5]

    Liu T, Liang X Y, Liu Y F, Li X L, Wang S F, Mai Y H, Li Z Q 2021 Adv. Sci. 8 2100868Google Scholar

    [6]

    Tang R F, Wang X M, Lian W T, Huang J L, Wei Q, Huang M L, Yin Y W, Jiang C H, Yang S F, Xing G C, Chen S Y, Zhu C F, Hao X J, Green M A, Chen T 2020 Nat. Energy 5 587Google Scholar

    [7]

    Chen G H, Wang W L, Wang C D, Ding T, Yang, Q 2015 Adv. Sci. 2 1500109Google Scholar

    [8]

    Zhou Y D, Wei F, Qian X Q, Yu L D, Han X G, Fan G L, Chen Y, Zhu J 2019 ACS Appl. Mater. Interfaces 11 19712Google Scholar

    [9]

    Wu W, Li Y, Liang L M, Hao Q Y, Zhang J, Liu H, Liu C C 2019 J. Phys. Chem. C 123 14781Google Scholar

    [10]

    Yang W, Lee S, Kwon H C, Tan J W, Lee H, Park J, Oh Y J, Choi H, Moon J 2018 ACS Nano 12 11088Google Scholar

    [11]

    Wang K, Chen C, Liao H Y, Wang, S Y, Tang J, Beard M C, Yang Y 2019 J. Phys. Chem. Lett. 10 4881Google Scholar

    [12]

    Grad L, Rohr von F, Zhao J Z, Hengsberger M, Osterwalder J 2020 Phys. Rev. Mater. 4 105404Google Scholar

    [13]

    Singh P, Ghorai N, Thakur A, Ghosh H N 2021 J. Phys. Chem. C 125 5197Google Scholar

    [14]

    Zhang Z Y, Hu M C, Jia T Y, Du J, Chen C, Wang C W, Liu Z Z, Shi T C, Tang J, Leng Y X 2021 ACS Energy Lett. 6 1740Google Scholar

    [15]

    Huang M L, Xu P, Han D, Tang J, Chen S Y 2019 ACS Appl. Mater. Interfaces 11 15564Google Scholar

    [16]

    Henry C H, Logan R A, Bertness K A 1981 J. Appl. Phys. 52 4457Google Scholar

    [17]

    Pashinkin A S, Malkova A S, Mikhailova M S 2008 Russ. J. Phys. Chem. A 82 1035Google Scholar

    [18]

    Zhang Y, Das Sarma S 2005 Phys. Rev. B 72 125303Google Scholar

    [19]

    Wolff P A 1962 Phys. Rev. 126 405Google Scholar

    [20]

    滕利华, 王霞, 赖天树 2011 物理学报 60 047201Google Scholar

    Teng L H, Wang X, Lai T S 2011 Acta Phys. Sin. 60 047201Google Scholar

    [21]

    Prabhu S S, Vengurlekar A S 2004 J. Appl. Phys. 95 7803Google Scholar

    [22]

    Shank C V, Fork R L, Leheny R F, Shah J 1979 Phys. Rev. Lett. 42 112Google Scholar

    [23]

    Tian L, Mario di L, Zannier V, Catone D, Colonna S, O’Keeffe P, Turchini S, Zema N, Rubini S, Martelli F 2016 Phys. Rev. B 94 165442Google Scholar

    [24]

    Joly A G, Williams J R, Chambers S A, Xiong G, Hess W P, Laman D M 2006 J. Appl. Phys. 99 053521Google Scholar

    [25]

    Bennett R B, Soref A R, Del Alamo A J 1990 IEEE J. Quantum Electron. 26 113Google Scholar

    [26]

    Di Cicco A, Polzoni G, Gunnella R, Trapananti A, Minicucci M, Rezvani S J, Catone D, Di Mario L, Pelli Cresi J S, Turchini S, Martelli F 2020 Sci. Rep. 10 17363Google Scholar

    [27]

    Li Z Q, Liang X Y, Li G, Liu H X, Zhang H Y, Guo J X, Chen J W, Shen K, San X Y, Yu W, Schropp Ruud E I, Mai Y H 2019 Nat. Commun. 10 125Google Scholar

    [28]

    Jani H, Duan L Z 2020 Phys. Rev. Appl. 13 054010Google Scholar

    [29]

    Syrbu N N, Zalamai V V, Stamov I G, Beril S I 2020 Beilstein J. Nanotechnol. 11 1045Google Scholar

    [30]

    Wen Y C, Chen C Y, Shen C H, Gwo S, Sun C K 2006 Appl. Phys. Lett. 89 232114Google Scholar

    [31]

    Lobad A, Schlie L A 2004 J. Appl. Phys. 95 97

    [32]

    Nozik A J 2008 Nat. Energy 3 170Google Scholar

    [33]

    Li D B, Yin X X, Grice C R, Guan L, Song Z N, Wang C L, Chen C, Li K H, Cimaroli A J, Awni R A, Zhao D W, Song H S, Tang W H, Yan Y F, Tang J 2018 Nano Energy 49 346Google Scholar

    [34]

    Liu X S, Chen J, Luo M, Leng M Y, Xia Z, Zhou Y, Qin S K, Xue D J, Lv L, Huang H, Niu D M, Tang J 2014 ACS Appl. Mater. Interfaces 6 10687Google Scholar

  • 图 1  (a)两种厚度Sb2Se3薄膜在760和860 nm处$ {{\Delta }{R}}/{{R}} $归一化曲线比较; (b) Sb2Se3/空气界面$ \dfrac{\partial{R}}{{\partial n}} $$ \dfrac{\partial{R}}{{\partial k}} $曲线; (c) Sb2Se3/空气界面$ {{\Delta }{R}}/{{R}} $随温度的变化, 其中R为300 K时的界面反射率, $ {\Delta }{R} $为相对300 K条件下界面反射率的变化

    Figure 1.  (a) Comparisons of $ {{\Delta }{R}}/{{R}} $ curves at probe wavelengths of 760 and 860 nm from Sb2Se3 film of two thicknesses, where the $ {{\Delta }{R}}/{{R}} $ curves have been normalized; (b) $ \dfrac{\partial{R}}{{\partial n}} $ and $ \dfrac{\partial{R}}{{\partial k}} $ curves of Sb2Se3/air interface; (c) dependence of $ {{\Delta }{R}}/{{R}} $ at Sb2Se3/air interface on temperature, where R is the reflectivity of the interface at 300 K, and $ {\Delta }{R} $ is the reflectivity difference with respect to R of the interface at 300 K.

    图 2  Sb2Se3薄膜载流子弛豫过程示意图

    Figure 2.  Schematic diagram of carrier relaxation in Sb2Se3 film.

    图 3  (a) Sb2Se3与Sb2Se3/CdS薄膜的吸收光谱; (b) Sb2Se3与Sb2Se3/CdS薄膜的XRD图谱; (c) Sb2Se3薄膜的表面形貌; (d) Sb2Se3薄膜的截面形貌

    Figure 3.  (a) Absorbance spectra of Sb2Se3 and Sb2Se3/CdS film; (b) XRD diffraction spectra of Sb2Se3 and Sb2Se3/CdS film; (c) surface morphologies of Sb2Se3 film; (d) cross-sectional morphology of Sb2Se3 film.

    图 4  (a) Sb2Se3薄膜的相对反射率变化$ {{\Delta }{R}}/{{R}} $的二维图像(激发波长550 nm, 载流子浓度1.55 × 1020cm–3); (b)典型时间延迟对应的$ {{\Delta }{R}}/{{R}} $谱; (c)典型探测波长对应的$ {{\Delta }{R}}/{{R}} $动力学曲线

    Figure 4.  (a) Two-dimensional image of relative reflectivity change $ {{\Delta }{R}}/{{R}} $ of Sb2Se3 film excited by 550 nm laser (300 nJ); (b) $ {{\Delta }{R}}/{{R}} $ with various probe wavelengths at three typical time delays; (c) evolutions of $ {{\Delta }{R}}/{{R}} $ of four typical probe wavelengths

    图 5  (a)不同激发光子能量条件下860 nm探测波长处$ {{\Delta }{R}}/{{R}} $动力学曲线比较; (b)不同激发光子能量条件下载流子热化和带隙收缩时间; (c)不同载流子浓度条件下860 nm探测波长处$ {{\Delta }{R}}/{{R}} $动力学曲线比较(激发波长550 nm); (d)不同载流子浓度条件下载流子热化和带隙收缩时间

    Figure 5.  (a) Comparisons of kinetic curves of $ {{\Delta }{R}}/{{R}} $ at probe wavelength 860 nm with different excitation photon energies; (b) carrier thermalization and band gap renormalization times with different excitation photon energies; (c) comparisons of kinetic curves of $ {{\Delta }{R}}/{{R}} $ with different carrier concentrations (excitation wavelength of 550 nm); (d) carrier thermalization and band gap renormalization time with different carrier concentrations.

    图 6  (a)不同激发光子能量条件下探测波长760 nm处${{\Delta }{R}}/{{R}}$的动力学过程II比较; (b)不同激发光子能量条件下${{\Delta }{R}}/{{R}}$的动力学过程II的衰减寿命

    Figure 6.  (a) Comparisons of kinetics II of ${{\Delta }{R}}/{{R}}$ at 760 nm with different excitation photon energies; (b) decay lifetime of kinetics II of ${{\Delta }{R}}/{{R}}$ with different excitation energies.

    图 7  (a)典型时间延迟条件下Sb2Se3/CdS的相对反射率变化$ {{\Delta }{R}}/{{R}} $谱(激发波长650 nm); (b) Sb2Se3和Sb2Se3/CdS在495 nm处${{\Delta }{R}}/{{R}}$动力学曲线对比

    Figure 7.  (a) Relative reflectance change $ {{\Delta }{R}}/{{R}} $ spectra of Sb2Se3/CdS at three time delays (excitation wavelength of 650 nm); (b) comparison of kinetic curves of $ {{\Delta }{R}}/{{R}} $ at 495 nm for Sb2Se3 and Sb2Se3/CdS.

    图 8  4种载流子浓度条件下Sb2Se3与Sb2Se3/CdS在760 nm处的$ {{\Delta }{R}}/{{R}} $的动力学曲线对比 (a) $ 4.79\times {10}^{19} $ cm–3; (b) 9.59 × 1019 cm–3; (c) 1.44 × 1020 cm–3; (d) 1.92 × 1020 cm–3

    Figure 8.  Comparisons of kinetics of $ {{\Delta }{R}}/{{R}} $ at 760 nm for Sb2Se3 and Sb2Se3/CdS under four different carrier concentrations of (a) $ 4.79\times {10}^{19} $ cm–3, (b) 9.59 × 1019 cm–3, (c) 1.44 × 1020 cm–3, (d) 1.92 × 1020 cm–3

    图 9  Sb2Se3/CdS界面处的主要载流子过程(CB, 导带; VB, 价带)

    Figure 9.  Main carrier processes at the interface of Sb2Se3/CdS (CB, conduction band; VB, valence band).

  • [1]

    Chen C, Li W Q, Zhou Y, Chen C, Luo M, Liu X S, Zeng K, Yang B, Zhang C W, Han J B, Tang J 2015 Appl. Phys. Lett. 107 043905

    [2]

    Kosek F, Tulka J, Štourač L 1978 Czech. J. Phys. B 28 325Google Scholar

    [3]

    Madelung O, Rössler U, Schulz M 2004 Semiconductor: Data Handbook (Vol. 41) (New York: Springer-Verlag Berlin Heidelbergy) pp622–623

    [4]

    Zhou Y, Leng M Y, Xia Z, Zhong J, Song H B, Liu X S, Yang B, Zhang J P, Chen J, Zhou K H, Han J B, Cheng Y B, Tang J 2014 Adv. Energy Mater. 4 1301846Google Scholar

    [5]

    Liu T, Liang X Y, Liu Y F, Li X L, Wang S F, Mai Y H, Li Z Q 2021 Adv. Sci. 8 2100868Google Scholar

    [6]

    Tang R F, Wang X M, Lian W T, Huang J L, Wei Q, Huang M L, Yin Y W, Jiang C H, Yang S F, Xing G C, Chen S Y, Zhu C F, Hao X J, Green M A, Chen T 2020 Nat. Energy 5 587Google Scholar

    [7]

    Chen G H, Wang W L, Wang C D, Ding T, Yang, Q 2015 Adv. Sci. 2 1500109Google Scholar

    [8]

    Zhou Y D, Wei F, Qian X Q, Yu L D, Han X G, Fan G L, Chen Y, Zhu J 2019 ACS Appl. Mater. Interfaces 11 19712Google Scholar

    [9]

    Wu W, Li Y, Liang L M, Hao Q Y, Zhang J, Liu H, Liu C C 2019 J. Phys. Chem. C 123 14781Google Scholar

    [10]

    Yang W, Lee S, Kwon H C, Tan J W, Lee H, Park J, Oh Y J, Choi H, Moon J 2018 ACS Nano 12 11088Google Scholar

    [11]

    Wang K, Chen C, Liao H Y, Wang, S Y, Tang J, Beard M C, Yang Y 2019 J. Phys. Chem. Lett. 10 4881Google Scholar

    [12]

    Grad L, Rohr von F, Zhao J Z, Hengsberger M, Osterwalder J 2020 Phys. Rev. Mater. 4 105404Google Scholar

    [13]

    Singh P, Ghorai N, Thakur A, Ghosh H N 2021 J. Phys. Chem. C 125 5197Google Scholar

    [14]

    Zhang Z Y, Hu M C, Jia T Y, Du J, Chen C, Wang C W, Liu Z Z, Shi T C, Tang J, Leng Y X 2021 ACS Energy Lett. 6 1740Google Scholar

    [15]

    Huang M L, Xu P, Han D, Tang J, Chen S Y 2019 ACS Appl. Mater. Interfaces 11 15564Google Scholar

    [16]

    Henry C H, Logan R A, Bertness K A 1981 J. Appl. Phys. 52 4457Google Scholar

    [17]

    Pashinkin A S, Malkova A S, Mikhailova M S 2008 Russ. J. Phys. Chem. A 82 1035Google Scholar

    [18]

    Zhang Y, Das Sarma S 2005 Phys. Rev. B 72 125303Google Scholar

    [19]

    Wolff P A 1962 Phys. Rev. 126 405Google Scholar

    [20]

    滕利华, 王霞, 赖天树 2011 物理学报 60 047201Google Scholar

    Teng L H, Wang X, Lai T S 2011 Acta Phys. Sin. 60 047201Google Scholar

    [21]

    Prabhu S S, Vengurlekar A S 2004 J. Appl. Phys. 95 7803Google Scholar

    [22]

    Shank C V, Fork R L, Leheny R F, Shah J 1979 Phys. Rev. Lett. 42 112Google Scholar

    [23]

    Tian L, Mario di L, Zannier V, Catone D, Colonna S, O’Keeffe P, Turchini S, Zema N, Rubini S, Martelli F 2016 Phys. Rev. B 94 165442Google Scholar

    [24]

    Joly A G, Williams J R, Chambers S A, Xiong G, Hess W P, Laman D M 2006 J. Appl. Phys. 99 053521Google Scholar

    [25]

    Bennett R B, Soref A R, Del Alamo A J 1990 IEEE J. Quantum Electron. 26 113Google Scholar

    [26]

    Di Cicco A, Polzoni G, Gunnella R, Trapananti A, Minicucci M, Rezvani S J, Catone D, Di Mario L, Pelli Cresi J S, Turchini S, Martelli F 2020 Sci. Rep. 10 17363Google Scholar

    [27]

    Li Z Q, Liang X Y, Li G, Liu H X, Zhang H Y, Guo J X, Chen J W, Shen K, San X Y, Yu W, Schropp Ruud E I, Mai Y H 2019 Nat. Commun. 10 125Google Scholar

    [28]

    Jani H, Duan L Z 2020 Phys. Rev. Appl. 13 054010Google Scholar

    [29]

    Syrbu N N, Zalamai V V, Stamov I G, Beril S I 2020 Beilstein J. Nanotechnol. 11 1045Google Scholar

    [30]

    Wen Y C, Chen C Y, Shen C H, Gwo S, Sun C K 2006 Appl. Phys. Lett. 89 232114Google Scholar

    [31]

    Lobad A, Schlie L A 2004 J. Appl. Phys. 95 97

    [32]

    Nozik A J 2008 Nat. Energy 3 170Google Scholar

    [33]

    Li D B, Yin X X, Grice C R, Guan L, Song Z N, Wang C L, Chen C, Li K H, Cimaroli A J, Awni R A, Zhao D W, Song H S, Tang W H, Yan Y F, Tang J 2018 Nano Energy 49 346Google Scholar

    [34]

    Liu X S, Chen J, Luo M, Leng M Y, Xia Z, Zhou Y, Qin S K, Xue D J, Lv L, Huang H, Niu D M, Tang J 2014 ACS Appl. Mater. Interfaces 6 10687Google Scholar

  • [1] Juan Ting, Xing Jia-He, Zeng Fan-Cong, Zheng Xin, Xu Lin. Performance of perovskite solar cells based on SnO2:DPEPO hybrid electron transport layer. Acta Physica Sinica, 2024, 73(19): 198401. doi: 10.7498/aps.73.20240827
    [2] Zhang Leng, Shen Yu-Hao, Tang Chao-Yang, Wu Kong-Ping, Zhang Peng-Zhan, Liu Fei, Hou Ji-Wei. Effect of uniaxial strain on Hole mobility of Sb2Se3. Acta Physica Sinica, 2024, 73(11): 117101. doi: 10.7498/aps.73.20240175
    [3] Zhang Leng, Zhang Peng-Zhan, Liu Fei, Li Fang-Zheng, Luo Yi, Hou Ji-Wei, Wu Kong-Ping. Carrier mobility in doped Sb2Se3 based on deformation potential theory. Acta Physica Sinica, 2024, 73(4): 047101. doi: 10.7498/aps.73.20231406
    [4] Gao Jun-Ling, Zhao Huai-Zhou, Xu Yan-Li. Effects of nano-SiO2 on thermoelectric properties of Mg3Sb2-based materials. Acta Physica Sinica, 2023, 72(11): 117102. doi: 10.7498/aps.72.20230176
    [5] Tian Xiao-Rang, Jia Rui. Characterization of defects in CIGSe solar cells through admittance spectroscopy. Acta Physica Sinica, 2023, 72(17): 178801. doi: 10.7498/aps.72.20230292
    [6] Zhu Yu-Hao, Yuan Xiang, Wu Yong, Wang Jian-Guo. Non-radiative charge transfer process of proton impcating B atom. Acta Physica Sinica, 2023, 72(16): 163401. doi: 10.7498/aps.72.20230470
    [7] Zhou Qing-Zhong, Guo Feng, Zhang Ming-Rui, You Qing-Liang, Xiao Biao, Liu Ji-Yan, Liu Cui, Liu Xue-Qing, Wang Liang. Impact of charge carrier recombination and energy disorder on the open-circuit voltage of polymer solar cells. Acta Physica Sinica, 2020, 69(4): 046101. doi: 10.7498/aps.69.20191699
    [8] Wei Ying-Qiang, Xu Lei, Peng Qi-Ming, Wang Jian-Pu. Rashba effect in perovskites and its influences on carrier recombination. Acta Physica Sinica, 2019, 68(15): 158506. doi: 10.7498/aps.68.20190675
    [9] Wang Qian, Liu Wei-Guo, Gong Lei, Wang Li-Guo, Li Ya-Qing. Determination of carrier bulk lifetime and surface recombination velocity in semiconductor from double-wavelength free carrier absorption. Acta Physica Sinica, 2018, 67(21): 217201. doi: 10.7498/aps.67.20181509
    [10] Nie Guo-Zheng, Zou Dai-Feng, Zhong Chun-Liang, Xu Ying. Analysis of improved characteristics of pentacene thin-film transistor with an embedded copper oxide layer. Acta Physica Sinica, 2015, 64(22): 228502. doi: 10.7498/aps.64.228502
    [11] Mu Zhi-Dong, Wei Qi-Ying. Study of dielectronic recombination and resonance transfer and excitation with X-ray emission for Fe24++H2 collision. Acta Physica Sinica, 2014, 63(8): 083402. doi: 10.7498/aps.63.083402
    [12] Nie Guo-Zheng, Peng Jun-Biao, Zhou Ren-Long. Organic field-effect transistor with low-cost CuI/Al bilayer electrode. Acta Physica Sinica, 2011, 60(12): 127304. doi: 10.7498/aps.60.127304
    [13] Feng Wen-Tian, Ma Xin-Wen, Zhu Xiao-Long, Zhang Shao-Feng, Liu Hui-Ping, Xu Shen-Yue, Qian Dong-Bin, Li Bin, Yan Shun-Cheng, Zhang Da-Cheng, Meng Ling-Jie, Zhang Peng-Ju. Momentum image of emission electrons in transfer ionization process of slow He2+ colliding on He. Acta Physica Sinica, 2010, 59(12): 8471-8477. doi: 10.7498/aps.59.8471
    [14] Qiao Shi-Zhu, Zhao Jun-Qing, Jia Zhen-Feng, Zhang Ning-Yu, Wang Feng-Xiang, Fu Gang, Ji Yan-Ju. Formation and manipulation of singlet and triplet in spin-polarized organic light-emitting devices. Acta Physica Sinica, 2010, 59(5): 3564-3570. doi: 10.7498/aps.59.3564
    [15] Liu Wei-Qing, Kou Dong-Xing, Hu Lin-Hua, Huang Yang, Jiang Nian-Quan, Dai Song-Yuan. Processes of charge transport and transfer in dye-sensitized solar cell by electrical and optical modulation techniques. Acta Physica Sinica, 2010, 59(7): 5141-5147. doi: 10.7498/aps.59.5141
    [16] Zuo Fang-Yuan, Wang Yang, Wu Yi-Qun, Lai Tian-Shu. Study of ultrafast carrier dynamics in amorphous Ge2Sb2Te5 film by femtosecond-resolved reflectivity spectroscopy. Acta Physica Sinica, 2009, 58(10): 7250-7254. doi: 10.7498/aps.58.7250
    [17] Dong Chen-Zhong, Fu Yan-Biao. Theoretical studies of dielectronic recombination and resonant transfer excitation for highly ionized Cu18+ ions. Acta Physica Sinica, 2006, 55(1): 107-111. doi: 10.7498/aps.55.107
    [18] Hu Jian-Min, Xin Jiang-Bo, Lü Qiang, Wang Yue-Yuan, Rong Jian-Ying. Powders (Sb2Te3)0.75(1-x)(Bi2Te3)0.25(1-x)(Sb2Se3)x prepared by mechanical alloying and thermoelectric properties of cold-pressed and s. Acta Physica Sinica, 2006, 55(9): 4843-4848. doi: 10.7498/aps.55.4843
    [19] . Acta Physica Sinica, 2002, 51(2): 430-433. doi: 10.7498/aps.51.430
    [20] YANG DA-LIN, WAN MEI-XIANG, ZHANG JING-WEN, QIAN REN-YUAN. DRIFT MOBILITIES OF CARRIERS IN AMORPHOUS FILMS OF PVCz-TNF CHARGE-TRANSFER COMPLEXES. Acta Physica Sinica, 1982, 31(12): 104-109. doi: 10.7498/aps.31.104-2
  • supplement 066402-20211714补充材料.pdf supplement
Metrics
  • Abstract views:  7741
  • PDF Downloads:  266
  • Cited By: 0
Publishing process
  • Received Date:  14 September 2021
  • Accepted Date:  01 November 2021
  • Available Online:  26 January 2022
  • Published Online:  20 March 2022

/

返回文章
返回