-
Antimony selenide (Sb2Se3) has advantages of low-toxicity, abundant and excellent photoelectric properties. It is widely considered as one of the most promising light-harvesting materials for thin-film solar cells. However, the power conversion efficiency of the Sb2Se3 thin-film solar cell is still far inferior to that of cadmium telluride, copper indium gallium selenium and perovskite solar cells. As is well known, the Sb2Se3 solar cell performance is closely related to the light absorber layer (crystallinity, composition, bulk defect density, etc.), PN heterojunction quality (charge carrier concertation, energy band alignment, interface defect density, etc.) and back-contact barrier formation, which determines the process of carrier generation, excitation, relaxation, transfer and recombination. The low fill factor is one of the core problems that limit further efficiency improvement of Sb2Se3 solar cells, which can be attributed to the high potential barrier at the back contact between the Mo electrode and Sb2Se3 absorption layer. In this work, a heat treatment is applied to the Mo electrode to generate a MoO2 buffer layer. It can be found that this buffer layer can inhibit MoSe2 film growth, exhibiting better Ohmic contact with Sb2Se3, and reducing the back contact barrier of the solar cell. The Sb2Se3 thin film is prepared by an effective combination reaction involving sputtered and selenized Sb precursor. After introducing the MoO2 buffer layer, it can also promote the formation of (hk1) (including (211), (221), (002), etc.) preferentially oriented Sb2Se3 thin films with average grain size over 1 μm. And the ratio of Sb to Se is optimized from 0.57 to 0.62, approaching to the stoichiometric ratio of Sb2Se3 thin film and inhibiting the formation of Vse and SbSe defects. Finally, it enhances the open-circuit voltage (VOC) of solar cells from 0.473 to 0.502 V, the short-circuit current density (JSC) from 22.71 to 24.98 mA/cm2, and the fill factor (FF) from 46.90% to 56.18%, thereby increasing the power conversion efficiency (PCE) from 5.04% to 7.05%. This work proposes a facile strategy for interfacial treatment and elucidates the related carrier transport enhancement mechanism, thus paving a bright avenue to breaking through the efficiency bottleneck of Sb2Se3 thin film solar cells.
-
Keywords:
- antimony selenide /
- thin-film solar cell /
- back contact /
- power conversion efficiency
[1] Duan Z T, Liang X Y, Feng Y, Ma H Y, Liang B L, Wang Y, Luo S P, Wang S F, Schropp R E I, Mai Y H, Li Z Q 2022 Adv. Mater. 34 2202969Google Scholar
[2] Chen S, Liu T X, Zheng Z H, Ishaq M, Liang G X, Fan P, Chen T, Tang J 2022 J Energy Chem. 67 508Google Scholar
[3] Zhou Y, Wang L, Chen S Y, Qin S K, Liu X S, Chen J, Xue D J, Luo M, Cao Y Z, Chen Y B, Sargent E H, Tang J 2015 Nat. Photonics 9 409Google Scholar
[4] Hadke S, Huang M L, Chen C, Tay Y F, Chen S Y, Tang J, Wong L 2022 Chem. Rev. 122 10170Google Scholar
[5] Rajpure K Y, Bhosale C H 2002 Mater. Chem. Phys. 73 6Google Scholar
[6] Choi Y C, Mandal T N, Yang W S, Lee Y H, Im S K, Noh J H, Seok S 2014 Angew. Chem. Int. Ed. 126 1353Google Scholar
[7] Zhou Y, Leng M Y, Xia Z, Zhong J, Song H B, Liu X S, Yang B, Zhang J P, Chen J, Zhou K H, Han J B, Cheng Y B, Tang J 2014 Adv. Energy Mater. 4 1301864Google Scholar
[8] Wang X, Tang R, Yin Y W, Ju H X, Li S A, Zhu C F, Chen T 2019 Sol. Energy Mater. Sol. Cells 189 5Google Scholar
[9] Wang L, Li D B, Li K H, Chen C, Deng H X, Gao L, Zhao Y, Jiang F, Li L Y, Huang F, He Y S, Song H S, Niu G D, Tang J 2017 Nat. Energy 2 17046Google Scholar
[10] Wen X X, Chen C, Lu S C, Li K H, Kondrotas R, Zhao Y, Chen W H, Gao L, Wang C, Zhang J, Niu G D, Tang J 2018 Nat. Commun. 9 2179Google Scholar
[11] Liang G X, Zheng Z H, Fan P, Luo J T, Hu J G, Zhang X H, Ma H L, Fan B, Luo Z K, Zhang D P 2018 Sol. Energy Mater. Sol. Cells 174 263Google Scholar
[12] Liang G X, Zhang X H, Ma H L, Hu J G, Fan B, Luo Z K, Zheng Z H, Luo J T, Fan P 2017 Sol. Energy Mater. Sol. Cells 160 257Google Scholar
[13] Tang R, Zheng Z H, Su Z H, Li X J, Wei Y D, Zhang X H, Fu Y Q, Luo J T, Fan P, Liang G X 2019 Nano Energy 64 103929Google Scholar
[14] Liang G X, Luo Y D, Chen S, Tang R, Zheng Z H, Li X J, Liu X S, Liu Y K, Li Y F, Chen X Y, Su Z H, Zhang X H, Ma H L, Fan P 2020 Nano Energy 73 104806Google Scholar
[15] Tang R, Chen S, Zheng Z H, Su Z H, Luo J T, Fan P, Zhang X H, Tan J, Liang G X 2022 Adv. Mater. 34 2109078Google Scholar
[16] Li J J, Zhang Y, Zhao W, Nam D, Cheong H, Wu L, Zhou Z Q, Sun Y 2015 Adv. Energy Mater. 5 1402178Google Scholar
[17] Neugebohrn N, Hammer M S, Sayed M H, Michalowski P, Stroth C, Parisi J, Richter M 2017 J. Alloys Compd. 725 69Google Scholar
[18] Li Z Q, Chen X, Zhu H B, Chen J W, Guo Y T, Zhang C, Zhang W, Niu X N, Mai Y H 2017 Sol. Energy Mater. Sol. Cells 161 190Google Scholar
[19] Zhang J Y, Guo H F, Jia X G, Ning H, Ma C H, Wang X Q, Yuan N Y, Ding J N 2021 Sol. Energy 214 231Google Scholar
[20] Wu H R, Zhou X C, Li J D, Li X M, Li B W, Fei W W, Zhou J X, Yin J, Guo W L 2018 Small 14 1802276Google Scholar
[21] Lopez S C, Lopez I O P, Lara M C, Garcia A E, Sanchez M C M, Hernandez J A R, Lopez M C 2018 Phys. Status Solidi A. 215 1800226Google Scholar
[22] 曹宇, 刘超颖, 赵耀, 那艳玲, 江崇旭, 王长刚, 周静, 于皓 2022 物理学报 71 038802Google Scholar
Cao Y, Liu C Y, Zhao Y, Na Y L, Jiang C X, Wang C G, Zhou J, Yu H 2022 Acta Phys. Sin. 71 038802Google Scholar
[23] Luo Y D, Tang R, Chen S, Hu J G, Liu Y K, Li Y F, Liu X S, ZhengZ H, Su Z H, Ma X F, Fan P, Zhang X H, Ma H L, Chen Z G, Liang G X 2020 Chem. Eng. J. 393 124599
[24] 曹宇, 祝新运, 陈翰博, 王长刚, 张鑫童, 侯秉东, 申明仁, 周静 2018 物理学报 67 247301Google Scholar
Cao Y, Zhu X Y, Chen H B, Wang C G, Zhang X T, Hou B D, Shen MR, Zhou J 2018 Acta Phys. Sin. 67 247301Google Scholar
[25] Luo M, Leng M Y, Liu X S, Chen J, Chen C, Qin S K, Tang J 2014 Appl. Phys. Lett. 104 173904Google Scholar
-
图 1 Sb2Se3薄膜太阳电池制备流程 (a) MoO2制备过程; (b) Mo/MoO2/Sb2Se3背接触结构图; (c) 磁控溅射制备Sb薄膜; (d) 采用后硒化工艺生长Sb2Se3薄膜; (e) 化学水浴法制备CdS薄膜; (f) 磁控溅射制备ITO薄膜; (g) Sb2Se3薄膜太阳电池结构图
Figure 1. Fabrication process of Sb2Se3 solar cells: (a) MoO2 preparation; (b) back contact structure of Mo/MoO2/Sb2Se3; (c) sputtering Sb thin film; (d) post-selenation for Sb2Se3 thin film; (e) chemical bath deposition for CdS thin film; (f) sputtering ITO thin film; (g) Sb2Se3 solar cell sturcture.
图 2 (a) W-MoO2和WO-MoO2样品的XRD图谱; (b) W-MoO2和WO-MoO2样品的拉曼图谱; (c) WO-MoO2样品的表面形貌; (d) W-MoO2样品的表面形貌; (e) WO-MoO2样品的剖面形貌图; (f) W-MoO2样品的剖面形貌图
Figure 2. (a) XRD patterns of W-MoO2 and WO-MoO2 sample; (b) Raman patterns of W-MoO2 and WO-MoO2 sample; (c) surface morphology of WO-MoO2 sample; (d) surface morphology of W-MoO2 thin film; (e) cross sectional image of WO-MoO2 sample; (f) cross sectional image of W-MoO2 sample.
图 3 (a) W-MoO2和WO-MoO2样品上生长Sb2Se3薄膜的XRD图谱; (b) 关于(360), (211), (221)和(002)衍射峰的TC值; (c) WO-MoO2样品上生长Sb2Se3薄膜的表面形貌; (d) W-MoO2样品上生长Sb2Se3薄膜的表面形貌; (e) WO-MoO2样品上生长Sb2Se3薄膜太阳电池的剖面形貌图; (f) W-MoO2样品上生长Sb2Se3薄膜太阳电池的剖面形貌图
Figure 3. (a) XRD patterns of Sb2Se3 thin film prepared on W-MoO2 and WO-MoO2 samples; (b) TC value comparation of the diffraction peaks (360), (211), (221) and (002); (c) morphology of Sb2Se3 thin film prepared on WO-MoO2 samples; (d) morphology of Sb2Se3 thin film prepared on W-MoO2 samples; (e) cross sectional image of Sb2Se3 solar cells based on WO-MoO2 sample; (f) cross sectional image of Sb2Se3 solar cells based on W-MoO2 sample.
图 4 (a) MoO2引入前后太阳电池的J - V曲线; (b) MoO2引入前后太阳电池的外量子效率EQE (左)和相应的积分电流(右); (c) MoO2引入前后Sb2Se3的禁带宽度; (d) MoO2引入前后乌尔巴赫能量(Eu)
Figure 4. (a) J -V curve of solar cells before and after MoO2 introduction; (b) EQE curve (left) and integrating current (right) before and after MoO2 introduction; (c) Sb2Se3 bandgap calculated from EQE before and after MoO2 introduction; (d) Urbach energy (Eu) before and after MoO2 introduction.
表 1 Sb2Se3薄膜的化学成分
Table 1. Composition in Sb2Se3 thin films.
Samples Sb atomic percentage/% Se atomic percentage/% Sb/Se ratio WO- MoO2 36.35 63.65 0.57 W-MoO2 38.27 61.73 0.62 表 2 太阳电池性能参数对比
Table 2. Comparison of solar cell performance.
Devices VOC/V JSC/(mA·cm–2) FF/% PCE/% WO-MoO2 0.473 22.71 46.90 5.04 W-MoO2 0.502 24.98 56.18 7.05 表 3 太阳电池在暗态环境下测量的电学性能参数
Table 3. Solar cell performance in dark state.
Devices G/ (mS·cm–2) R/ (Ω·cm2) A J0/(mA·cm–2) WO-MoO2 3.49 10.02 2.15 2.65×10–2 W-MoO2 0.05 8.95 1.96 6.16×10–3 表 4 太阳电池的界面性能参数
Table 4. Solar cell interface performance.
Devices Ea/eV Ni/cm–3 x/nm Vbi/mV Slop/(A·V–1) Resistance/Ω WO-MoO2 1.16 2.10×1016 272.18 525 0.072 13.89 W-MoO2 1.22 1.61×1016 282.44 550 0.097 10.31 -
[1] Duan Z T, Liang X Y, Feng Y, Ma H Y, Liang B L, Wang Y, Luo S P, Wang S F, Schropp R E I, Mai Y H, Li Z Q 2022 Adv. Mater. 34 2202969Google Scholar
[2] Chen S, Liu T X, Zheng Z H, Ishaq M, Liang G X, Fan P, Chen T, Tang J 2022 J Energy Chem. 67 508Google Scholar
[3] Zhou Y, Wang L, Chen S Y, Qin S K, Liu X S, Chen J, Xue D J, Luo M, Cao Y Z, Chen Y B, Sargent E H, Tang J 2015 Nat. Photonics 9 409Google Scholar
[4] Hadke S, Huang M L, Chen C, Tay Y F, Chen S Y, Tang J, Wong L 2022 Chem. Rev. 122 10170Google Scholar
[5] Rajpure K Y, Bhosale C H 2002 Mater. Chem. Phys. 73 6Google Scholar
[6] Choi Y C, Mandal T N, Yang W S, Lee Y H, Im S K, Noh J H, Seok S 2014 Angew. Chem. Int. Ed. 126 1353Google Scholar
[7] Zhou Y, Leng M Y, Xia Z, Zhong J, Song H B, Liu X S, Yang B, Zhang J P, Chen J, Zhou K H, Han J B, Cheng Y B, Tang J 2014 Adv. Energy Mater. 4 1301864Google Scholar
[8] Wang X, Tang R, Yin Y W, Ju H X, Li S A, Zhu C F, Chen T 2019 Sol. Energy Mater. Sol. Cells 189 5Google Scholar
[9] Wang L, Li D B, Li K H, Chen C, Deng H X, Gao L, Zhao Y, Jiang F, Li L Y, Huang F, He Y S, Song H S, Niu G D, Tang J 2017 Nat. Energy 2 17046Google Scholar
[10] Wen X X, Chen C, Lu S C, Li K H, Kondrotas R, Zhao Y, Chen W H, Gao L, Wang C, Zhang J, Niu G D, Tang J 2018 Nat. Commun. 9 2179Google Scholar
[11] Liang G X, Zheng Z H, Fan P, Luo J T, Hu J G, Zhang X H, Ma H L, Fan B, Luo Z K, Zhang D P 2018 Sol. Energy Mater. Sol. Cells 174 263Google Scholar
[12] Liang G X, Zhang X H, Ma H L, Hu J G, Fan B, Luo Z K, Zheng Z H, Luo J T, Fan P 2017 Sol. Energy Mater. Sol. Cells 160 257Google Scholar
[13] Tang R, Zheng Z H, Su Z H, Li X J, Wei Y D, Zhang X H, Fu Y Q, Luo J T, Fan P, Liang G X 2019 Nano Energy 64 103929Google Scholar
[14] Liang G X, Luo Y D, Chen S, Tang R, Zheng Z H, Li X J, Liu X S, Liu Y K, Li Y F, Chen X Y, Su Z H, Zhang X H, Ma H L, Fan P 2020 Nano Energy 73 104806Google Scholar
[15] Tang R, Chen S, Zheng Z H, Su Z H, Luo J T, Fan P, Zhang X H, Tan J, Liang G X 2022 Adv. Mater. 34 2109078Google Scholar
[16] Li J J, Zhang Y, Zhao W, Nam D, Cheong H, Wu L, Zhou Z Q, Sun Y 2015 Adv. Energy Mater. 5 1402178Google Scholar
[17] Neugebohrn N, Hammer M S, Sayed M H, Michalowski P, Stroth C, Parisi J, Richter M 2017 J. Alloys Compd. 725 69Google Scholar
[18] Li Z Q, Chen X, Zhu H B, Chen J W, Guo Y T, Zhang C, Zhang W, Niu X N, Mai Y H 2017 Sol. Energy Mater. Sol. Cells 161 190Google Scholar
[19] Zhang J Y, Guo H F, Jia X G, Ning H, Ma C H, Wang X Q, Yuan N Y, Ding J N 2021 Sol. Energy 214 231Google Scholar
[20] Wu H R, Zhou X C, Li J D, Li X M, Li B W, Fei W W, Zhou J X, Yin J, Guo W L 2018 Small 14 1802276Google Scholar
[21] Lopez S C, Lopez I O P, Lara M C, Garcia A E, Sanchez M C M, Hernandez J A R, Lopez M C 2018 Phys. Status Solidi A. 215 1800226Google Scholar
[22] 曹宇, 刘超颖, 赵耀, 那艳玲, 江崇旭, 王长刚, 周静, 于皓 2022 物理学报 71 038802Google Scholar
Cao Y, Liu C Y, Zhao Y, Na Y L, Jiang C X, Wang C G, Zhou J, Yu H 2022 Acta Phys. Sin. 71 038802Google Scholar
[23] Luo Y D, Tang R, Chen S, Hu J G, Liu Y K, Li Y F, Liu X S, ZhengZ H, Su Z H, Ma X F, Fan P, Zhang X H, Ma H L, Chen Z G, Liang G X 2020 Chem. Eng. J. 393 124599
[24] 曹宇, 祝新运, 陈翰博, 王长刚, 张鑫童, 侯秉东, 申明仁, 周静 2018 物理学报 67 247301Google Scholar
Cao Y, Zhu X Y, Chen H B, Wang C G, Zhang X T, Hou B D, Shen MR, Zhou J 2018 Acta Phys. Sin. 67 247301Google Scholar
[25] Luo M, Leng M Y, Liu X S, Chen J, Chen C, Qin S K, Tang J 2014 Appl. Phys. Lett. 104 173904Google Scholar
Catalog
Metrics
- Abstract views: 7610
- PDF Downloads: 130
- Cited By: 0