-
Antimony sulfide selenide thin film solar cells have drawn great interest in the field of photovoltaic due to their advantages of simple preparation method, abundant raw materials, non-toxic and stable photoelectric properties. After the development in recent years, the photoelectric conversion efficiency of antimony sulfide selenide solar cells has exceeded 10%, which has great development potential. In this work, the carrier recombination near n/i interface in antimony sulfide selenide solar cells is studied. It is found that the characteristics of the n/i interface are affected by the interfacial electron mobility and energy band structure. The improvement of the interface electron mobility can make the electrons more effectively transferred to the electron transport layer, and realize the effective improvement of the short circuit current density and fill factor of the device. Moreover, the introduction of ZnO/Zn1–xMgxO double electron transport layer structure can further optimize the performance of antimony sulfide selenide solar cells. The change of Zn1–xMgxO energy level position can adjust the energy level distribution of the interface and light absorption layer simultaneously. When the conduction band energy level of Zn1–xMgxO is –4.2 eV and the corresponding Mg content is 20%, the effect of restraining the carrier recombination is the most obvious, and the antimony sulfide selenide solar cell also obtains the best device performance. Finally, under the ideal condition of removing the defect state, the antimony sulfide selenide solar cells with 600 nm in thickness can achieve 20.77% theoretical photoelectric conversion efficiency. The research results provide theoretical and technical support for further optimizing and developing the antimony sulfide selenide solar cells.
-
Keywords:
- thin film solar cells /
- antimony sulfide selenide /
- interface characteristics /
- double electron transport layer
[1] Righetto M, Lim S S, Giovanni D, Lim J W M, Zhang Q, Ramesh S, Tay Y K E, Sum T C 2020 Nat. Commun. 11 1
[2] Metzger W K, Grover S, Lu D, Colegrove E, Moseley J, Perkins C L, Li X, Mallick R, Zhang W, Malik R, Kephart J, Jiang C S, Kuciauskas D, Albin D S, Al-Jassim M M, Xiong G, Gloeckler M 2019 Nat. Energy. 4 837Google Scholar
[3] 曹宇, 蒋家豪, 刘超颖, 凌同, 孟丹, 周静, 刘欢, 王俊尧 2021 物理学报 70 128802Google Scholar
Cao Y, Jiang J H, Liu C Y, Ling T, Meng D, Zhou J, Liu H, Wang J Y 2021 Acta Phys. Sin. 70 128802Google Scholar
[4] Birant G, Wild J De, Kohl T, Buldu D G, Brammertz G, Meuris M, Poortmans J, Vermang B 2020 Sol. Energy 207 1002Google Scholar
[5] Chen Y, Song K, Xu X L, Yao G, Wu Z Y 2020 Sol. Energy 195 121Google Scholar
[6] Li D B, Bista S S, Song Z N, Awni R A, Subedi K K, Shrestha N, Pradhan P, Chen L, Bastola E, Grice C R, Phillips A B, Heben M J, Ellingson R J, Yan Y F 2020 Nano Energy 73 104835Google Scholar
[7] Wang Y R, Gu S, Liu G L, Zhang L P, Liu Z, Lin R X, Xiao K, Luo X, Shi J H, Du J L, Meng F Y, Li L D, Liu Z X, Tan H R 2021 Sci. China Chem. 64 1
[8] Cao Y, Zhu X Y, Jiang J H, Liu C Y, Zhou J, Ni J, Zhang J J, Pang J B 2020 Sol. Energy Mater. Sol. Cells 206 110279Google Scholar
[9] Zhou J, Chen H B, Zhang X T, Chi K L, Cai Y M, Cao Y, Pang J B 2021 J. Alloys Compd. 862 158703Google Scholar
[10] 薛丁江, 石杭杰, 唐江 2015 物理学报 64 038406Google Scholar
Xue D J, Shi H J, Tang J 2015 Acta Phys. Sin. 64 038406Google Scholar
[11] Li K H, Li F, Chen C, Jiang P F, Lu S C, Wang S Y, Lu Y, Tu G L, Guo J J, Shui L Q, Liu Z, Song B X, Tang J 2021 Nano Energy 86 106101Google Scholar
[12] Lian W T, Jiang C H, Yin Y W, Tang R F, Li G, Zhang L J, Che B, Chen T 2021 Nat. Commun. 12 1Google Scholar
[13] Lee S J, Sung S J, Yang K J, Kang J K, Kim J Y, Do Y S, Kim D H 2020 ACS Appl. Energy Mater. 3 12644Google Scholar
[14] Luo J T, Xiong W, Liang G X, Liu Y K, Yang H Z, Zheng Z H, Zhang X H, Fan P, Chen S 2020 J. Alloys Compd. 826 154235Google Scholar
[15] Xiao Y P, Wang H P, Kuang H 2020 Opt. Mater. 108 110414Google Scholar
[16] Wang X M, Tang R F, Jiang C H, Lian W T, Ju H X, Jiang G S, Li Z Q, Zhu C F, Chen T 2020 Adv. Energy Mater. 10 2002341Google Scholar
[17] Li Z Q, Liang X Y, Li G, Liu H X, Zhang H Y, Guo J X, Chen J W, Shen K, San X Y, Yu W, Schropp R E I, Mai Y H 2019 Nat. Commun. 10 1Google Scholar
[18] Islam M T, Thakur A K 2020 Sol. Energy 202 304Google Scholar
[19] Ning H, Guo H F, Zhang J Y, Wang X, Jia X G, Qiu J H, Yuan N Y, Ding J N 2021 Sol. Energy Mater. Sol. Cells 221 110816Google Scholar
[20] Cai Z H, Dai C M, Chen S Y 2020 Sol. RRL 4 1900503Google Scholar
[21] Ishaq M, Chen S, Farooq U, Azam M, Deng H, Su Z H, Zheng Z H, Fan P, Song H S, Liang G X 2020 Sol. RRL 4 2000551Google Scholar
[22] Lei H W, Chen J J, Tan Z J, Fang G J 2019 Sol. RRL 3 1900026Google Scholar
[23] Cao Y, Liu C Y, Jiang J H, Zhu X Y, Zhou J, Ni J, Zhang J J, Pang J B, Rummeli M H, Zhou J W, Liu H, Cuniberti G 2021 Sol. RRL 5 2000800Google Scholar
[24] Yang B, Qin S K, Xue D J, Chen C, He YS, Niu D M, Huang H, Tang J 2017 Prog. Photovolt:Res. Appl. 25 113Google Scholar
[25] Wu C Y, Zhang L J, Ding H H, Ju H X, Jin X, Wang X M, Zhu C F, Chen T 2018 Sol. Energy Mater. Sol. Cells 183 52Google Scholar
[26] Lu S C, Zhao Y, Wen X X, Xue D J, Chen C, Li K H, Kondrotas R, Wang C, Tang J 2019 Sol. RRL 3 1800280Google Scholar
[27] Tang R F, Wang X M, Lian W T, Huang J L, Wei Q, Huang M L, Yin Y W, Jiang C H, Yang S F, Xing G C, Chen S Y, Zhu C F, Hao X J, Green M A, Chen T 2020 Nat. Energy. 5 587Google Scholar
[28] Li K H, Lu Y, Ke X X, Li S, Lu S C, Wang C, Wang S Y, Chen C, Tang J 2020 Sol. RRL 4 2000220Google Scholar
[29] 曹宇, 祝新运, 陈翰博, 王长刚, 张鑫童, 侯秉东, 申明仁, 周静 2018 物理学报 67 247301Google Scholar
Cao Y, Zhu X X, Chen H B, Wang C G, Zhang X T, Hou B D, Shen M R, Zhou J 2018 Acta Phys. Sin. 67 247301Google Scholar
[30] Weng T F, Yan M, Yu X, Qiao Q, Zhou Y T, Li Z H, Wei J, Yu X M 2021 Opt. Mater. 121 111516Google Scholar
[31] Wang W H, Wang X M, Chen G L, Chen B W, Cai H L, Chen T, Chen S Y, Huang Z G, Zhu C F, Zhang Y 2018 Sol. RRL 2 1800208Google Scholar
[32] Ishaq M, Deng H, Yuan S J, Zhang H, Khan J, Farooq U, Song H S, Tang J 2018 Sol. RRL 2 1800144Google Scholar
[33] Gharibshahian I, Orouji A A, Sharbati S 2020 Sol. Energy Mater. Sol. Cells 212 110581Google Scholar
[34] Li K H, Kondrotas R, Chen C, Lu S C, Wen X X, Li D B, Luo J J, Zhao Y, Tang J 2018 Sol. Energy 167 10Google Scholar
[35] Liu Y M, Sun Y, Rockett A 2012 Sol. Energy Mater. Sol. Cells 98 124Google Scholar
[36] Cao Y, Zhu X Y, Chen H B, Zhang X T, Zhou J, Hu Z Y, Pang J B 2019 Sol. Energy Mater. Sol. Cells 200 109945Google Scholar
[37] Chen C, Tang J 2020 ACS Energy Lett. 5 2294Google Scholar
-
图 4 不同Zn1–xMgxO层导带能级硫硒化锑太阳电池的器件性能 (a) J-V曲线; (b) 能带图; (c) 电子浓度分布; (d) 载流子复合率分布
Figure 4. Device performance of the Sb2(S0.7Se0.3)3 solar cells with different conduction band energy levels of Zn1–xMgxO layer: (a) J-V curves; (b) energy band diagram; (c) electron density distribution; (d) carrier recombination rate distribution.
表 1 不同Zn1–xMgxO层导带能级硫硒化锑太阳电池的器件性能参数
Table 1. Device performance of Sb2(S1–xSex)3 solar cells with different conduction band energy levels of Zn1–xMgxO layer.
导带能级/eV Voc/V Jsc/(mA·cm–2) FF/% PCE/% –4.0 1.08 17.27 60.44 11.23 –4.2 1.08 17.73 61.28 11.70 –4.4 1.08 17.42 58.10 10.90 –4.6 1.07 16.94 54.39 9.83 -
[1] Righetto M, Lim S S, Giovanni D, Lim J W M, Zhang Q, Ramesh S, Tay Y K E, Sum T C 2020 Nat. Commun. 11 1
[2] Metzger W K, Grover S, Lu D, Colegrove E, Moseley J, Perkins C L, Li X, Mallick R, Zhang W, Malik R, Kephart J, Jiang C S, Kuciauskas D, Albin D S, Al-Jassim M M, Xiong G, Gloeckler M 2019 Nat. Energy. 4 837Google Scholar
[3] 曹宇, 蒋家豪, 刘超颖, 凌同, 孟丹, 周静, 刘欢, 王俊尧 2021 物理学报 70 128802Google Scholar
Cao Y, Jiang J H, Liu C Y, Ling T, Meng D, Zhou J, Liu H, Wang J Y 2021 Acta Phys. Sin. 70 128802Google Scholar
[4] Birant G, Wild J De, Kohl T, Buldu D G, Brammertz G, Meuris M, Poortmans J, Vermang B 2020 Sol. Energy 207 1002Google Scholar
[5] Chen Y, Song K, Xu X L, Yao G, Wu Z Y 2020 Sol. Energy 195 121Google Scholar
[6] Li D B, Bista S S, Song Z N, Awni R A, Subedi K K, Shrestha N, Pradhan P, Chen L, Bastola E, Grice C R, Phillips A B, Heben M J, Ellingson R J, Yan Y F 2020 Nano Energy 73 104835Google Scholar
[7] Wang Y R, Gu S, Liu G L, Zhang L P, Liu Z, Lin R X, Xiao K, Luo X, Shi J H, Du J L, Meng F Y, Li L D, Liu Z X, Tan H R 2021 Sci. China Chem. 64 1
[8] Cao Y, Zhu X Y, Jiang J H, Liu C Y, Zhou J, Ni J, Zhang J J, Pang J B 2020 Sol. Energy Mater. Sol. Cells 206 110279Google Scholar
[9] Zhou J, Chen H B, Zhang X T, Chi K L, Cai Y M, Cao Y, Pang J B 2021 J. Alloys Compd. 862 158703Google Scholar
[10] 薛丁江, 石杭杰, 唐江 2015 物理学报 64 038406Google Scholar
Xue D J, Shi H J, Tang J 2015 Acta Phys. Sin. 64 038406Google Scholar
[11] Li K H, Li F, Chen C, Jiang P F, Lu S C, Wang S Y, Lu Y, Tu G L, Guo J J, Shui L Q, Liu Z, Song B X, Tang J 2021 Nano Energy 86 106101Google Scholar
[12] Lian W T, Jiang C H, Yin Y W, Tang R F, Li G, Zhang L J, Che B, Chen T 2021 Nat. Commun. 12 1Google Scholar
[13] Lee S J, Sung S J, Yang K J, Kang J K, Kim J Y, Do Y S, Kim D H 2020 ACS Appl. Energy Mater. 3 12644Google Scholar
[14] Luo J T, Xiong W, Liang G X, Liu Y K, Yang H Z, Zheng Z H, Zhang X H, Fan P, Chen S 2020 J. Alloys Compd. 826 154235Google Scholar
[15] Xiao Y P, Wang H P, Kuang H 2020 Opt. Mater. 108 110414Google Scholar
[16] Wang X M, Tang R F, Jiang C H, Lian W T, Ju H X, Jiang G S, Li Z Q, Zhu C F, Chen T 2020 Adv. Energy Mater. 10 2002341Google Scholar
[17] Li Z Q, Liang X Y, Li G, Liu H X, Zhang H Y, Guo J X, Chen J W, Shen K, San X Y, Yu W, Schropp R E I, Mai Y H 2019 Nat. Commun. 10 1Google Scholar
[18] Islam M T, Thakur A K 2020 Sol. Energy 202 304Google Scholar
[19] Ning H, Guo H F, Zhang J Y, Wang X, Jia X G, Qiu J H, Yuan N Y, Ding J N 2021 Sol. Energy Mater. Sol. Cells 221 110816Google Scholar
[20] Cai Z H, Dai C M, Chen S Y 2020 Sol. RRL 4 1900503Google Scholar
[21] Ishaq M, Chen S, Farooq U, Azam M, Deng H, Su Z H, Zheng Z H, Fan P, Song H S, Liang G X 2020 Sol. RRL 4 2000551Google Scholar
[22] Lei H W, Chen J J, Tan Z J, Fang G J 2019 Sol. RRL 3 1900026Google Scholar
[23] Cao Y, Liu C Y, Jiang J H, Zhu X Y, Zhou J, Ni J, Zhang J J, Pang J B, Rummeli M H, Zhou J W, Liu H, Cuniberti G 2021 Sol. RRL 5 2000800Google Scholar
[24] Yang B, Qin S K, Xue D J, Chen C, He YS, Niu D M, Huang H, Tang J 2017 Prog. Photovolt:Res. Appl. 25 113Google Scholar
[25] Wu C Y, Zhang L J, Ding H H, Ju H X, Jin X, Wang X M, Zhu C F, Chen T 2018 Sol. Energy Mater. Sol. Cells 183 52Google Scholar
[26] Lu S C, Zhao Y, Wen X X, Xue D J, Chen C, Li K H, Kondrotas R, Wang C, Tang J 2019 Sol. RRL 3 1800280Google Scholar
[27] Tang R F, Wang X M, Lian W T, Huang J L, Wei Q, Huang M L, Yin Y W, Jiang C H, Yang S F, Xing G C, Chen S Y, Zhu C F, Hao X J, Green M A, Chen T 2020 Nat. Energy. 5 587Google Scholar
[28] Li K H, Lu Y, Ke X X, Li S, Lu S C, Wang C, Wang S Y, Chen C, Tang J 2020 Sol. RRL 4 2000220Google Scholar
[29] 曹宇, 祝新运, 陈翰博, 王长刚, 张鑫童, 侯秉东, 申明仁, 周静 2018 物理学报 67 247301Google Scholar
Cao Y, Zhu X X, Chen H B, Wang C G, Zhang X T, Hou B D, Shen M R, Zhou J 2018 Acta Phys. Sin. 67 247301Google Scholar
[30] Weng T F, Yan M, Yu X, Qiao Q, Zhou Y T, Li Z H, Wei J, Yu X M 2021 Opt. Mater. 121 111516Google Scholar
[31] Wang W H, Wang X M, Chen G L, Chen B W, Cai H L, Chen T, Chen S Y, Huang Z G, Zhu C F, Zhang Y 2018 Sol. RRL 2 1800208Google Scholar
[32] Ishaq M, Deng H, Yuan S J, Zhang H, Khan J, Farooq U, Song H S, Tang J 2018 Sol. RRL 2 1800144Google Scholar
[33] Gharibshahian I, Orouji A A, Sharbati S 2020 Sol. Energy Mater. Sol. Cells 212 110581Google Scholar
[34] Li K H, Kondrotas R, Chen C, Lu S C, Wen X X, Li D B, Luo J J, Zhao Y, Tang J 2018 Sol. Energy 167 10Google Scholar
[35] Liu Y M, Sun Y, Rockett A 2012 Sol. Energy Mater. Sol. Cells 98 124Google Scholar
[36] Cao Y, Zhu X Y, Chen H B, Zhang X T, Zhou J, Hu Z Y, Pang J B 2019 Sol. Energy Mater. Sol. Cells 200 109945Google Scholar
[37] Chen C, Tang J 2020 ACS Energy Lett. 5 2294Google Scholar
-
038802-20211525补充材料.pdf
Catalog
Metrics
- Abstract views: 5914
- PDF Downloads: 124
- Cited By: 0