Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optimization of interfacial characteristics of antimony sulfide selenide solar cells with double electron transport layer structure

Cao Yu Liu Chao-Ying Zhao Yao Na Yan-Ling Jiang Chong-Xu Wang Chang-Gang Zhou Jing Yu Hao

Citation:

Optimization of interfacial characteristics of antimony sulfide selenide solar cells with double electron transport layer structure

Cao Yu, Liu Chao-Ying, Zhao Yao, Na Yan-Ling, Jiang Chong-Xu, Wang Chang-Gang, Zhou Jing, Yu Hao
PDF
HTML
Get Citation
  • Antimony sulfide selenide thin film solar cells have drawn great interest in the field of photovoltaic due to their advantages of simple preparation method, abundant raw materials, non-toxic and stable photoelectric properties. After the development in recent years, the photoelectric conversion efficiency of antimony sulfide selenide solar cells has exceeded 10%, which has great development potential. In this work, the carrier recombination near n/i interface in antimony sulfide selenide solar cells is studied. It is found that the characteristics of the n/i interface are affected by the interfacial electron mobility and energy band structure. The improvement of the interface electron mobility can make the electrons more effectively transferred to the electron transport layer, and realize the effective improvement of the short circuit current density and fill factor of the device. Moreover, the introduction of ZnO/Zn1–xMgxO double electron transport layer structure can further optimize the performance of antimony sulfide selenide solar cells. The change of Zn1–xMgxO energy level position can adjust the energy level distribution of the interface and light absorption layer simultaneously. When the conduction band energy level of Zn1–xMgxO is –4.2 eV and the corresponding Mg content is 20%, the effect of restraining the carrier recombination is the most obvious, and the antimony sulfide selenide solar cell also obtains the best device performance. Finally, under the ideal condition of removing the defect state, the antimony sulfide selenide solar cells with 600 nm in thickness can achieve 20.77% theoretical photoelectric conversion efficiency. The research results provide theoretical and technical support for further optimizing and developing the antimony sulfide selenide solar cells.
      Corresponding author: Wang Chang-Gang, wangcg@neepu.edu.cn ; Yu Hao, 20182828@neepu.edu.cn
    • Funds: Project supported by the Open Project Fund of National Engineering Laboratory for Digital Construction and Evaluation of Urban Rail Transit (Grant No. 2021HJ05) and the National Natural Science Foundation of China (Grant No. 51772049).
    [1]

    Righetto M, Lim S S, Giovanni D, Lim J W M, Zhang Q, Ramesh S, Tay Y K E, Sum T C 2020 Nat. Commun. 11 1

    [2]

    Metzger W K, Grover S, Lu D, Colegrove E, Moseley J, Perkins C L, Li X, Mallick R, Zhang W, Malik R, Kephart J, Jiang C S, Kuciauskas D, Albin D S, Al-Jassim M M, Xiong G, Gloeckler M 2019 Nat. Energy. 4 837Google Scholar

    [3]

    曹宇, 蒋家豪, 刘超颖, 凌同, 孟丹, 周静, 刘欢, 王俊尧 2021 物理学报 70 128802Google Scholar

    Cao Y, Jiang J H, Liu C Y, Ling T, Meng D, Zhou J, Liu H, Wang J Y 2021 Acta Phys. Sin. 70 128802Google Scholar

    [4]

    Birant G, Wild J De, Kohl T, Buldu D G, Brammertz G, Meuris M, Poortmans J, Vermang B 2020 Sol. Energy 207 1002Google Scholar

    [5]

    Chen Y, Song K, Xu X L, Yao G, Wu Z Y 2020 Sol. Energy 195 121Google Scholar

    [6]

    Li D B, Bista S S, Song Z N, Awni R A, Subedi K K, Shrestha N, Pradhan P, Chen L, Bastola E, Grice C R, Phillips A B, Heben M J, Ellingson R J, Yan Y F 2020 Nano Energy 73 104835Google Scholar

    [7]

    Wang Y R, Gu S, Liu G L, Zhang L P, Liu Z, Lin R X, Xiao K, Luo X, Shi J H, Du J L, Meng F Y, Li L D, Liu Z X, Tan H R 2021 Sci. China Chem. 64 1

    [8]

    Cao Y, Zhu X Y, Jiang J H, Liu C Y, Zhou J, Ni J, Zhang J J, Pang J B 2020 Sol. Energy Mater. Sol. Cells 206 110279Google Scholar

    [9]

    Zhou J, Chen H B, Zhang X T, Chi K L, Cai Y M, Cao Y, Pang J B 2021 J. Alloys Compd. 862 158703Google Scholar

    [10]

    薛丁江, 石杭杰, 唐江 2015 物理学报 64 038406Google Scholar

    Xue D J, Shi H J, Tang J 2015 Acta Phys. Sin. 64 038406Google Scholar

    [11]

    Li K H, Li F, Chen C, Jiang P F, Lu S C, Wang S Y, Lu Y, Tu G L, Guo J J, Shui L Q, Liu Z, Song B X, Tang J 2021 Nano Energy 86 106101Google Scholar

    [12]

    Lian W T, Jiang C H, Yin Y W, Tang R F, Li G, Zhang L J, Che B, Chen T 2021 Nat. Commun. 12 1Google Scholar

    [13]

    Lee S J, Sung S J, Yang K J, Kang J K, Kim J Y, Do Y S, Kim D H 2020 ACS Appl. Energy Mater. 3 12644Google Scholar

    [14]

    Luo J T, Xiong W, Liang G X, Liu Y K, Yang H Z, Zheng Z H, Zhang X H, Fan P, Chen S 2020 J. Alloys Compd. 826 154235Google Scholar

    [15]

    Xiao Y P, Wang H P, Kuang H 2020 Opt. Mater. 108 110414Google Scholar

    [16]

    Wang X M, Tang R F, Jiang C H, Lian W T, Ju H X, Jiang G S, Li Z Q, Zhu C F, Chen T 2020 Adv. Energy Mater. 10 2002341Google Scholar

    [17]

    Li Z Q, Liang X Y, Li G, Liu H X, Zhang H Y, Guo J X, Chen J W, Shen K, San X Y, Yu W, Schropp R E I, Mai Y H 2019 Nat. Commun. 10 1Google Scholar

    [18]

    Islam M T, Thakur A K 2020 Sol. Energy 202 304Google Scholar

    [19]

    Ning H, Guo H F, Zhang J Y, Wang X, Jia X G, Qiu J H, Yuan N Y, Ding J N 2021 Sol. Energy Mater. Sol. Cells 221 110816Google Scholar

    [20]

    Cai Z H, Dai C M, Chen S Y 2020 Sol. RRL 4 1900503Google Scholar

    [21]

    Ishaq M, Chen S, Farooq U, Azam M, Deng H, Su Z H, Zheng Z H, Fan P, Song H S, Liang G X 2020 Sol. RRL 4 2000551Google Scholar

    [22]

    Lei H W, Chen J J, Tan Z J, Fang G J 2019 Sol. RRL 3 1900026Google Scholar

    [23]

    Cao Y, Liu C Y, Jiang J H, Zhu X Y, Zhou J, Ni J, Zhang J J, Pang J B, Rummeli M H, Zhou J W, Liu H, Cuniberti G 2021 Sol. RRL 5 2000800Google Scholar

    [24]

    Yang B, Qin S K, Xue D J, Chen C, He YS, Niu D M, Huang H, Tang J 2017 Prog. Photovolt:Res. Appl. 25 113Google Scholar

    [25]

    Wu C Y, Zhang L J, Ding H H, Ju H X, Jin X, Wang X M, Zhu C F, Chen T 2018 Sol. Energy Mater. Sol. Cells 183 52Google Scholar

    [26]

    Lu S C, Zhao Y, Wen X X, Xue D J, Chen C, Li K H, Kondrotas R, Wang C, Tang J 2019 Sol. RRL 3 1800280Google Scholar

    [27]

    Tang R F, Wang X M, Lian W T, Huang J L, Wei Q, Huang M L, Yin Y W, Jiang C H, Yang S F, Xing G C, Chen S Y, Zhu C F, Hao X J, Green M A, Chen T 2020 Nat. Energy. 5 587Google Scholar

    [28]

    Li K H, Lu Y, Ke X X, Li S, Lu S C, Wang C, Wang S Y, Chen C, Tang J 2020 Sol. RRL 4 2000220Google Scholar

    [29]

    曹宇, 祝新运, 陈翰博, 王长刚, 张鑫童, 侯秉东, 申明仁, 周静 2018 物理学报 67 247301Google Scholar

    Cao Y, Zhu X X, Chen H B, Wang C G, Zhang X T, Hou B D, Shen M R, Zhou J 2018 Acta Phys. Sin. 67 247301Google Scholar

    [30]

    Weng T F, Yan M, Yu X, Qiao Q, Zhou Y T, Li Z H, Wei J, Yu X M 2021 Opt. Mater. 121 111516Google Scholar

    [31]

    Wang W H, Wang X M, Chen G L, Chen B W, Cai H L, Chen T, Chen S Y, Huang Z G, Zhu C F, Zhang Y 2018 Sol. RRL 2 1800208Google Scholar

    [32]

    Ishaq M, Deng H, Yuan S J, Zhang H, Khan J, Farooq U, Song H S, Tang J 2018 Sol. RRL 2 1800144Google Scholar

    [33]

    Gharibshahian I, Orouji A A, Sharbati S 2020 Sol. Energy Mater. Sol. Cells 212 110581Google Scholar

    [34]

    Li K H, Kondrotas R, Chen C, Lu S C, Wen X X, Li D B, Luo J J, Zhao Y, Tang J 2018 Sol. Energy 167 10Google Scholar

    [35]

    Liu Y M, Sun Y, Rockett A 2012 Sol. Energy Mater. Sol. Cells 98 124Google Scholar

    [36]

    Cao Y, Zhu X Y, Chen H B, Zhang X T, Zhou J, Hu Z Y, Pang J B 2019 Sol. Energy Mater. Sol. Cells 200 109945Google Scholar

    [37]

    Chen C, Tang J 2020 ACS Energy Lett. 5 2294Google Scholar

  • 图 1  Sb2(S0.7Se0.3)3太阳电池的结构示意图

    Figure 1.  Schematic diagram of the Sb2(S0.7Se0.3)3 solar cell structure.

    图 2  不同n/i界面电子迁移率硫硒化锑太阳电池的器件性能 (a)开路电压; (b) 短路电流密度; (c) 填充因子; (d)转换效率

    Figure 2.  Device performance of the Sb2(S0.7Se0.3)3 solar cells with different electron mobilities at n/i interface: (a) Voc; (b) Jsc; (c) FF; (d) PCE.

    图 3  不同n/i界面电子迁移率硫硒化锑太阳电池的器件特性 (a) 电子浓度分布; (b) 载流子复合率分布

    Figure 3.  Device performance of the Sb2(S0.7Se0.3)3 solar cells with different electron mobilities at n/i interface: (a) Electron density distribution; (b) carrier recombination rate distribution.

    图 4  不同Zn1–xMgxO层导带能级硫硒化锑太阳电池的器件性能 (a) J-V曲线; (b) 能带图; (c) 电子浓度分布; (d) 载流子复合率分布

    Figure 4.  Device performance of the Sb2(S0.7Se0.3)3 solar cells with different conduction band energy levels of Zn1–xMgxO layer: (a) J-V curves; (b) energy band diagram; (c) electron density distribution; (d) carrier recombination rate distribution.

    图 5  (a) 不同Zn1–xMgxO层导带能级硫硒化锑太阳电池的PCE; (b) 单电子传输层与双电子传输层硫硒化锑太阳电池的性能对比

    Figure 5.  (a) PCE of the Sb2(S0.7Se0.3)3 solar cells with different conduction band energy levels of Zn1–xMgxO layer; (b) PCE comparison of Sb2(S0.7Se0.3)3 solar cells with single and double electron transport layers.

    图 6  ZnO/Zn0.8Mg0.2O双电子传输层硫硒化锑太阳电池能级示意图

    Figure 6.  Energy levels diagram of the Sb2(S0.7Se0.3)3 solar cell with ZnO/Zn0.8Mg0.2O electron transport layer.

    图 7  ZnO/Zn0.8Mg0.2O双电子传输层硫硒化锑太阳电池的器件性能 (a) J-V曲线; (b) 量子效率图

    Figure 7.  Device performance of the Sb2(S0.7Se0.3)3 solar cells with ZnO/Zn0.8Mg0.2O double electron transport layers: (a) J-V curve; (b) quantum efficiency spectrum.

    表 1  不同Zn1–xMgxO层导带能级硫硒化锑太阳电池的器件性能参数

    Table 1.  Device performance of Sb2(S1–xSex)3 solar cells with different conduction band energy levels of Zn1–xMgxO layer.

    导带能级/eVVoc/VJsc/(mA·cm–2)FF/%PCE/%
    –4.01.0817.2760.4411.23
    –4.21.0817.7361.2811.70
    –4.41.0817.4258.1010.90
    –4.61.0716.9454.399.83
    DownLoad: CSV
  • [1]

    Righetto M, Lim S S, Giovanni D, Lim J W M, Zhang Q, Ramesh S, Tay Y K E, Sum T C 2020 Nat. Commun. 11 1

    [2]

    Metzger W K, Grover S, Lu D, Colegrove E, Moseley J, Perkins C L, Li X, Mallick R, Zhang W, Malik R, Kephart J, Jiang C S, Kuciauskas D, Albin D S, Al-Jassim M M, Xiong G, Gloeckler M 2019 Nat. Energy. 4 837Google Scholar

    [3]

    曹宇, 蒋家豪, 刘超颖, 凌同, 孟丹, 周静, 刘欢, 王俊尧 2021 物理学报 70 128802Google Scholar

    Cao Y, Jiang J H, Liu C Y, Ling T, Meng D, Zhou J, Liu H, Wang J Y 2021 Acta Phys. Sin. 70 128802Google Scholar

    [4]

    Birant G, Wild J De, Kohl T, Buldu D G, Brammertz G, Meuris M, Poortmans J, Vermang B 2020 Sol. Energy 207 1002Google Scholar

    [5]

    Chen Y, Song K, Xu X L, Yao G, Wu Z Y 2020 Sol. Energy 195 121Google Scholar

    [6]

    Li D B, Bista S S, Song Z N, Awni R A, Subedi K K, Shrestha N, Pradhan P, Chen L, Bastola E, Grice C R, Phillips A B, Heben M J, Ellingson R J, Yan Y F 2020 Nano Energy 73 104835Google Scholar

    [7]

    Wang Y R, Gu S, Liu G L, Zhang L P, Liu Z, Lin R X, Xiao K, Luo X, Shi J H, Du J L, Meng F Y, Li L D, Liu Z X, Tan H R 2021 Sci. China Chem. 64 1

    [8]

    Cao Y, Zhu X Y, Jiang J H, Liu C Y, Zhou J, Ni J, Zhang J J, Pang J B 2020 Sol. Energy Mater. Sol. Cells 206 110279Google Scholar

    [9]

    Zhou J, Chen H B, Zhang X T, Chi K L, Cai Y M, Cao Y, Pang J B 2021 J. Alloys Compd. 862 158703Google Scholar

    [10]

    薛丁江, 石杭杰, 唐江 2015 物理学报 64 038406Google Scholar

    Xue D J, Shi H J, Tang J 2015 Acta Phys. Sin. 64 038406Google Scholar

    [11]

    Li K H, Li F, Chen C, Jiang P F, Lu S C, Wang S Y, Lu Y, Tu G L, Guo J J, Shui L Q, Liu Z, Song B X, Tang J 2021 Nano Energy 86 106101Google Scholar

    [12]

    Lian W T, Jiang C H, Yin Y W, Tang R F, Li G, Zhang L J, Che B, Chen T 2021 Nat. Commun. 12 1Google Scholar

    [13]

    Lee S J, Sung S J, Yang K J, Kang J K, Kim J Y, Do Y S, Kim D H 2020 ACS Appl. Energy Mater. 3 12644Google Scholar

    [14]

    Luo J T, Xiong W, Liang G X, Liu Y K, Yang H Z, Zheng Z H, Zhang X H, Fan P, Chen S 2020 J. Alloys Compd. 826 154235Google Scholar

    [15]

    Xiao Y P, Wang H P, Kuang H 2020 Opt. Mater. 108 110414Google Scholar

    [16]

    Wang X M, Tang R F, Jiang C H, Lian W T, Ju H X, Jiang G S, Li Z Q, Zhu C F, Chen T 2020 Adv. Energy Mater. 10 2002341Google Scholar

    [17]

    Li Z Q, Liang X Y, Li G, Liu H X, Zhang H Y, Guo J X, Chen J W, Shen K, San X Y, Yu W, Schropp R E I, Mai Y H 2019 Nat. Commun. 10 1Google Scholar

    [18]

    Islam M T, Thakur A K 2020 Sol. Energy 202 304Google Scholar

    [19]

    Ning H, Guo H F, Zhang J Y, Wang X, Jia X G, Qiu J H, Yuan N Y, Ding J N 2021 Sol. Energy Mater. Sol. Cells 221 110816Google Scholar

    [20]

    Cai Z H, Dai C M, Chen S Y 2020 Sol. RRL 4 1900503Google Scholar

    [21]

    Ishaq M, Chen S, Farooq U, Azam M, Deng H, Su Z H, Zheng Z H, Fan P, Song H S, Liang G X 2020 Sol. RRL 4 2000551Google Scholar

    [22]

    Lei H W, Chen J J, Tan Z J, Fang G J 2019 Sol. RRL 3 1900026Google Scholar

    [23]

    Cao Y, Liu C Y, Jiang J H, Zhu X Y, Zhou J, Ni J, Zhang J J, Pang J B, Rummeli M H, Zhou J W, Liu H, Cuniberti G 2021 Sol. RRL 5 2000800Google Scholar

    [24]

    Yang B, Qin S K, Xue D J, Chen C, He YS, Niu D M, Huang H, Tang J 2017 Prog. Photovolt:Res. Appl. 25 113Google Scholar

    [25]

    Wu C Y, Zhang L J, Ding H H, Ju H X, Jin X, Wang X M, Zhu C F, Chen T 2018 Sol. Energy Mater. Sol. Cells 183 52Google Scholar

    [26]

    Lu S C, Zhao Y, Wen X X, Xue D J, Chen C, Li K H, Kondrotas R, Wang C, Tang J 2019 Sol. RRL 3 1800280Google Scholar

    [27]

    Tang R F, Wang X M, Lian W T, Huang J L, Wei Q, Huang M L, Yin Y W, Jiang C H, Yang S F, Xing G C, Chen S Y, Zhu C F, Hao X J, Green M A, Chen T 2020 Nat. Energy. 5 587Google Scholar

    [28]

    Li K H, Lu Y, Ke X X, Li S, Lu S C, Wang C, Wang S Y, Chen C, Tang J 2020 Sol. RRL 4 2000220Google Scholar

    [29]

    曹宇, 祝新运, 陈翰博, 王长刚, 张鑫童, 侯秉东, 申明仁, 周静 2018 物理学报 67 247301Google Scholar

    Cao Y, Zhu X X, Chen H B, Wang C G, Zhang X T, Hou B D, Shen M R, Zhou J 2018 Acta Phys. Sin. 67 247301Google Scholar

    [30]

    Weng T F, Yan M, Yu X, Qiao Q, Zhou Y T, Li Z H, Wei J, Yu X M 2021 Opt. Mater. 121 111516Google Scholar

    [31]

    Wang W H, Wang X M, Chen G L, Chen B W, Cai H L, Chen T, Chen S Y, Huang Z G, Zhu C F, Zhang Y 2018 Sol. RRL 2 1800208Google Scholar

    [32]

    Ishaq M, Deng H, Yuan S J, Zhang H, Khan J, Farooq U, Song H S, Tang J 2018 Sol. RRL 2 1800144Google Scholar

    [33]

    Gharibshahian I, Orouji A A, Sharbati S 2020 Sol. Energy Mater. Sol. Cells 212 110581Google Scholar

    [34]

    Li K H, Kondrotas R, Chen C, Lu S C, Wen X X, Li D B, Luo J J, Zhao Y, Tang J 2018 Sol. Energy 167 10Google Scholar

    [35]

    Liu Y M, Sun Y, Rockett A 2012 Sol. Energy Mater. Sol. Cells 98 124Google Scholar

    [36]

    Cao Y, Zhu X Y, Chen H B, Zhang X T, Zhou J, Hu Z Y, Pang J B 2019 Sol. Energy Mater. Sol. Cells 200 109945Google Scholar

    [37]

    Chen C, Tang J 2020 ACS Energy Lett. 5 2294Google Scholar

  • [1] Li Xue-Rui, Lin Jun-Hui, Tang Rong, Zheng Zhuang-Hao, Su Zheng-Hua, Chen Shuo, Fan Ping, Liang Guang-Xing. Back contact optimization for Sb2Se3 solar cells. Acta Physica Sinica, 2023, 72(3): 036401. doi: 10.7498/aps.72.20221929
    [2] Xiao You-Peng, Wang Huai-Ping, Li Gang-Long. Numerical simulation of graphene/Ag2ZnSnSe4 induced p-n junction solar cell. Acta Physica Sinica, 2021, 70(1): 018801. doi: 10.7498/aps.70.20201194
    [3] Optimization of interfacial characteristics of antimony sulfide selenide solar cells with double electron transport layer structure. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211525
    [4] Cao Yu, Jiang Jia-Hao, Liu Chao-Ying, Ling Tong, Meng Dan, Zhou Jing, Liu Huan, Wang Jun-Yao. Bandgap grading of Sb2(S,Se)3 for high-efficiency thin-film solar cells. Acta Physica Sinica, 2021, 70(12): 128802. doi: 10.7498/aps.70.20202016
    [5] Du Xiang, Chen Si, Lin Dong-Xu, Xie Fang-Yan, Chen Jian, Xie Wei-Guang, Liu Peng-Yi. Improvement of current characteristic of perovskite solar cells using dodecanedioic acid modified TiO2 electron transporting layer. Acta Physica Sinica, 2018, 67(9): 098801. doi: 10.7498/aps.67.20172779
    [6] Cao Yu,  Zhu Xin-Yun,  Chen Han-Bo,  Wang Chang-Gang,  Zhang Xin-Tong,  Hou Bing-Dong,  Shen Ming-Ren,  Zhou Jing. Simulation and optimal design of antimony selenide thin film solar cells. Acta Physica Sinica, 2018, 67(24): 247301. doi: 10.7498/aps.67.20181745
    [7] Xiao Di, Wang Dong-Ming, Li Xun, Li Qiang, Shen Kai, Wang De-Zhao, Wu Ling-Ling, Wang De-Liang. Nickel oxide as back surface field buffer layer in CdTe thin film solar cell. Acta Physica Sinica, 2017, 66(11): 117301. doi: 10.7498/aps.66.117301
    [8] Sun Kai-Wen, Su Zheng-Hua, Han Zi-Li, Liu Fang-Yang, Lai Yan-Qing, Li Jie, Liu Ye-Xiang. Erratum:Fabrication of flexible Cu2ZnSnS4 (CZTS) solar cells by sulfurizing precursor films deposited via successive ionic layer absorption and reaction method [Acta Phys. Sin. 2014, 63, 018801]. Acta Physica Sinica, 2014, 63(2): 029901. doi: 10.7498/aps.63.029901
    [9] Sun Kai-Wen, Su Zheng-Hua, Han Zi-Li, Liu Fang-Yang, Lai Yan-Qing, Li Jie, Liu Ye-Xiang. Fabrication of flexible Cu2ZnSnS4 (CZTS) solar cells by sulfurizing precursor films deposited via successive ionic layer absorption and reaction method. Acta Physica Sinica, 2014, 63(1): 018801. doi: 10.7498/aps.63.018801
    [10] Xu Wei-Wei, Hu Lin-Hua, Luo Xiang-Dong, Liu Pei-Sheng, Dai Song-Yuan. Photoelectricity performance research based on the sol-modified thin film electrode of dye-sensitized solar cells. Acta Physica Sinica, 2012, 61(8): 088801. doi: 10.7498/aps.61.088801
    [11] Liu Wei-Qing, Kou Dong-Xing, Hu Lin-Hua, Dai Song-Yuan. Effect of light path folding on the properties of electron transport in dyesensitized solar cell. Acta Physica Sinica, 2012, 61(16): 168201. doi: 10.7498/aps.61.168201
    [12] Chen Shuang-Hong, Weng Jian, Wang Li-Jun, Zhang Chang-Neng, Huang Yang, Jiang Nian-Quan, Dai Song-Yuan. The study of interface and photoelectric performance of dye-sensitized solar cells in the applied negative bias. Acta Physica Sinica, 2011, 60(12): 128404. doi: 10.7498/aps.60.128404
    [13] Xu Shuang-Ying, Hu Lin-Hua, Li Wen-Xin, Dai Song-Yuan. Effect of interface contacts between TiO2 particles on electron transport in dye-sensitized solar cells. Acta Physica Sinica, 2011, 60(11): 116802. doi: 10.7498/aps.60.116802
    [14] Xi Xiao-Wang, Hu Lin-Hua, Xu Wei-Wei, Dai Song-Yuan. Influence of TiCl4 nanoporous TiO2 films on the performance of dye-sensitized solar cells. Acta Physica Sinica, 2011, 60(11): 118203. doi: 10.7498/aps.60.118203
    [15] Huang Yang, Dai Song-Yuan, Chen Shuang-Hong, Hu Lin-Hua, Kong Fan-Tai, Kou Dong-Xing, Jiang Nian-Quan. Model for series resistance photovoltaic performance of large-scale dye-sensitized solar cells. Acta Physica Sinica, 2010, 59(1): 643-648. doi: 10.7498/aps.59.643
    [16] Liu Wei-Qing, Kou Dong-Xing, Hu Lin-Hua, Huang Yang, Jiang Nian-Quan, Dai Song-Yuan. Processes of charge transport and transfer in dye-sensitized solar cell by electrical and optical modulation techniques. Acta Physica Sinica, 2010, 59(7): 5141-5147. doi: 10.7498/aps.59.5141
    [17] Liang Lin-Yun, Dai Song-Yuan, Hu Lin-Hua, Dai Jun, Liu Wei-Qing. Effect of TiO2 particle size on the properties of electron transport and back-reaction in dye-sensitized solar cells. Acta Physica Sinica, 2009, 58(2): 1338-1343. doi: 10.7498/aps.58.1338
    [18] Liang Lin-Yun, Dai Song-Yuan, Fang Xia-Qin, Hu Lin-Hua. Research on the electron transport and back-reaction kinetics in TiO2 films applied in dye-sensitized solar cells. Acta Physica Sinica, 2008, 57(3): 1956-1962. doi: 10.7498/aps.57.1956
    [19] Jin Xin, Zhang Xiao-Dan, Lei Zhi-Fang, Xiong Shao-Zhen, Song Feng, Zhao Ying. Synthesis and properties of nanocrystal up-converting materials for thin film solar cells. Acta Physica Sinica, 2008, 57(7): 4580-4584. doi: 10.7498/aps.57.4580
    [20] Song Hui-Jin, Zheng Jia-Gui, Feng Liang-Huan, Cai Wei, Cai Ya-Ping, Zhang Jing-Quan, Li Wei, Li Bing, Wu Li-Li, Lei Zhi, Yan Qiang. Performance of CdTe solar cells with different back electrodes and back contact layers. Acta Physica Sinica, 2007, 56(3): 1655-1661. doi: 10.7498/aps.56.1655
  • supplement 038802-20211525补充材料.pdf supplement
Metrics
  • Abstract views:  5914
  • PDF Downloads:  124
  • Cited By: 0
Publishing process
  • Received Date:  18 August 2021
  • Accepted Date:  14 September 2021
  • Available Online:  20 January 2022
  • Published Online:  05 February 2022

/

返回文章
返回