Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optoelectronic properties of two-dimensional heterostructure BAs/I-AsP under strain and electric field modulation

HAO Junhua ZHANG Delong WANG Zhengjia CHEN Shuxin WANG Yufang

Citation:

Optoelectronic properties of two-dimensional heterostructure BAs/I-AsP under strain and electric field modulation

HAO Junhua, ZHANG Delong, WANG Zhengjia, CHEN Shuxin, WANG Yufang
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In recent years, two-dimensional (2D) materials have attracted considerable attention due to their outstanding optical and electronic properties, and they have shown great potential applications in next-generation solar cells and other optoelectronic devices. In this work, density functional theory (DFT) is used to systematically study the electronic and optoelectronic properties of the heterojunction formed by 2D BAs and I-AsP monolayers, as well as the response of this heterojunction under biaxial strain and electric field. The calculation results show that in the ground state, the four vertically stacked BAs/I-AsP heterostructures all have stable geometric structures, and their band gaps range from 0.63 to 0.86 eV. Compared with their constituent monolayers, these heterostructures have the increased optical absorption coefficients (the absorption coefficient in the x-direction reaches 106 cm–1), and they can effectively separate the photogenerated electron-hole pairs. Of the four structures, the A1 structure exhibits the smallest interlayer spacing, the smallest binding energy, and the highest stability. It has a type-I band alignment and a structure of a direct-band-gap semiconductor with band gaps of 0.86 eV (PBE) and 1.26 eV (HSE06), which can be used in the field of light-emitting diodes. The band gap and band type of the heterostructure can be effectively changed by applying biaxial strain and electric field. Under the application of biaxial tensile or compressive strain in a range of -10% to 8%, the band gap increases accordingly. When the tensile strain is greater than 8%, the band gap starts to decrease. When the biaxial strain ε ≤ –3% and ε > 8%, the heterojunction transitions from a type-I band alignment to a type-II band alignment. Under tensile strain, the absorption spectrum undergoes a red shift, while compressive strain leads to a blue shift of the absorption spectrum. Similarly, the externally applied electric field linearly affects the band gap of the BAs/I-AsP heterojunction in a range from -0.5 to 0.5 V/Å, and the band gap decreases as the electric field increases. When a positive electric field with E≥0.2 V/Å is applied, the band alignment of the heterojunction can also transition from type-I to type-II. The BAs/I-AsP heterojunction has strong absorption properties in the ultraviolet and visible light ranges. Based on the Scharber model, the theoretical power conversion efficiency (PCE) η of the BAs/I-AsP heterojunction is found to be greater than 13%, which is higher than those of 2D heterojunction materials such as Cs3Sb2I9/InSe (η = 3.3%), SiPGaS/As (η = 7.3%) and SnSe/SnS (η = 9.1%). This further expands the application scope of the BAs/I-AsP heterojunction, making it expected to play an important role in the field of photodetectors and solar cells.
  • 图 1  单层(a) I-AsP和(b) BAs的俯视图和侧视图

    Figure 1.  Top and side views of monolayer (a) I-AsP and (b) BAs.

    图 2  BAs/I-AsP异质结4种堆叠构型的俯视图与侧视图

    Figure 2.  Top and side views of the four stacking configurations of the BAs/I-AsP heterojunction.

    图 3  T = 300 K下的AIMD模拟中, BAs/I-AsP异质结构(A1构型)的能量与温度变化情况

    Figure 3.  Variations of energy and temperature of the BAs/I-AsP heterostructure (A1 structure) in the AIMD simulation at T = 300 K.

    图 4  采用PBE和HSE06方法得到的BAs/I-AsP异质结能带结构和投影态密度

    Figure 4.  Band structures and projected density of states of the BAs/I-AsP heterojunction obtained by using the PBE and HSE06 methods.

    图 5  (a) BAs/I-AsP异质结界面电位分布; (b)异质结的Bader电荷分析结果(负值代表电荷由BAs层转移至I-AsP层); (c) BAs/I-AsP异质结构沿z方向的平面平均电荷密度差Δρ(z), 其中插图展示了电荷密度差的三维等值面(黄色和蓝色区域分别表示电子增加和减少)

    Figure 5.  (a) The interfacial potential distribution of the BAs/I-AsP heterojunction; (b) results of the Bader charge analysis of the heterojunction, the negative values indicate that the charge is transferred from the BAs layer to the I-AsP layer; (c) the planar average charge density difference Δρ(z) of the BAs/I-AsP heterostructure along the z direction of the surface. The inset shows the three-dimensional isosurface of the charge density difference (the yellow and blue regions represent the increase and decrease of electrons respectively).

    图 6  BAs/I-AsP异质结构在双轴应变下 (a)带隙变化; (b)能带边缘变化; (c) ε = 4%, (d) ε = –4%的能带结构

    Figure 6.  (a) Variation of the band gap; (b) variation of the band edges of the BAs/I-AsP heterostructure under biaxial strain; the energy band structures of the BAs/I-AsP heterostructure with (c) ε = 4% and (d) ε = –4%.

    图 7  BAs/I-AsP异质结构在外加电场下 (a)带隙变化; (b)能带边缘变化; (c) E = 0.2 V/Å和(d) E = –0.2 V/Å的能带结构

    Figure 7.  (a) Variation of the band gap; (b) variation of the band edges; (c) the energy band structure with E = 0.2 V/Å and (d) the energy band structure with E = –0.2 V/Å of the BAs/I-AsP heterostructure under an externally applied electric field.

    图 8  (a)单层BAs、单层I-AsP与BAs/I-AsP异质结沿x轴和z轴的光吸收系数; (b) BAs/I-AsP异质结在不同双轴应变下沿x轴和z轴的光吸收系数变化情况; (c) BAs/I-AsP异质结在不同外加电场作用下沿x轴和z轴的光吸收系数变化情况

    Figure 8.  (a) The optical absorption coefficients along the x-axis and z-axis of the monolayer BAs, I-AsP and the BAs/I-AsP heterojunction; (b) variations of the optical absorption coefficients along the x-axis and z-axis of the BAs/I-AsP heterojunction under different biaxial strains; (c) variations of the optical absorption coefficients along the x-axis and z-axis of the BAs/I-AsP heterojunction under different applied electric fields.

    图 9  BAs/I-AsP异质结的光电转换效率随导带偏移量$ \Delta {E}_{{\mathrm{c}}} $和施主带隙$ {E}_{{\mathrm{g}}}^{{\mathrm{d}}} $变化的等高线图

    Figure 9.  Contour plot of the photoelectric conversion efficiency of the BAs/I-AsP heterojunction as a function of the conduction band offset ($ \Delta {E}_{{\mathrm{c}}} $) and the donor band gap ($ {E}_{{\mathrm{g}}}^{{\mathrm{d}}} $).

    表 1  单层BAs、单层I-AsP以及4种堆叠构型的结构参数, 包括晶格常数(其中a = b)、层间距(d)、键长(l)、带隙(Eg)和层间结合能(Eb)

    Table 1.  Structural parameters for monolayer BAs, monolayer I-AsP, and four stacking configurations in heterostructures, include lattice constants (where a = b), interlayer distance (d), bond length (l), band gap (Eg), and interlayer binding energy (Eb).

    a d lB-As/Å(lAs-As/lAs-P/lP-P) Eg/eV Eb/(meV·Å–2)
    PBE HSE06
    BAs 3.39 1.96 0.76 1.18
    I-AsP 5.87 2.49/2.37/2.24 1.63 2.27
    A1 5.87 3.44 1.96
    2.49/2.37/2.24
    0.86 1.26 –0.59
    A2 5.87 3.83 1.96
    2.49/2.37/2.24
    0.63 –0.43
    A3 5.87 3.60 1.96
    2.49/2.37/2.24
    0.79 –0.52
    A4 5.87 3.81 1.96
    2.49/2.37/2.24
    0.71 –0.47
    DownLoad: CSV

    表 2  施加双轴应变和外加电场下具有II型能带排列的异质结构的光伏特性相关参数

    Table 2.  Summary of the photovoltaic characteristic parameters of the heterostructures with type-II band alignment under the biaxial strain and the external electric field.

    Strain/% $ {E}_{{\mathrm{g}}}^{{\mathrm{d}}} $/eV $ \Delta {E}_{{\mathrm{c}}} $/eV $ {V}_{{\mathrm{o}}{\mathrm{c}}} $/V $ \eta $/%
    –41.340.6810.35913.14
    –61.010.5580.1527.49
    101.280.6340.33412.72
    Electric field/(V·Å–1)$ {E}_{{\mathrm{g}}}^{{\mathrm{d}}} $/eV$ \Delta {E}_{{\mathrm{c}}} $/eV$ {V}_{{\mathrm{o}}{\mathrm{c}}} $/V$ \eta $/%
    0.21.640.8230.52213.13
    0.31.660.9040.46211.26
    0.41.670.9760.3909.51
    0.51.671.0570.3158.09
    DownLoad: CSV
  • [1]

    Kazem H A, Chaichan M T, Al-Waeli A H A, Sopian K 2024 Sol. Energy 282 112946.Google Scholar

    [2]

    Qu W J, Han D J, Zhang J, Peng K W, Gao Y, Huang S M 2025 Energy 316 134562Google Scholar

    [3]

    Richter A, Hermle M, Glunz S W 2013 IEEE J. Photovolt. 3 1184Google Scholar

    [4]

    An J R, Zhao X Y, Zhang Y N, Liu M X, Yuan J, Sun X J, Zhang Z Y, Wang B, Li S J, Li D B 2022 Adv. Funct. Mater. 32 2110119Google Scholar

    [5]

    Zhang J, Zhang H, Du Q, Xie X, Fang Y, Tang C, Chen G 2024 Part. Part. Syst. Charact. 41 2300062Google Scholar

    [6]

    Ullah S, Thonhauser T, Menezes M G 2024 Appl. Mater. Today 41 102495Google Scholar

    [7]

    Hao J H, Zhang D L, Chen S X, Xu J, Wang Z J, Wang Y F 2025 Surf. Interfaces 58 105837Google Scholar

    [8]

    Mao Y L, Wu R L, Ding D, He F 2022 Computat. Mater. Sci. 202 110957Google Scholar

    [9]

    Lv B, Lan Y C, Wang X Q, Zhang Q, Hu Y J, Jacobson A J, Broido D, Chen G, Ren Z F, Chu C W 2015 Appl. Phys. Lett. 106 074105Google Scholar

    [10]

    Broido D A, Lindsay L, Reinecke T L 2013 Phys. Rev. B 88 214303Google Scholar

    [11]

    Xie M Q, Zhang S L, Cai B, Zhu Z, Zou Y S, Zeng H B 2016 Nanoscale 8 13407Google Scholar

    [12]

    Xie M Q, Cai B, Meng Z S, Gu Y, Zhang S L, Liu X H, Gong L Y, Li X A, Zeng H B 2020 ACS Appl. Mater. Interfaces 12 6074Google Scholar

    [13]

    Mak K F, Shan J 2016 Nat. Photonics 10 216Google Scholar

    [14]

    Deng X Q, Sheng R Q, Jing Q 2021 RSC Adv. 11 21824Google Scholar

    [15]

    Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 Nat. Nanotechnol. 9 372Google Scholar

    [16]

    Zhu Z, Tománek D 2014 Phys. Rev. Lett. 112 176802Google Scholar

    [17]

    Song Y H, Muzaffar M U, Wang Q, Wang Y, Jia Y, Cui P, Zhang W, Wang X S, Zhang Z 2024 Nat. Commun. 15 1157Google Scholar

    [18]

    Zhou D C, Meng Q L, Si N, Zhou X, Zhai S W, Tang Q, Ji Q M, Zhou M, Niu T C, Fuchs H 2020 ACS Nano 14 2385Google Scholar

    [19]

    Cheng W J, Yao X D, Zhao L X, Li C K, Zheng Q F, Han J, Wang S M, Liu Y, Zhu J L 2024 Phys. Rev. B 109 064507Google Scholar

    [20]

    Antonatos N, Mazánek V, Lazar P, Sturala J, Sofer Z 2020 Nanoscale Adv. 2 1282Google Scholar

    [21]

    Jamdagni P, Thakur A, Kumar A, Ahluwalia P K, Pandey R 2018 Phys. Chem. Chem. Phys. 20 29939Google Scholar

    [22]

    Zhang S L, Yan Z, Li Y F, Chen Z F, Zeng H B 2015 Angew. Chem. Int. Edt. 54 3112Google Scholar

    [23]

    Zhong M Z, He J 2020 J. Semicond. 41 080402Google Scholar

    [24]

    Yuan S F, Shen C F, Deng B C, Chen X L, Guo Q S, Ma Y Q, Abbas A, Liu B L, Haiges R, Ott C, Nilges T, Watanabe K, Taniguchi T, Sinai O, Naveh D, Zhou C W, Xia F N 2018 Nano Lett. 18 3172Google Scholar

    [25]

    Cai X Y, Chen Y Z, Sun B, Chen J, Wang H Y, Ni Y X, Tao L, Wang H, Zhu S H, Li X M, Wang Y C, Lv J, Feng X L, Redfern S A T, Chen Z F 2019 Nanoscale 11 8260Google Scholar

    [26]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [27]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [28]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [29]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104Google Scholar

    [30]

    Hao J H, Zhang D L, Wang Z J, Chen S X, Xu J, Wang Y F 2024 Mater. Today Commun. 38 108423Google Scholar

    [31]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [32]

    Nose S 1984 J. Chem. Phys. 81 511Google Scholar

    [33]

    Tang W, Sanville E, Henkelman G 2009 J. Phys. Condens. Mater. 21 084204Google Scholar

    [34]

    Bai H, Qian G L, Liang Q, Feng Y Y, An M Y, Xie Q 2024 Comput. Mater. Sci. 238 112948Google Scholar

    [35]

    Cheng K, Xu J K, Guo X, Guo S D, Su Y 2023 Phys. Chem. Chem. Phys. 25 17360Google Scholar

    [36]

    Wu H Y, Yang K, Si Y, Huang W Q, Hu W, Huang G F 2019 Phys. Status Solidi RRL 13 1800565Google Scholar

    [37]

    孙婷钰, 吴量, 何贤娟, 姜楠, 周文哲, 欧阳方平 2023 物理学报 72 076301Google Scholar

    Sun T Y, Wu L, He X J, Jiang N, Zhou W Z, Ouyang F P 2023 Acta Phys. Sin. 72 076301Google Scholar

    [38]

    Bernardi M, Palummo M, Grossman J C 2012 ACS Nano 6 10082Google Scholar

    [39]

    Wu M, Meng D 2024 Physics B 680 415847Google Scholar

    [40]

    Behzad S, Chegel R 2023 Sci. Rep. 13 21339Google Scholar

    [41]

    Lin L, Lou M S, Li S F, Cai X L, Zhang Z W, Tao H L 2022 Appl. Surf. Sci. 572 151209Google Scholar

    [42]

    刘晨曦, 庞国旺, 潘多桥, 史蕾倩, 张丽丽, 雷博程, 赵旭才, 黄以能 2022 物理学报 71 097301

    Liu C X, Pang G W, Pan D Q, Shi L Q, Zhang L L, Lei B C, Zhao X C, Huang Y N 2022 Acta Phys. Sin. 71 097301

    [43]

    Xu Y H, Fan Z Q, Zhang Z H, Zhao T 2021 Appl. Surf. Sci. 547 149174Google Scholar

    [44]

    熊祥杰, 钟防, 张资文, 陈芳, 罗婧澜, 赵宇清, 朱慧平, 蒋绍龙 2024 物理学报 73 137101Google Scholar

    Xiong X J, Zhong F, Zhang Z W, Chen F, Luo J L, Zhao Y Q, Zhu H P, Jiang S L 2024 Acta Phys. Sin. 73 137101Google Scholar

    [45]

    Shahid I, Hu X, Ahmad I, Ali A, Shehzad N, Ahmad S, Zhou Z 2023 Nanoscale 15 7302Google Scholar

    [46]

    Zhang R Q, Zhou Z Z, Yao Q, Qi N, Chen Z Q 2021 Phys. Chem. Chem. Phys. 23 3794Google Scholar

  • [1] Li Han-Nan, Peng Yan. Theoretical study of influence of laser pulse chirp on terahertz emission characteristics of gas induced by two-color laser field. Acta Physica Sinica, doi: 10.7498/aps.73.20231806
    [2] Xiong Xiang-Jie, Zhong Fang, Zhang Zi-Wen, Chen Fang, Luo Jing-Lan, Zhao Yu-Qing, Zhu Hui-Ping, Jiang Shao-Long. Photovoltaic properties of two-dimensional van der Waals heterostructure Cs3X2I9/InSe (X = Bi, Sb). Acta Physica Sinica, doi: 10.7498/aps.73.20240434
    [3] Hao Guo-Qiang, Zhang Rui, Zhang Wen-Jing, Chen Na, Ye Xiao-Jun, Li Hong-Bo. Regulation and control of Schottky barrier in graphene/MoSe2 heteojuinction by asymmetric oxygen doping. Acta Physica Sinica, doi: 10.7498/aps.71.20210238
    [4] Wang Lan, Cheng Si-Yuan, Zeng Hang-Hang, Xie Cong-Wei, Gong Yuan-Hao, Zheng Zhi, Fan Xiao-Li. Structure prediction of CuBiI ternary compound and first-principles study of photoelectric properties. Acta Physica Sinica, doi: 10.7498/aps.70.20210145
    [5] Wang Hao-Lin, Zong Qi-Jun, Huang Yan, Chen Yi-Wei, Zhu Yu-Jian, Wei Ling-Nan, Wang Lei. Recent progress of transfer methods of two-dimensional atomic crystals and high-quality electronic devices. Acta Physica Sinica, doi: 10.7498/aps.70.20210929
    [6] Shi Bin, Yuan Li, Tang Tian-Yu, Lu Li-Min, Zhao Xian-Hao, Wei Xiao-Nan, Tang Yan-Lin. Spectral analysis and density functional theory study of tert-butylhydroquinone. Acta Physica Sinica, doi: 10.7498/aps.70.20201555
    [7] Chen Zhuo,  Fang Lei,  Chen Yuan-Fu. Fabrication and photovoltaic performance of counter electrode of 3D porous carbon composite. Acta Physica Sinica, doi: 10.7498/aps.68.20181833
    [8] Sun Qi-Xiang, Yan Bing. Computational study of two-body and three-body dissociation of CH3I2+. Acta Physica Sinica, doi: 10.7498/aps.66.093101
    [9] Wang Ya-Jing, Li Gui-Xia, Wang Zhi-Hua, Gong Li-Ji, Wang Xiu-Fang. Diameter monodispersity of imogolite-like nanotube: a density functional theory study. Acta Physica Sinica, doi: 10.7498/aps.65.048101
    [10] Zheng Li, Guo Jian-Zhong. A controllable circular ring acoustic focused field. Acta Physica Sinica, doi: 10.7498/aps.65.044305
    [11] Yang Xue, Yan Bing, Lian Ke-Yan, Ding Da-Jun. Theoretical study on the photodissociation reaction of α-cyclohexanedione in ground state. Acta Physica Sinica, doi: 10.7498/aps.64.213101
    [12] Wen Jun-Qing, Xia Tao, Wang Jun-Fei. A density functional theory study of small bimetallic PtnAl (n=18) clusters. Acta Physica Sinica, doi: 10.7498/aps.63.023103
    [13] Liu Fu-Ti, Cheng Yan, Chen Xiang-Rong, Cheng Xiao-Hong, Zeng Zhi-Qiang. Theoretical calculation of electron transport properties of the Au-Si60-Au molecular junctions. Acta Physica Sinica, doi: 10.7498/aps.63.177304
    [14] Wen Jun-Qing, Zhang Jian-Min, Yao Pan, Zhou Hong, Wang Jun-Fei. A density functional theory study of small bimetallic PdnAl (n =18) clusters. Acta Physica Sinica, doi: 10.7498/aps.63.113101
    [15] Xie Xiao-Dong, Hao Yu-Ying, Zhang Ri-Guang, Wang Bao-Jun. Lithium-doped tris (8-hydroxyquinoline) aluminum studied by density functional theory. Acta Physica Sinica, doi: 10.7498/aps.61.127201
    [16] Jin Rong, Chen Xiao-Hong. Structure and properties of ZrnPd clusters by density-functional theory. Acta Physica Sinica, doi: 10.7498/aps.59.6955
    [17] Li Xue-Mei, Zhang Jian-Ping. Theoretical study on the structure, spectra and thermodynamic property of 5-(2-aryloxy-methylbenzimidazole-1-carbadehyde)-1,3,4-oxadiazole-2-thione. Acta Physica Sinica, doi: 10.7498/aps.59.7736
    [18] Yang Pei-Fang, Hu Juan-Mei, Teng Bo-Tao, Wu Feng-Min, Jiang Shi-Yu. Density functional theory study of rhodium adsorption on single-wall carbon nanotubes. Acta Physica Sinica, doi: 10.7498/aps.58.3331
    [19] Zeng Zhen-Hua, Deng Hui-Qiu, Li Wei-Xue, Hu Wang-Yu. Density function theory calculation of oxygen adsorption on Au(111) surface. Acta Physica Sinica, doi: 10.7498/aps.55.3157
    [20] Ye Zhen-Cheng, Cai Jun, Zhang Shu-Ling, Liu Hong-Lai, Hu Ying. Studies on the density profiles of square-well chain fluid confined in a slit pore by density functional theory. Acta Physica Sinica, doi: 10.7498/aps.54.4044
Metrics
  • Abstract views:  345
  • PDF Downloads:  15
  • Cited By: 0
Publishing process
  • Received Date:  18 February 2025
  • Accepted Date:  14 March 2025
  • Available Online:  28 March 2025

/

返回文章
返回