-
Semi-insulating cadmium zinc telluride (CdZnTe or CZT) is an excellent material candidate for fabricating room-temperature nuclear radiation semiconductor detectors due to its high resistivity and good carrier transport behaviors. It is widely used in nuclear security, nuclear medicine, space science, etc. Nevertheless, the traditional CdZnTe planar detector is subjected to the effect of hole trailing on its hole transport characteristic, where its energy resolution and the photoelectric peak efficiency both decrease, and thus deteriorating the detection performance. In order to eliminate the effect of hole capture, the electrode with pixel structure for CdZnTe detector is designed for detecting single carriers that are only electrons. In this paper, a 10 mm10 mm2 mm wafer cut from an In doped Cd0.9Zn0.1Te single crystal, grown by the modified vertical Bridgman method, is employed to fabricate a 44 CdZnTe pixel detector, which is composed of 16 small pixel units with an area of 2 mm2 mm. Each of the pixel units is linked up with ASIC multichannel preamplifier and shaping amplifier by flip chip technology. Finally, the signal is treated by an integrated sensing chip. In the first case, the electrical properties and carrier transport properties of CdZnTe pixel detector are characterized by current-voltage (I-V) measurement via an Agilent 4155C semiconductor parameter analyzer and ray energy spectrum response via a standard Multi Channel Analyzer 6560 spectra measurement system, respectively. In the second case, the differences between CdZnTe planar detector and 44 pixel detector in the detection performance are discussed in detail. The results indicate that the bulk resistivity of CdZnTe pixel detector is determined to be about 1.7310 cm by a linear fit of I-V curve. The maximum leakage current of a single pixel is less than 2.2 nA for a bias voltage of 100 V. Furthermore, the carrier transport behaviors are evaluated with the mobility-lifetime product for electron in CdZnTe detector, which is 5.4110-4 cm2V-1 estimated by ray energy spectroscopy response under various bias voltages from 50 to 300 V at room temperature. The energy resolutions of the two CdZnTe detectors can reflect the ability of them to distinguish different energy gays during operation. The best energy resolution of a single pixel in CdZnTe pixel detector for 241Am@59.5 keV ray increases up to 5.78% under a 300 V bias voltage, whereas that of CdZnTe planar detector is only 6.85% in the same conditions. As a consequence, the detection performance of 44 CdZnTe pixel detector is better than that of the planar detector.
[1] Lisiansky M, Berner A, Korchnoy V 2017 J. Cryst. Growth 467 54
[2] Bolotnikov A E, Camarda G S, Cui Y 2013 J. Cryst. Growth 379 46
[3] Liu Z L, Mao Y Z, Zou S Y 2009 Nucl. Electron. Detec. Tech. 29 1 (in Chinese)[刘志亮, 毛用泽, 邹士亚2009核电子学与探测技术29 1]
[4] Zha G Q, Wang T, Xu Y D 2013 Physics 42 862 (in Chinese)[查钢强, 王涛, 徐亚东2013物理42 862]
[5] Nan R H, Jie W Q, Zha G Q, Wang B, Yu H 2012 J. Cryst. Growth 361 25
[6] Cavallini A, Tagantsev A K, Oberg S, Briddon P R, Setter N 2010 Phys. Rev. B 81 075215
[7] Zeng H M, Wei T C, Wang J 2017 Nucl. Instrum. Methods Phys. Res. A 847 93
[8] Emanuelsson P, Omling P, Meyer B, Wienecke M, Schenk M 1993 Phys. Rev. B 47 15578
[9] Du M, Takenaka H, Singh D J 2008 Phys. Rev. B 77 094122
[10] Kabiraj D, Ghosh S 2004 Appl. Phys. Lett. 84 1713
[11] Li Z, Gu G, James R B 2011 J. Electron. Mater. 40 274
[12] Zhang Q S, Zhang C Z, Lu Y Y 2013 Sensors 13 2447
[13] Theinert R 2017 Nucl. Instrum. Methods Phys. Res. A 845 181
[14] Kim H, Cirignano L, Shah K 2004 IEEE Trans. Nucl. Sci. 51 1229
[15] Wang T, Jie W Q, Zhang J J 2007 J. Cryst. Growth 304 313
[16] Li X, Chu J H, Li L X 2008 J. Optoelectron. Laser 19 751 (in Chinese)[李霞, 褚君浩, 李陇遐2008光电子19 751]
[17] Gul R, Bolotnikov A, Kim H K, Rodriguez R, Keeter K, Li Z, Gu G, James R B 2011 J. Electron. Mater. 40 274
[18] Wilson M D, Cernik R, Chen H 2011 Nucl. Instrum. Methods Phys. Res. A 652 158
[19] Wang C, Zha G Q, Qi Y, Guo R R, Wang G Q, Jie W Q 2015 Atomic Energy Sci. Tech. 49 1321 (in Chinese)[王闯, 査钢强, 齐阳, 郭榕榕, 王光祺, 介万奇2015原子能科学技术49 1321]
[20] Bolotnikov A E, Boggs S E, Hubertchen C M 2002 Nucl. Instrum. Meth. Phys. Res. A 482 395
[21] Mardor I, Shor A, Eisen Y 2001 IEEE Trans. Nucl. Sci. 48 1033
-
[1] Lisiansky M, Berner A, Korchnoy V 2017 J. Cryst. Growth 467 54
[2] Bolotnikov A E, Camarda G S, Cui Y 2013 J. Cryst. Growth 379 46
[3] Liu Z L, Mao Y Z, Zou S Y 2009 Nucl. Electron. Detec. Tech. 29 1 (in Chinese)[刘志亮, 毛用泽, 邹士亚2009核电子学与探测技术29 1]
[4] Zha G Q, Wang T, Xu Y D 2013 Physics 42 862 (in Chinese)[查钢强, 王涛, 徐亚东2013物理42 862]
[5] Nan R H, Jie W Q, Zha G Q, Wang B, Yu H 2012 J. Cryst. Growth 361 25
[6] Cavallini A, Tagantsev A K, Oberg S, Briddon P R, Setter N 2010 Phys. Rev. B 81 075215
[7] Zeng H M, Wei T C, Wang J 2017 Nucl. Instrum. Methods Phys. Res. A 847 93
[8] Emanuelsson P, Omling P, Meyer B, Wienecke M, Schenk M 1993 Phys. Rev. B 47 15578
[9] Du M, Takenaka H, Singh D J 2008 Phys. Rev. B 77 094122
[10] Kabiraj D, Ghosh S 2004 Appl. Phys. Lett. 84 1713
[11] Li Z, Gu G, James R B 2011 J. Electron. Mater. 40 274
[12] Zhang Q S, Zhang C Z, Lu Y Y 2013 Sensors 13 2447
[13] Theinert R 2017 Nucl. Instrum. Methods Phys. Res. A 845 181
[14] Kim H, Cirignano L, Shah K 2004 IEEE Trans. Nucl. Sci. 51 1229
[15] Wang T, Jie W Q, Zhang J J 2007 J. Cryst. Growth 304 313
[16] Li X, Chu J H, Li L X 2008 J. Optoelectron. Laser 19 751 (in Chinese)[李霞, 褚君浩, 李陇遐2008光电子19 751]
[17] Gul R, Bolotnikov A, Kim H K, Rodriguez R, Keeter K, Li Z, Gu G, James R B 2011 J. Electron. Mater. 40 274
[18] Wilson M D, Cernik R, Chen H 2011 Nucl. Instrum. Methods Phys. Res. A 652 158
[19] Wang C, Zha G Q, Qi Y, Guo R R, Wang G Q, Jie W Q 2015 Atomic Energy Sci. Tech. 49 1321 (in Chinese)[王闯, 査钢强, 齐阳, 郭榕榕, 王光祺, 介万奇2015原子能科学技术49 1321]
[20] Bolotnikov A E, Boggs S E, Hubertchen C M 2002 Nucl. Instrum. Meth. Phys. Res. A 482 395
[21] Mardor I, Shor A, Eisen Y 2001 IEEE Trans. Nucl. Sci. 48 1033
Catalog
Metrics
- Abstract views: 7289
- PDF Downloads: 289
- Cited By: 0