-
This paper focuses on the feasibility of fast neutron energy spectrum measurement. The MCNPX and Geant4 are used to simulate two conversion models of stacking neutrons to protons in the triple GEM cathode coupled with multilayer polyethylene, with five kinds of single-energy neutron sources and Am-Be continuous neutron sources taken as research objects. The response function to 160 single energy neutrons and the recoil proton spectrum distribution of the above sources of the detection system are obtained by simulation. Using GRAVEL algorithm and MLEM algorithm and through simulation, the recoil proton spectra of six kinds of fast neutron sources are obtained, and they are further analyzed. The spectrum outcome is compared with the standard input spectrum, showing that they are in good agreement with each other. The relative uncertainty of the unfolding spectrum is around 10%–15%. In this part the relation of gas detector with the precision of unfolding spectrum is also discussed. The result shows that when the energy resolution of micro-pattern gas detection is better than 30%, the accuracy of fast neutron spectrum can meet the needs of practical applications. Furthermore, a new transformation model is proposed based on previous experiments and proves the feasibility of applying micro-pattern gas detector to fast neutron detection of simulation. Moreover, spectrum reconstruction can be achieved by using the obtained recoil proton spectrum combined with a suitable inversion algorithm. The modeling and spectrum analysis of this study can provide a different method of applying the fast neutron detection system composed of micro-pattern gas detectors to the detection of unknown fast neutron sources and also to the source recognition through spectrum reconstruction.
[1] 周林, 蒋世伦, 祁建敏, 王立宗 2012 物理学报 61 072902Google Scholar
Zhou L, Jiang S L, Qi J M, Wang L Z 2012 Acta Phys. Sin. 61 072902Google Scholar
[2] 祁建敏, 周林, 蒋世伦, 张建华 2013 物理学报 62 245203Google Scholar
Qi J M, Zhou L, Jiang S L, Zhang J H 2013 Acta Phys. Sin. 62 245203Google Scholar
[3] 陈国祥, 王晓冬, 魏鑫, 高雅, 罗棱尹, 李昱磊, 赵航 2018 核电子学与探测技术 38 828Google Scholar
Chen G X, Wang X D, Wei X, Gao Y, Luo L Y, Li Y L, Zhao H 2018 Nucl. Electron. Detect. Technol. 38 828Google Scholar
[4] Hosseini S A, Mehrabi M 2020 Nucl. Instrum. Methods Phys. Res., Sect. A 949 162872Google Scholar
[5] Basu P, Sarangapani R, Venkatraman B 2020 Radiat. Phys. Chem. 170 108670
[6] Avdica S, Pozzi S A, Protopopescu V 2006 Nucl. Instrum. Methods Phys. Res., Sect. A 565 742
[7] Hosseini S A 2016 Radiat. Phys. Chem. 126 75Google Scholar
[8] Pehlivanovic B, Avdic S, Marinkovic P, Pozzi SA, Flaska M 2013 Radiat. Meas. 49 109
[9] Wang G Y, Han R, OuYang X P, He J C, Yan J Y 2017 Chin. Phys. C 41 056201Google Scholar
[10] 言杰, 李澄, 刘荣, 蒋励, 鹿心鑫, 王玫 2011 物理学报 60 032901Google Scholar
Yan J, Li C, Liu R, Jiang L, Lu X X, Wang M 2011 Acta Phys. Sin. 60 032901Google Scholar
[11] 王冬, 何彬, 张全虎 2010 原子能科学技术 44 1270
Wang D, He B, Zhang Q H 2010 Atom. Energ. Sci. Technol. 44 1270
[12] 林存宝 2011 硕士学位论文 (长沙: 国防科技大学)
Lin C B 2011 M. S. Thesis (Changsha: National University of Defense Technology) (in Chinese)
[13] 燕奕宏, 谭新建, 翁秀峰, 胡华四, 胡光, 孙伟强, 倪斯 2020 西安交通大学学报 54 136
Yan Y H, Tan X J, Weng X F, Hu H S, Hu G, Sun W Q, Ni S 2020 J. Xi'an Jiaotong Univ. 54 136
[14] Sauli F 1997 Nucl. Instrum. Methods Phys. Res., Sect. A 386 531
[15] Wang X D, Yang H R, Ren Z G, Zhang J W, Yang L, Zhang C H, Ha R B L, An L X, Hu B T 2015 Chin. Phys. C 39 026001
[16] Wang X D, Zhang J W, Hu B T, Yang H R, Duan L M, Lu C G, Hu R J, Zhang C H, Zhou J R, Yang L, An L X, Luo W 2015 Chin. Phys. Lett. 32 032901
[17] Croci G, Claps G, Cavenago M, Palma M D, Grosso G, Murtas F, Pasqualotto R, Cippo E P, Pietropaolo A, Rebai M, Tardocchi M, Tollin M, Gorini G 2013 Nucl. Instrum. Methods Phys. Res. 720 144Google Scholar
[18] 王晓冬 2014 博士学位论文 (兰州: 兰州大学)
Wang X D 2014 Ph. D. Dissertation (Lanzhou: Lanzhou University) (in Chinese)
[19] Murtas F, Croci G, Pietropaolo A, Claps G, Frost C D, Perelli Cippo E, Raspino D, Rebai M, Rhodes N J, Schooneveld E M, Tardocchi M, Gorini G 2012 JINST 7 P07021
[20] Gabriele C, Carlo C, Gerardo C, Marco T, Marica R, Fabrizio M, Espedito V, Roberto C, Perelli C E, Giovanni G, Valentino R, Giuseppe G 2014 Prog. Theor. Exp. Phys. 2014 083H01
[21] 陈永浩, 陈希萌, 雷嘉荣, 安莉, 张晓东, 邵建荣, 郑璞, 王新华 2017 中国科学: 物理学 力学 天体学 57 1885
Chen Y H, Chen X M, Lei J R, An L, Zhang X D, Shao J X, Zheng P, Wang X H 2017 Sci. Chin.-Phys. Mech. Astron. 57 1885
[22] 陈晓亮, 赵守智 2016 原子能科学技术 49 2195
Chen X L, Zhao S Z 2016 Atom. Energ. Sci. Technol. 49 2195
[23] Cvachovec J, Cvachovec F 2008 Adv. Mil. Technol. 3 67
[24] Enger S A, Af Rosenschöld P M, Rezaei A, Lundqvist H 2006 Med. Phys. 33 337
[25] Barrientos J R, Molina F, Aguilera P, Arellano H F 2016 Latin American Symposium on Nuclear Physics and Applications Medellin, Colombia, November 30–December 4, 2015 P080018
[26] 陈国祥 2019 硕士学位论文 (衡阳: 南华大学)
Chen G X 2019 M. S. Thesis (HengYang: University of South China) (in Chinese)
-
图 11 两种算法对Geant4软件和MCNPX软件模拟数据的解谱结果 (a) GRAVEL算法对单能中子解谱图; (b) MLEM算法对单能中子解谱图
Figure 11. Results of two algorithms for solving the spectrum of simulated data from Geant4 software and MCNPX software: (a) GRAVEL algorithm on single-energy neutron unfolding spectra; (b) MLEM algorithm for single-energy neutron unfolding spectra.
图 12 两种解谱算法对Geant4软件和MCNPX软件模拟Am-Be源的解谱结果 (a) MCNPX与Geant4基于GRAVEL算法的解谱结果; (b) MCNPX与Geant4基于MLEM算法的解谱结果
Figure 12. Results of the unfolding of the simulated Am-Be sources by two solution algorithms for Geant4 software and MCNPX software: (a) Unfolding results of MCNPX and Geant4 based on GRAVEL algorithm; (b) unfolding results of MCNPX and Geant4 based on MLEM algorithm.
表 1 Geant4和MCNPX对不同中子源与聚乙烯相互作用的最佳厚度和探测效率的模拟结果
Table 1. Simulation results of Geant4 and MCNPX for the optimal thickness and detection efficiency of different neutron sources interacting with polyethylene.
中子源 DT Am-Be DD 最优厚度/μm 探测效率/% 最优厚度/μm 探测效率/% 最优厚度/μm 探测效率/% Geant4 2000 0.36 1200 0.12 600 0.07 MCNPX 1800 0.32 900 0.09 500 0.03 表 2 MCNPX两种结构和Geant4模拟结果经MLEM算法和GRAVEL算法解谱后误差水平
Table 2. Error levels of the two MCNPX structures and Geant4 simulation results after unfolding by the MLEM and GRAVEL algorithms.
G1 M1 M2 MLEM GRAVEL MLEM GRAVEL MLEM GRAVEL MSE 0.48% 0.65% 2.1% 2.4% 1.4% 1.8% ARD 18.00% 19.00% 21.0% 22.0% 20.0% 21.0% Qs 12.00% 14.00% 28.0% 30.0% 19.0% 21.0% -
[1] 周林, 蒋世伦, 祁建敏, 王立宗 2012 物理学报 61 072902Google Scholar
Zhou L, Jiang S L, Qi J M, Wang L Z 2012 Acta Phys. Sin. 61 072902Google Scholar
[2] 祁建敏, 周林, 蒋世伦, 张建华 2013 物理学报 62 245203Google Scholar
Qi J M, Zhou L, Jiang S L, Zhang J H 2013 Acta Phys. Sin. 62 245203Google Scholar
[3] 陈国祥, 王晓冬, 魏鑫, 高雅, 罗棱尹, 李昱磊, 赵航 2018 核电子学与探测技术 38 828Google Scholar
Chen G X, Wang X D, Wei X, Gao Y, Luo L Y, Li Y L, Zhao H 2018 Nucl. Electron. Detect. Technol. 38 828Google Scholar
[4] Hosseini S A, Mehrabi M 2020 Nucl. Instrum. Methods Phys. Res., Sect. A 949 162872Google Scholar
[5] Basu P, Sarangapani R, Venkatraman B 2020 Radiat. Phys. Chem. 170 108670
[6] Avdica S, Pozzi S A, Protopopescu V 2006 Nucl. Instrum. Methods Phys. Res., Sect. A 565 742
[7] Hosseini S A 2016 Radiat. Phys. Chem. 126 75Google Scholar
[8] Pehlivanovic B, Avdic S, Marinkovic P, Pozzi SA, Flaska M 2013 Radiat. Meas. 49 109
[9] Wang G Y, Han R, OuYang X P, He J C, Yan J Y 2017 Chin. Phys. C 41 056201Google Scholar
[10] 言杰, 李澄, 刘荣, 蒋励, 鹿心鑫, 王玫 2011 物理学报 60 032901Google Scholar
Yan J, Li C, Liu R, Jiang L, Lu X X, Wang M 2011 Acta Phys. Sin. 60 032901Google Scholar
[11] 王冬, 何彬, 张全虎 2010 原子能科学技术 44 1270
Wang D, He B, Zhang Q H 2010 Atom. Energ. Sci. Technol. 44 1270
[12] 林存宝 2011 硕士学位论文 (长沙: 国防科技大学)
Lin C B 2011 M. S. Thesis (Changsha: National University of Defense Technology) (in Chinese)
[13] 燕奕宏, 谭新建, 翁秀峰, 胡华四, 胡光, 孙伟强, 倪斯 2020 西安交通大学学报 54 136
Yan Y H, Tan X J, Weng X F, Hu H S, Hu G, Sun W Q, Ni S 2020 J. Xi'an Jiaotong Univ. 54 136
[14] Sauli F 1997 Nucl. Instrum. Methods Phys. Res., Sect. A 386 531
[15] Wang X D, Yang H R, Ren Z G, Zhang J W, Yang L, Zhang C H, Ha R B L, An L X, Hu B T 2015 Chin. Phys. C 39 026001
[16] Wang X D, Zhang J W, Hu B T, Yang H R, Duan L M, Lu C G, Hu R J, Zhang C H, Zhou J R, Yang L, An L X, Luo W 2015 Chin. Phys. Lett. 32 032901
[17] Croci G, Claps G, Cavenago M, Palma M D, Grosso G, Murtas F, Pasqualotto R, Cippo E P, Pietropaolo A, Rebai M, Tardocchi M, Tollin M, Gorini G 2013 Nucl. Instrum. Methods Phys. Res. 720 144Google Scholar
[18] 王晓冬 2014 博士学位论文 (兰州: 兰州大学)
Wang X D 2014 Ph. D. Dissertation (Lanzhou: Lanzhou University) (in Chinese)
[19] Murtas F, Croci G, Pietropaolo A, Claps G, Frost C D, Perelli Cippo E, Raspino D, Rebai M, Rhodes N J, Schooneveld E M, Tardocchi M, Gorini G 2012 JINST 7 P07021
[20] Gabriele C, Carlo C, Gerardo C, Marco T, Marica R, Fabrizio M, Espedito V, Roberto C, Perelli C E, Giovanni G, Valentino R, Giuseppe G 2014 Prog. Theor. Exp. Phys. 2014 083H01
[21] 陈永浩, 陈希萌, 雷嘉荣, 安莉, 张晓东, 邵建荣, 郑璞, 王新华 2017 中国科学: 物理学 力学 天体学 57 1885
Chen Y H, Chen X M, Lei J R, An L, Zhang X D, Shao J X, Zheng P, Wang X H 2017 Sci. Chin.-Phys. Mech. Astron. 57 1885
[22] 陈晓亮, 赵守智 2016 原子能科学技术 49 2195
Chen X L, Zhao S Z 2016 Atom. Energ. Sci. Technol. 49 2195
[23] Cvachovec J, Cvachovec F 2008 Adv. Mil. Technol. 3 67
[24] Enger S A, Af Rosenschöld P M, Rezaei A, Lundqvist H 2006 Med. Phys. 33 337
[25] Barrientos J R, Molina F, Aguilera P, Arellano H F 2016 Latin American Symposium on Nuclear Physics and Applications Medellin, Colombia, November 30–December 4, 2015 P080018
[26] 陈国祥 2019 硕士学位论文 (衡阳: 南华大学)
Chen G X 2019 M. S. Thesis (HengYang: University of South China) (in Chinese)
Catalog
Metrics
- Abstract views: 4731
- PDF Downloads: 90
- Cited By: 0