Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Development of novel high-resolution electron energy loss spectroscopy and related studies on surface excitations

Zhu Xue-Tao Guo Jian-Dong

Citation:

Development of novel high-resolution electron energy loss spectroscopy and related studies on surface excitations

Zhu Xue-Tao, Guo Jian-Dong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • High-resolution electron energy loss spectroscopy (HREELS) is a powerful technique to probe vibrational and electronic excitations at solid surfaces. A monochromatic electron beam incident on the crystal surface may interact with the vibrations of adsorbed molecules, surface phonons or electronic excitations before being back-scattered. By analyzing the energy and momentum of the scattered electrons, we can obtain the information about the chemical bonds, lattice dynamics, occupation of electronic states, and surface plasmons. However the application of traditional HREELS to dispersion analyses is restricted by its point-by-point measurement of the energy loss spectrum for each momentum. Recently, a new strategy for HREELS was realized by utilizing a specially designed lens system with a double-cylindrical monochromator combined with a commercial Scienta hemispherical electron energy analyzer, which can be used to simultaneously measure the energy and momentum of the scattered electrons. The new system possesses improved momentum resolution, high detecting efficiency and high sampling density with no loss in energy resolution. The new HREELS system was employed to study the mechanism of the superconductivity enhancement at FeSe/SrTiO3 interface. By surface phonon measurements on samples with different film thickness, it is revealed that the electric field associated with phonon modes of SrTiO3 substrate can penetrate into FeSe film and interact with the electrons therein, playing the key role in the superconductivity enhancement. The surface collective modes of three-dimensional topological insulator was also studied by using this new HREELS system. A highly unusual acoustic plasmon mode is revealed on the surface of a typical three-dimensional topological insulator Bi2Se3. This mode exhibits an almost linear dispersion to the second Brouillion zone center without reflecting lattice periodicity, and it remains prominent over a large momentum range, with unusually weak damping unseen in any other system. This observation indicates that the topological protection exists not only in single-particle topological states but also in their collective excitations. The application of the new HREELS system with the ability to measure large momentum range with high-efficiency, will definitely promote the development of related researches on condensed matter physics.
      Corresponding author: Guo Jian-Dong, jdguo@iphy.ac.cn
    • Funds: Project supported by the National Key Research Development Program of China (Grant Nos. 2017YFA0303600, 2016YFA0302400, 2016YFA0202300), the National Natural Science Foundation of China (Grant Nos. 11634016, 11474334), and the Strategic Priority Research Program (B) of Chinese Academy of Sciences (Grant No. XDB07030100).
    [1]

    Egerton R F 2011 Electron Energy-Loss Spectroscopy in the Electron Microscope (3rd Ed.) (New York:Springer US) pp1-26

    [2]

    Lagos M J, Trugler A, Hohenester U, Batson P E 2017 Nature 543 529

    [3]

    Ibach H, Mills D L 1982 Electron Energy Loss Spectroscopy and Surface Vibrations (New York:Academic Press) pp1-20

    [4]

    Qin H J, Shi J R, Cao Y W, Wu K H, Zhang J D, Plummer E W, Wen J, Xu Z J, Gu G D, Guo J D 2010 Phys. Rev. Lett. 105 256402

    [5]

    Kogar A, Rak M S, Vig S, Husain A A, Flicker F, Joe Y I, Venema L, Macdougall G J, Chiang T C, Fradkin E 2017 Science 358 1314

    [6]

    Zhu X, Cao Y, Zhang S, Jia X, Guo Q, Yang F, Zhu L, Zhang J, Plummer E W, Guo J 2015 Rev. Sci. Instrum. 86 083902

    [7]

    Valla T, Fedorov A V, Johnson P D, Wells B O, HulbertS L, Li Q, Gu G D, Koshizuka N 1999 Science 285 2110

    [8]

    Damascelli A, Hussain Z, Shen Z X 2003 Rev. Mod. Phys. 75 473

    [9]

    Fadley C S 2010 J. Electron Spectrosc. Relat. Phenom. 178 2

    [10]

    Ibach H 1991 Electron Energy Loss Spectrometers-The Technology of High Performance (Vol. 63) (Berlin:Springer-Verlag) pp131-146

    [11]

    Wang Q, Li Z, Zhang W, Zhang Z, Zhang J, Li W, Ding H, Ou Y, Deng P, Chang K, Wen J, Song C, He K, Jia J, Ji S, Wang Y, Wang L, Chen X, Ma X, Xue Q 2012 Chin. Phys. Lett. 29 037402

    [12]

    Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C 2008 Proc. Natl. Acad. Sci. USA 105 14262

    [13]

    Bozovic I, Ahn C 2014 Nat. Phys. 10 892

    [14]

    Wang L, Ma X, Xue Q 2016 Supercond Sci. Technol. 29 123001

    [15]

    Wang Z, Liu C, Liu Y, Wang J 2017 J. Phys.:Condens. Matter 29 153001

    [16]

    Huang D, Hoffman J E 2017 Annual Rev. Condens. Matter Phys. 8 311

    [17]

    Shiogai J, Ito Y, Mitsuhashi T, Nojima T, Tsukazaki A 2016 Nat. Phys. 12 42

    [18]

    Lei B, Cui J H, Xiang Z J, Shang C, Wang N Z, Ye G J, Luo X G, Wu T, Sun Z, Chen X H 2016 Phys. Rev. Lett. 116 077002

    [19]

    Hanzawa K, Sato H, Hiramatsu H, Kamiya T, Hosono H 2016 Proc. Natl. Acad. Sci. USA 113 3986

    [20]

    Miyata Y, Nakayama K, Sugawara K, Sato T, Takahashi T 2015 Nat. Mater. 14 775

    [21]

    Wen C H P, Xu H C, Chen C, Huang Z C, Lou X, Pu Y J, Song Q, Xie B P, Abdel-Hafiez M, Chareev D A, Vasiliev A N, Peng R, Feng D L 2016 Nat. Commun. 7 10840

    [22]

    Lu X F, Wang N Z, Wu H, Wu Y P, Zhao D, Zeng X Z, Luo X G, Wu T, Bao W, Zhang G H, Huang F Q, Huang Q Z, Chen X H 2015 Nat. Mater. 14 325

    [23]

    Zhao L, Liang A, Yuan D, Hu Y, Liu D, Huang J, He S, Shen B, Xu Y, Liu X, Yu L, Liu G, Zhou H, Huang Y, Dong X, Zhou F, Liu K, Lu Z, Zhao Z, Chen C, Xu Z, Zhou X J 2016 Nat. Commun. 7 10608

    [24]

    Lee J J, Schmitt F T, Moore R G, Johnston S, Cui Y T, Li W, Yi M, Liu Z K, Hashimoto M, Zhang Y, Lu D H, Devereaux T P, Lee D H, Shen Z X 2014 Nature 515 245

    [25]

    Zhang P, Peng X L, Qian T, Richard P, Shi X, Ma J Z, Fu B B, Guo Y L, Han Z Q, Wang S C, Wang L L, Xue Q K, Hu J P, Sun Y J, Ding H 2016 Phys. Rev. B 94 104510

    [26]

    Zhou G, Zhang D, Liu C, Tang C, Wang X, Li Z, Song C, Ji S, He K, Wang L, Ma X, Xue Q 2016 Appl. Phys. Lett. 108 202603

    [27]

    Ding H, L Y, Zhao K, Wang W, Wang L, Song C, Chen X, Ma X, Xue Q 2016 Phys. Rev. Lett. 117 067001

    [28]

    Rebec S N, Jia T, Zhang C, Hashimoto M, Lu D H, Moore R G, Shen Z X 2017 Phys. Rev. Lett. 118 067002

    [29]

    Peng R, Xu H C, Tan S Y, Cao H Y, Xia M, Shen X P, Huang Z C, Wen C H P, Song Q, Zhang T, Xie B P, Gong X G, Feng D L 2014 Nat. Commun. 5 5044

    [30]

    Zhang S, Guan J, Wang Y, Berlijn T, Johnston S, Jia X, Liu B, Zhu Q, An Q, Xue S, Cao Y, Yang F, Wang W, Zhang J, Plummer E W, Zhu X, Guo J 2018 Phys. Rev. B 97 035408

    [31]

    Gnezdilov V, Pashkevich Y G, Lemmens P, Wulferding D, Shevtsova T, Gusev A, Chareev D, Vasiliev A 2013 Phys. Rev. B 87 144508

    [32]

    Zhang S, Guan J, Jia X, Liu B, Wang W, Li F, Wang L, Ma X, Xue Q, Zhang J, Plummer E W, Zhu X, Guo J 2016 Phys. Rev. B 94 081116

    [33]

    Zhang W H, Liu X, Wen C H P, Peng R, Tan S Y, Xie B P, Zhang T, Feng D L 2016 Nano Lett. 16 1969

    [34]

    Pines D, Bohm D 1952 Phys. Rev. 85 338

    [35]

    Ritchie R H 1957 Phys. Rev. 106 874

    [36]

    Landau L 1957 Soviet Physics Jetp-Ussr 3 920

    [37]

    Pines D, Nozires P 1966 The Theory of Quantum Liquids:Normal Fermi Liquids (Vol. 1) (New York:Benjamin Inc.)

    [38]

    Ninham B W, Powell C J, Swanson N 1966 Phys. Rev. 145 209

    [39]

    Liu Y, Willis R F, Emtsev K V, Seyller T 2008 Phys. Rev. B 78 201403

    [40]

    Roushan P, Seo J, Parker C V, Hor Y S, Hsieh D, Qian D, Richardella A, Hasan M Z, Cava R J, Yazdani A 2009 Nature 460 1106

    [41]

    Zhang T, Cheng P, Chen X, Jia J F, Ma X, He K, Wang L, Zhang H, Dai X, Fang Z, Xie X, Xue Q K 2009 Phys. Rev. Lett. 103 266803

    [42]

    Das Sarma S, Hwang E H 2009 Phys. Rev. Lett. 102 206412

    [43]

    Raghu S, Chung S B, Qi X L, Zhang S C 2010 Phys. Rev. Lett. 104 116401

    [44]

    Kogar A, Vig S, Thaler A, Wong M H, Xiao Y, Reig I P D, Cho G Y, Valla T, Pan Z, Schneeloch J, Zhong R, Gu G D, Hughes T L, MacDougall G J, Chiang T C, Abbamonte P 2015 Phys. Rev. Lett. 115 257402

    [45]

    Di Pietro P, Ortolani M, Limaj O, Di Gaspare A, Giliberti V, Giorgianni F, Brahlek M, Bansal N, Koirala N, Oh S, Calvani P, Lupi S 2013 Nat. Nano 8 556

    [46]

    Autore M, Engelkamp H, D'Apuzzo F, Gaspare A D, Pietro P D, Vecchio I L, Brahlek M, Koirala N, Oh S, Lupi S 2015 ACS Photon. 2 1231

    [47]

    Politano A, Silkin V M, Nechaev I A, Vitiello M S, Viti L, Aliev Z S, Babanly M B, Chiarello G, Echenique P M, Chulkov E V 2015 Phys. Rev. Lett. 115 216802

    [48]

    Glinka Y D, Babakiray S, Johnson T A, Holcomb M B, Lederman D 2016 Nat. Commun. 7 13054

    [49]

    Zhang F, Zhou J, Xiao D, Yao Y 2017 Phys. Rev. Lett. 119 266804

    [50]

    Jia X, Zhang S Y, Sankar R, Chou F C, Wang W H, Kempa K, Plummer E W, Zhang J D, Zhu X T, Guo J D 2017 Phys. Rev. Lett. 119 136805

    [51]

    Zhu X, Santos L, Sankar R, Chikara S, Howard C, Chou F C, Chamon C, El-Batanouny M 2011 Phys. Rev. Lett. 107 186102

    [52]

    Zhu X, Santos L, Howard C, Sankar R, Chou F C, Chamon C, El-Batanouny M 2012 Phys. Rev. Lett. 108 185501

  • [1]

    Egerton R F 2011 Electron Energy-Loss Spectroscopy in the Electron Microscope (3rd Ed.) (New York:Springer US) pp1-26

    [2]

    Lagos M J, Trugler A, Hohenester U, Batson P E 2017 Nature 543 529

    [3]

    Ibach H, Mills D L 1982 Electron Energy Loss Spectroscopy and Surface Vibrations (New York:Academic Press) pp1-20

    [4]

    Qin H J, Shi J R, Cao Y W, Wu K H, Zhang J D, Plummer E W, Wen J, Xu Z J, Gu G D, Guo J D 2010 Phys. Rev. Lett. 105 256402

    [5]

    Kogar A, Rak M S, Vig S, Husain A A, Flicker F, Joe Y I, Venema L, Macdougall G J, Chiang T C, Fradkin E 2017 Science 358 1314

    [6]

    Zhu X, Cao Y, Zhang S, Jia X, Guo Q, Yang F, Zhu L, Zhang J, Plummer E W, Guo J 2015 Rev. Sci. Instrum. 86 083902

    [7]

    Valla T, Fedorov A V, Johnson P D, Wells B O, HulbertS L, Li Q, Gu G D, Koshizuka N 1999 Science 285 2110

    [8]

    Damascelli A, Hussain Z, Shen Z X 2003 Rev. Mod. Phys. 75 473

    [9]

    Fadley C S 2010 J. Electron Spectrosc. Relat. Phenom. 178 2

    [10]

    Ibach H 1991 Electron Energy Loss Spectrometers-The Technology of High Performance (Vol. 63) (Berlin:Springer-Verlag) pp131-146

    [11]

    Wang Q, Li Z, Zhang W, Zhang Z, Zhang J, Li W, Ding H, Ou Y, Deng P, Chang K, Wen J, Song C, He K, Jia J, Ji S, Wang Y, Wang L, Chen X, Ma X, Xue Q 2012 Chin. Phys. Lett. 29 037402

    [12]

    Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C 2008 Proc. Natl. Acad. Sci. USA 105 14262

    [13]

    Bozovic I, Ahn C 2014 Nat. Phys. 10 892

    [14]

    Wang L, Ma X, Xue Q 2016 Supercond Sci. Technol. 29 123001

    [15]

    Wang Z, Liu C, Liu Y, Wang J 2017 J. Phys.:Condens. Matter 29 153001

    [16]

    Huang D, Hoffman J E 2017 Annual Rev. Condens. Matter Phys. 8 311

    [17]

    Shiogai J, Ito Y, Mitsuhashi T, Nojima T, Tsukazaki A 2016 Nat. Phys. 12 42

    [18]

    Lei B, Cui J H, Xiang Z J, Shang C, Wang N Z, Ye G J, Luo X G, Wu T, Sun Z, Chen X H 2016 Phys. Rev. Lett. 116 077002

    [19]

    Hanzawa K, Sato H, Hiramatsu H, Kamiya T, Hosono H 2016 Proc. Natl. Acad. Sci. USA 113 3986

    [20]

    Miyata Y, Nakayama K, Sugawara K, Sato T, Takahashi T 2015 Nat. Mater. 14 775

    [21]

    Wen C H P, Xu H C, Chen C, Huang Z C, Lou X, Pu Y J, Song Q, Xie B P, Abdel-Hafiez M, Chareev D A, Vasiliev A N, Peng R, Feng D L 2016 Nat. Commun. 7 10840

    [22]

    Lu X F, Wang N Z, Wu H, Wu Y P, Zhao D, Zeng X Z, Luo X G, Wu T, Bao W, Zhang G H, Huang F Q, Huang Q Z, Chen X H 2015 Nat. Mater. 14 325

    [23]

    Zhao L, Liang A, Yuan D, Hu Y, Liu D, Huang J, He S, Shen B, Xu Y, Liu X, Yu L, Liu G, Zhou H, Huang Y, Dong X, Zhou F, Liu K, Lu Z, Zhao Z, Chen C, Xu Z, Zhou X J 2016 Nat. Commun. 7 10608

    [24]

    Lee J J, Schmitt F T, Moore R G, Johnston S, Cui Y T, Li W, Yi M, Liu Z K, Hashimoto M, Zhang Y, Lu D H, Devereaux T P, Lee D H, Shen Z X 2014 Nature 515 245

    [25]

    Zhang P, Peng X L, Qian T, Richard P, Shi X, Ma J Z, Fu B B, Guo Y L, Han Z Q, Wang S C, Wang L L, Xue Q K, Hu J P, Sun Y J, Ding H 2016 Phys. Rev. B 94 104510

    [26]

    Zhou G, Zhang D, Liu C, Tang C, Wang X, Li Z, Song C, Ji S, He K, Wang L, Ma X, Xue Q 2016 Appl. Phys. Lett. 108 202603

    [27]

    Ding H, L Y, Zhao K, Wang W, Wang L, Song C, Chen X, Ma X, Xue Q 2016 Phys. Rev. Lett. 117 067001

    [28]

    Rebec S N, Jia T, Zhang C, Hashimoto M, Lu D H, Moore R G, Shen Z X 2017 Phys. Rev. Lett. 118 067002

    [29]

    Peng R, Xu H C, Tan S Y, Cao H Y, Xia M, Shen X P, Huang Z C, Wen C H P, Song Q, Zhang T, Xie B P, Gong X G, Feng D L 2014 Nat. Commun. 5 5044

    [30]

    Zhang S, Guan J, Wang Y, Berlijn T, Johnston S, Jia X, Liu B, Zhu Q, An Q, Xue S, Cao Y, Yang F, Wang W, Zhang J, Plummer E W, Zhu X, Guo J 2018 Phys. Rev. B 97 035408

    [31]

    Gnezdilov V, Pashkevich Y G, Lemmens P, Wulferding D, Shevtsova T, Gusev A, Chareev D, Vasiliev A 2013 Phys. Rev. B 87 144508

    [32]

    Zhang S, Guan J, Jia X, Liu B, Wang W, Li F, Wang L, Ma X, Xue Q, Zhang J, Plummer E W, Zhu X, Guo J 2016 Phys. Rev. B 94 081116

    [33]

    Zhang W H, Liu X, Wen C H P, Peng R, Tan S Y, Xie B P, Zhang T, Feng D L 2016 Nano Lett. 16 1969

    [34]

    Pines D, Bohm D 1952 Phys. Rev. 85 338

    [35]

    Ritchie R H 1957 Phys. Rev. 106 874

    [36]

    Landau L 1957 Soviet Physics Jetp-Ussr 3 920

    [37]

    Pines D, Nozires P 1966 The Theory of Quantum Liquids:Normal Fermi Liquids (Vol. 1) (New York:Benjamin Inc.)

    [38]

    Ninham B W, Powell C J, Swanson N 1966 Phys. Rev. 145 209

    [39]

    Liu Y, Willis R F, Emtsev K V, Seyller T 2008 Phys. Rev. B 78 201403

    [40]

    Roushan P, Seo J, Parker C V, Hor Y S, Hsieh D, Qian D, Richardella A, Hasan M Z, Cava R J, Yazdani A 2009 Nature 460 1106

    [41]

    Zhang T, Cheng P, Chen X, Jia J F, Ma X, He K, Wang L, Zhang H, Dai X, Fang Z, Xie X, Xue Q K 2009 Phys. Rev. Lett. 103 266803

    [42]

    Das Sarma S, Hwang E H 2009 Phys. Rev. Lett. 102 206412

    [43]

    Raghu S, Chung S B, Qi X L, Zhang S C 2010 Phys. Rev. Lett. 104 116401

    [44]

    Kogar A, Vig S, Thaler A, Wong M H, Xiao Y, Reig I P D, Cho G Y, Valla T, Pan Z, Schneeloch J, Zhong R, Gu G D, Hughes T L, MacDougall G J, Chiang T C, Abbamonte P 2015 Phys. Rev. Lett. 115 257402

    [45]

    Di Pietro P, Ortolani M, Limaj O, Di Gaspare A, Giliberti V, Giorgianni F, Brahlek M, Bansal N, Koirala N, Oh S, Calvani P, Lupi S 2013 Nat. Nano 8 556

    [46]

    Autore M, Engelkamp H, D'Apuzzo F, Gaspare A D, Pietro P D, Vecchio I L, Brahlek M, Koirala N, Oh S, Lupi S 2015 ACS Photon. 2 1231

    [47]

    Politano A, Silkin V M, Nechaev I A, Vitiello M S, Viti L, Aliev Z S, Babanly M B, Chiarello G, Echenique P M, Chulkov E V 2015 Phys. Rev. Lett. 115 216802

    [48]

    Glinka Y D, Babakiray S, Johnson T A, Holcomb M B, Lederman D 2016 Nat. Commun. 7 13054

    [49]

    Zhang F, Zhou J, Xiao D, Yao Y 2017 Phys. Rev. Lett. 119 266804

    [50]

    Jia X, Zhang S Y, Sankar R, Chou F C, Wang W H, Kempa K, Plummer E W, Zhang J D, Zhu X T, Guo J D 2017 Phys. Rev. Lett. 119 136805

    [51]

    Zhu X, Santos L, Sankar R, Chikara S, Howard C, Chou F C, Chamon C, El-Batanouny M 2011 Phys. Rev. Lett. 107 186102

    [52]

    Zhu X, Santos L, Howard C, Sankar R, Chou F C, Chamon C, El-Batanouny M 2012 Phys. Rev. Lett. 108 185501

  • [1] Zhao Shi-Hang, Zhang Yuan, Lü Si-Yuan, Cheng Shao-Bo, Zheng Chang-Lin, Wang Lu-Xia. Numerical simulation of strong coupling between silver nanorod and dielectric layer detected by electron energy loss spectrum. Acta Physica Sinica, 2022, 71(14): 147302. doi: 10.7498/aps.71.20220194
    [2] Yan Xiao-Hong, Niu Yi-Jie, Xu Hong-Xing, Wei Hong. Strong coupling of single plasmonic nanoparticles and nanogaps with quantum emitters. Acta Physica Sinica, 2022, 71(6): 067301. doi: 10.7498/aps.71.20211900
    [3] Zhang Lian, Wang Hua-Yu, Wang Ning, Tao Can, Zhai Xue-Lin, Ma Ping-Zhun, Zhong Ying, Liu Hai-Tao. Broadband enhancement of spontaneous emission by optical dipole nanoantenna on metallic substrate: An intuitive model of surface plasmon polariton. Acta Physica Sinica, 2022, 71(11): 118101. doi: 10.7498/aps.70.20212290
    [4] Zhang Lian,  Wang Hua-Yu,  Wang Ning,  Tao Can,  Zhai Xue-Lin,  Ma Ping-Zhun,  Zhong Ying,  Liu Hai-Tao. Broadband Enhancement of the Spontaneous Emission by an Optical Dipole Nanoantenna on Metallic Substrate: an Intuitive Model of Surface Plasmon Polariton. Acta Physica Sinica, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212290
    [5] Jiang Cong-Ying, Sun Fei, Feng Zi-Li, Liu Shi-Bing, Shi You-Guo, Zhao Ji-Min. Time-resolved ultrafast dynamics in triple degenerate topological semimetal molybdenum phosphide. Acta Physica Sinica, 2020, 69(7): 077801. doi: 10.7498/aps.69.20191816
    [6] Chu Pei-Xin, Zhang Yu-Bin, Chen Jun-Xue. Surface plasmon induced transparency in coupled microcavities assisted by slits. Acta Physica Sinica, 2020, 69(13): 134205. doi: 10.7498/aps.69.20200369
    [7] Wu Han, Wu Jing-Yu, Chen Zhuo. Strong coupling between metasurface based Tamm plasmon microcavity and exciton. Acta Physica Sinica, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [8] Li Xin, Wu Li-Xiang, Yang Yuan-Jie. Enhanced near field focus steering of rectangular nanoslit metasurface structure. Acta Physica Sinica, 2019, 68(18): 187103. doi: 10.7498/aps.68.20190728
    [9] Liu Zi, Zhang Heng, Wu Hao, Liu Chang. Enhancement of photoluminescence from zinc oxide by aluminum nanoparticle surface plasmon. Acta Physica Sinica, 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [10] Yu Hua-Kang, Liu Bo-Dong, Wu Wan-Ling, Li Zhi-Yuan. Surface plasmaons enhanced light-matter interactions. Acta Physica Sinica, 2019, 68(14): 149101. doi: 10.7498/aps.68.20190337
    [11] Zhou Li, Wang Qu-Quan. Plasmon resonance energy transfer and research progress in plasmon-enhanced photocatalysis. Acta Physica Sinica, 2019, 68(14): 147301. doi: 10.7498/aps.68.20190276
    [12] Ding Cui, Liu Chong, Zhang Qing-Hua, Gong Guan-Ming, Wang Heng, Liu Xiao-Zhi, Meng Fan-Qi, Yang Hao-Hao, Wu Rui, Song Can-Li, Li Wei, He Ke, Ma Xu-Cun, Gu Lin, Wang Li-Li, Xue Qi-Kun. Interface enhanced superconductivity in monolayer FeSe film on oxide substrate. Acta Physica Sinica, 2018, 67(20): 207415. doi: 10.7498/aps.67.20181681
    [13] Wang Dong, Xu Jun, Chen Yi-Hang. Broadband absorption caused by coupling of epsilon-near-zero mode with plasmon mode. Acta Physica Sinica, 2018, 67(20): 207301. doi: 10.7498/aps.67.20181106
    [14] Wang Wen-Hui,  Zhang Nao. Energy loss of surface plasmon polaritons on Ag nanowire waveguide. Acta Physica Sinica, 2018, 67(24): 247302. doi: 10.7498/aps.67.20182085
    [15] Deng Hong-Mei, Huang Lei, Li Jing, Lu Ye, Li Chuan-Qi. Tunable unidirectional surface plasmon polariton coupler utilizing graphene-based asymmetric nanoantenna pairs. Acta Physica Sinica, 2017, 66(14): 145201. doi: 10.7498/aps.66.145201
    [16] Zhu Hua, Yan Zhen-Dong, Zhan Peng, Wang Zhen-Lin. Enhanced third harmonic generation by localized surface plasmon excitation. Acta Physica Sinica, 2013, 62(17): 178104. doi: 10.7498/aps.62.178104
    [17] Wang Meng-Zhou, Jiang Yong-Heng, Liu Tian-Yuan, Sun Cheng-Lin, Li Zuo-Wei. Effect of complex formation on the electron-phonon coupling of all-trans-β-carotene iodine solution. Acta Physica Sinica, 2013, 62(18): 187802. doi: 10.7498/aps.62.187802
    [18] Wang Lei, Cai Wei, Tan Xin-Hui, Xiang Yin-Xiao, Zhang Xin-Zheng, Xu Jing-Jun. Effects of cross-section shape on fast electron beams excited plasmons in the surface of nanowire pairs. Acta Physica Sinica, 2011, 60(6): 067305. doi: 10.7498/aps.60.067305
    [19] Sun Wei-Feng, Li Mei-Cheng, Zhao Lian-Cheng. Phonon band structure and electron-phonon interactions in Ga and Sb nanowires: a first-principles study. Acta Physica Sinica, 2010, 59(10): 7291-7297. doi: 10.7498/aps.59.7291
    [20] Ma Rong, Huang Gui-Qin, Liu Mei. Structure and superconductivity of the ternary silicide CaAlSi. Acta Physica Sinica, 2007, 56(8): 4960-4964. doi: 10.7498/aps.56.4960
Metrics
  • Abstract views:  7312
  • PDF Downloads:  400
  • Cited By: 0
Publishing process
  • Received Date:  13 April 2018
  • Accepted Date:  23 April 2018
  • Published Online:  20 June 2019

/

返回文章
返回