Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of defects on luminescence properties of Gd3(Al,Ga)5O12:Ce scintillation crystals

Meng Meng Qi Qiang He Chong-Jun Ding Dong-Zhou Zhao Shu-Wen Shi Jun-Jie Ren Guo-Hao

Citation:

Influence of defects on luminescence properties of Gd3(Al,Ga)5O12:Ce scintillation crystals

Meng Meng, Qi Qiang, He Chong-Jun, Ding Dong-Zhou, Zhao Shu-Wen, Shi Jun-Jie, Ren Guo-Hao
PDF
HTML
Get Citation
  • There are many problems during the preparation of the scintillation crystal Gd3(Al,Ga)5O12:Ce (abbreviated as GAGG:Ce), such as inclusions and antisite-defect. In order to inhibit these defects and obtain large-size and high-quality GAGG:Ce crystal, this study uses Gd3(Al,Ga)5O12 as the matrix and Ce3+ as the doping ions to grow the GAGG:Ce crystal by the Czochralski method. The phase structure, micro-region composition, optical and scintillation properties of GAGG:Ce are tested and compared. It is found that tipical Ce3+ absorption bands are at 340 nm and 440 nm, and the linear transmittance at 550 nm is 82%. The transmittance of the crystal tail drops to about 70% due to the macroscopic defects such as inclusions. The micro-region composition analysis shows that the three types of inclusions in GAGG:Ce crystal are Gd-rich phase, Ce-rich phase, and (Al,Ga)2O3 phase. The Ce3+ ion emission wavelength of GAGG:Ce crystal is about 550 nm excited by the X-ray, and there is also an emission wavelength caused by the GdAl/Ga antisite-defect at 380 nm. The emission intensity of GdAl/Ga antisite-defect in the lack of (Al,Ga) component is higher than that in the excess (Al,Ga) component. The inclusions and GdAl/Ga antisite-defect make the luminous efficiency of GAGG:Ce crystal decrease by 12.5% and the corresponding light yield decreases from 58500 to 52000 photon/MeV. The tunneling effect between GdAl/Ga antisite-defect ions and neighboring Ce3+ ions makes the decay time of the GAGG:Ce crystal extend from 117.7 to 121.9 ns, and the ratio of slow component increases from 16% to 17.2%. The migration of energy along the Gd3+ sublattice makes the rise time of the GAGG:Ce crystal extend from 8.6 to 10.7 ns. The above conclusions further deepen the understanding of the source of inclusions and the relationship between the GdAl/Ga antisite-defect and crystal composition, and provide a theoretical basis for restraining the defects and improving the crystal properties.
      Corresponding author: He Chong-Jun, hechongjun@nuaa.edu.cn ; Ding Dong-Zhou, dongzhou_ding@mail.sic.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61675095), the Key Technical Talents of the Chinese Academy of Sciences, China (Grant No. Y74YQ3130G), the Independent Deployment Project of Hercynian Research Institute of Chinese Academy of Sciences, China (Grant No. FJCXY18040202), the Open Project Funds for the Key Laboratory of Space Photoelectric Detection and Perception (Nanjing University of Aeronautics and Astronautics), Ministry of Industry and Information Technology, China (Grant No. NJ2020021-2), and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. NJ2020021)
    [1]

    何伟, 张约品, 王金浩, 王实现, 夏海平 2011 物理学报 60 042901Google Scholar

    He W, Zhang Y P, Wang J H, Wang S X, Xia H P 2011 Acta Phys. Sin. 60 042901Google Scholar

    [2]

    孟猛, 祁强, 丁栋舟, 赫崇君, 施俊杰, 任国浩 2019 人工晶体学报 48 8Google Scholar

    Meng M, Qi Q, Ding D Z, He C J, Shi J J, Ren G H 2019 J. Synth. Cryst. 48 8Google Scholar

    [3]

    Sakthong O, Chewpraditkul W, Wanarak C, Kamada K, Yoshikawa A, Prusa P, Nikl M 2014 Nucl. Instrum. Methosds Phys. Res. A 751 1Google Scholar

    [4]

    Tamagawa Y, Inukai Y, Ogawa I, Kobayashi M 2015 Nucl. Instrum. Methods Phys. Res. A 795 192Google Scholar

    [5]

    Kochurikhin V, Kamada K, Kim J, Ivanov M, Yoshikawa A 2020 J. Cryst. Growth 531 1Google Scholar

    [6]

    冯大建, 丁雨憧, 刘军, 李和新, 付昌禄, 胡少勤 2016 压电与声光 38 430

    Feng D J, Ding Y C, Liu J, Li H X, Fu C L, Hu S Q 2016 Piezoelectrics Acoustooptics 38 430

    [7]

    Kamada K, Takayuki A, Yanagida T, Endo T, Tsutumi K, Usuki Y, Nikl M, Fujimoto Y, Fukabori A, Yoshikawa A 2012 J. Cryst. Growth 352 88Google Scholar

    [8]

    Wang C, Wu Y T, Ding D Z, Li H Y, Chen X F, Shi J, Ren G H 2016 Nucl. Instrum. Methods Phys. Res. A 820 8Google Scholar

    [9]

    Chewpraditkul W, Panek D, Bruza P, Chewpraditkul W, Wanarak C, Pattanaboonmee N, Babin V, Bartosiewicz K, Kamada K, Yoshikawa A, Nikl M 2014 J. Appl. Phys. 116 083505Google Scholar

    [10]

    Kitaura M, Watanabe S, Kamada K, Kim J K, Yoshino M, Kurosawa S, Yagihashi T, Ohnishi A, Hara K 2018 Appl. Phys. Lett. 113 041906Google Scholar

    [11]

    丁栋舟, 李焕英, 秦来顺, 卢胜, 潘尚可, 任国浩 2010 无机材料学报 25 1021Google Scholar

    Ding D Z, Li H Y, Qin L S, Lu S, Pan S K, Ren G H 2010 J. Inorg. Mater. 25 1021Google Scholar

    [12]

    孟猛, 祁强, 丁栋舟, 赫崇君, 赵书文, 万博, 陈露, 施俊杰, 任国浩 2020 无机材料学报Google Scholar

    Meng M, Qi Q, Ding D Z, He C J, Zhao S W, Wan B, Chen L, Shi J J, Ren G H 2020 J. Inorg. Mater.Google Scholar

    [13]

    鲁万成, 张庆礼, 罗建乔, 丁守军, 窦仁勤, 彭方, 张会丽, 王小飞, 孙贵花, 孙敦陆 2017 物理学报 66 154204Google Scholar

    Lu W C, Zhang Q L, Luo J Q, Ding S J, Dou R Q, Peng F, Zhang H L, Wang X F, Sun G H, Sun D L 2017 Acta Phys. Sin. 66 154204Google Scholar

    [14]

    Kurosawa S, Shoji Y, Yokota Y, Kamada K, Chani V, Yoshikawa A 2014 J. Cryst. Growth 393 134Google Scholar

    [15]

    Etiennette A, Ramunas A, Andrei F, Georgy D, Larisa G, Vidmantas G, Merry K, Marco L, Charles M, Saulius L, Gintautas T, Augustas V, Aleksejs Z, Mikhail K 2018 Phys. Status Solidi A 215 1700798Google Scholar

    [16]

    Mares J A, Nikl M, Beitlerova A, Solovieva N, Ambrosio C, Blazek K, Maly P, Nejezchle K, Fabeni P, Pazzi P 2005 Nucl. Instrum. Methods Phys. Res. A 537 271Google Scholar

    [17]

    Stanek C R, McClellana C J, Levyb M R, Milanese C, Grimes R W 2007 Nucl. Instrum. Methods Phys. Res. A 579 27Google Scholar

    [18]

    杨新波, 石云, 李红军, 毕群玉, 苏良碧, 刘茜, 潘裕柏, 徐军 2009 物理学报 58 8050Google Scholar

    Yang X B, Shi Y, Li H J, Bi Q Y, Su L B, Liu Q, Pan Y B, Xu J 2009 Acta Phys. Sin. 58 8050Google Scholar

    [19]

    Yoshino M, Kamada K, Shoji Y, Yamaji A, Kurosawa S, Kurosawa Y, Ohashi Y, Yoshikawa A, Chani V 2017 J. Cryst. Growth 468 420Google Scholar

    [20]

    Kamada K, Kurosawa S, Prusa P, Nikl M, Kochurikhin V, Endo T, Tsutumi K, Sato H, Yokota K, Y, Sugiyama K, Yoshikawa A 2014 Opt. Mater. 36 1942Google Scholar

    [21]

    杨斌, 张约品, 徐波, 来飞, 夏海平, 赵天池 2012 物理学报 61 192901Google Scholar

    Yang B, Zhang Y P, Xu B, Lai F, Xia H P, Zhao T C 2012 Acta Phys. Sin. 61 192901Google Scholar

    [22]

    Zorenko Y 2005 Phys. Status Solidi C 26 375Google Scholar

  • 图 1  GAGG:Ce晶体及样品照片

    Figure 1.  Photos of GAGG:Ce crystal and samples.

    图 2  GAGG:Ce样品粉末XRD图谱

    Figure 2.  XRD patterns of GAGG:Ce crystal.

    图 3  GAGG:Ce晶体的能级结构图(a)与透过谱(b)

    Figure 3.  Energy diagram (a) and transmittance (b) of GAGG:Ce crystal sample.

    图 4  GAGG:Ce晶体微区形貌分析 (a) 片状包裹体; (b) 黑白相间状包裹体

    Figure 4.  Micro-region morphology analysis of GAGG:Ce crystal: (a) Lamellar inclusions; (b) black and white interphase inclusions.

    图 5  GAGG:Ce晶体的X射线激发发射谱(a)和积分强度(b)

    Figure 5.  X-ray excited spectra (a) and integrated intensity (b) of GAGG:Ce crystal.

    图 6  室温下GAGG:Ce样品在137Cs源激发下的多道能谱(HV, 高压)

    Figure 6.  Multi-channel energy spectra of GAGG:Ce crystal excited by 137Cs (HV, high voltage)

    图 7  不同基质成分的GAGG:Ce晶体能级示意图

    Figure 7.  Schematic energy level diagrams of GAGG:Ce crystal with different matrix components.

    图 8  GAGG:Ce晶体归一化后的光产额与成形时间相关性. 以0.75 μs为标准, 实线为模型拟合曲线

    Figure 8.  Light yield dependence on amplifier shaping time normalized at 0.75 μs for GAGG:Ce crystal, where solid lines are the fitting curve.

    图 9  GAGG:Ce晶体的闪烁衰减时间

    Figure 9.  Scintillation decay curve of GAGG:Ce crystal

    表 1  GAGG:Ce晶体的EDS成分分析

    Table 1.  Composition analysis data by EDS of GAGG:Ce crystal.

    SampleGdAlGaAl + Ga
    ion ratio
    13.0342.2742.6924.966
    22.9852.2132.8025.015
    Theoretical value32.32.75
    DownLoad: CSV

    表 2  GAGG:Ce晶体的晶胞参数

    Table 2.  Lattice parameters of GAGG:Ce crystal at different positions.

    Sample12
    Diffractive angle (2θ)/(°)32.832.73
    Lattice parameters/nm12.249212.2516
    DownLoad: CSV

    表 3  GAGG:Ce晶体的EDS能谱微区成分分析数据

    Table 3.  Micro-region composition analysis data by EDS of GAGG:Ce crystal.

    取样点GdCeAlGaAl + GaO(Gd + Ce)∶(Al + Ga)∶O
    Atomic percentage离子数之比
    117.6110.3312.0622.39603.5∶4.5∶12
    214.9711.1113.9225.03603∶5∶12
    33.7120.574.4511.2615.71604.9∶3.1∶12
    41.1917.920.9138.81600.06∶2∶3
    515.0610.6314.3124.94603∶5∶12
    DownLoad: CSV
  • [1]

    何伟, 张约品, 王金浩, 王实现, 夏海平 2011 物理学报 60 042901Google Scholar

    He W, Zhang Y P, Wang J H, Wang S X, Xia H P 2011 Acta Phys. Sin. 60 042901Google Scholar

    [2]

    孟猛, 祁强, 丁栋舟, 赫崇君, 施俊杰, 任国浩 2019 人工晶体学报 48 8Google Scholar

    Meng M, Qi Q, Ding D Z, He C J, Shi J J, Ren G H 2019 J. Synth. Cryst. 48 8Google Scholar

    [3]

    Sakthong O, Chewpraditkul W, Wanarak C, Kamada K, Yoshikawa A, Prusa P, Nikl M 2014 Nucl. Instrum. Methosds Phys. Res. A 751 1Google Scholar

    [4]

    Tamagawa Y, Inukai Y, Ogawa I, Kobayashi M 2015 Nucl. Instrum. Methods Phys. Res. A 795 192Google Scholar

    [5]

    Kochurikhin V, Kamada K, Kim J, Ivanov M, Yoshikawa A 2020 J. Cryst. Growth 531 1Google Scholar

    [6]

    冯大建, 丁雨憧, 刘军, 李和新, 付昌禄, 胡少勤 2016 压电与声光 38 430

    Feng D J, Ding Y C, Liu J, Li H X, Fu C L, Hu S Q 2016 Piezoelectrics Acoustooptics 38 430

    [7]

    Kamada K, Takayuki A, Yanagida T, Endo T, Tsutumi K, Usuki Y, Nikl M, Fujimoto Y, Fukabori A, Yoshikawa A 2012 J. Cryst. Growth 352 88Google Scholar

    [8]

    Wang C, Wu Y T, Ding D Z, Li H Y, Chen X F, Shi J, Ren G H 2016 Nucl. Instrum. Methods Phys. Res. A 820 8Google Scholar

    [9]

    Chewpraditkul W, Panek D, Bruza P, Chewpraditkul W, Wanarak C, Pattanaboonmee N, Babin V, Bartosiewicz K, Kamada K, Yoshikawa A, Nikl M 2014 J. Appl. Phys. 116 083505Google Scholar

    [10]

    Kitaura M, Watanabe S, Kamada K, Kim J K, Yoshino M, Kurosawa S, Yagihashi T, Ohnishi A, Hara K 2018 Appl. Phys. Lett. 113 041906Google Scholar

    [11]

    丁栋舟, 李焕英, 秦来顺, 卢胜, 潘尚可, 任国浩 2010 无机材料学报 25 1021Google Scholar

    Ding D Z, Li H Y, Qin L S, Lu S, Pan S K, Ren G H 2010 J. Inorg. Mater. 25 1021Google Scholar

    [12]

    孟猛, 祁强, 丁栋舟, 赫崇君, 赵书文, 万博, 陈露, 施俊杰, 任国浩 2020 无机材料学报Google Scholar

    Meng M, Qi Q, Ding D Z, He C J, Zhao S W, Wan B, Chen L, Shi J J, Ren G H 2020 J. Inorg. Mater.Google Scholar

    [13]

    鲁万成, 张庆礼, 罗建乔, 丁守军, 窦仁勤, 彭方, 张会丽, 王小飞, 孙贵花, 孙敦陆 2017 物理学报 66 154204Google Scholar

    Lu W C, Zhang Q L, Luo J Q, Ding S J, Dou R Q, Peng F, Zhang H L, Wang X F, Sun G H, Sun D L 2017 Acta Phys. Sin. 66 154204Google Scholar

    [14]

    Kurosawa S, Shoji Y, Yokota Y, Kamada K, Chani V, Yoshikawa A 2014 J. Cryst. Growth 393 134Google Scholar

    [15]

    Etiennette A, Ramunas A, Andrei F, Georgy D, Larisa G, Vidmantas G, Merry K, Marco L, Charles M, Saulius L, Gintautas T, Augustas V, Aleksejs Z, Mikhail K 2018 Phys. Status Solidi A 215 1700798Google Scholar

    [16]

    Mares J A, Nikl M, Beitlerova A, Solovieva N, Ambrosio C, Blazek K, Maly P, Nejezchle K, Fabeni P, Pazzi P 2005 Nucl. Instrum. Methods Phys. Res. A 537 271Google Scholar

    [17]

    Stanek C R, McClellana C J, Levyb M R, Milanese C, Grimes R W 2007 Nucl. Instrum. Methods Phys. Res. A 579 27Google Scholar

    [18]

    杨新波, 石云, 李红军, 毕群玉, 苏良碧, 刘茜, 潘裕柏, 徐军 2009 物理学报 58 8050Google Scholar

    Yang X B, Shi Y, Li H J, Bi Q Y, Su L B, Liu Q, Pan Y B, Xu J 2009 Acta Phys. Sin. 58 8050Google Scholar

    [19]

    Yoshino M, Kamada K, Shoji Y, Yamaji A, Kurosawa S, Kurosawa Y, Ohashi Y, Yoshikawa A, Chani V 2017 J. Cryst. Growth 468 420Google Scholar

    [20]

    Kamada K, Kurosawa S, Prusa P, Nikl M, Kochurikhin V, Endo T, Tsutumi K, Sato H, Yokota K, Y, Sugiyama K, Yoshikawa A 2014 Opt. Mater. 36 1942Google Scholar

    [21]

    杨斌, 张约品, 徐波, 来飞, 夏海平, 赵天池 2012 物理学报 61 192901Google Scholar

    Yang B, Zhang Y P, Xu B, Lai F, Xia H P, Zhao T C 2012 Acta Phys. Sin. 61 192901Google Scholar

    [22]

    Zorenko Y 2005 Phys. Status Solidi C 26 375Google Scholar

  • [1] Cheng Kai, Wei Xin, Zeng De-Kai, Ji Xuan-Tao, Zhu Kun, Wang Xiao-Dong. Unfolding simulation of single-energy and continuous fast neutrons spectrum based on micro-pattern gas detector. Acta Physica Sinica, 2021, 70(11): 112901. doi: 10.7498/aps.70.20201954
    [2] Lü Hao-Chang, Zhao Yun-Chi, Yang Guang, Dong Bo-Wen, Qi Jie, Zhang Jing-Yan, Zhu Zhao-Zhao, Sun Yang, Yu Guang-Hua, Jiang Yong, Wei Hong-Xiang, Wang Jing, Lu Jun, Wang Zhi-Hong, Cai Jian-Wang, Shen Bao-Gen, Yang Feng, Zhang Shen-Jin, Wang Shou-Guo. High resolution imaging based on photo-emission electron microscopy excited by deep ultraviolet laser. Acta Physica Sinica, 2020, 69(9): 096801. doi: 10.7498/aps.69.20200083
    [3] Zhu Xue-Tao, Guo Jian-Dong. Development of novel high-resolution electron energy loss spectroscopy and related studies on surface excitations. Acta Physica Sinica, 2018, 67(12): 127901. doi: 10.7498/aps.67.20180689
    [4] Liang Shuai-Xi, Qin Min, Duan Jun, Fang Wu, Li Ang, Xu Jin, Lu Xue, Tang Ke, Xie Pin-Hua, Liu Jian-Guo, Liu Wen-Qing. Airborne cavity enhanced absorption spectroscopy for high time resolution measurements of atmospheric NO2. Acta Physica Sinica, 2017, 66(9): 090704. doi: 10.7498/aps.66.090704
    [5] Chen Hua-Jun, Fang Xian-Wen, Chen Chang-Zhao, Li Yang. Coherent optical propagation properties and ultrahigh resolution mass sensing based on double whispering gallery modes cavity optomechanics. Acta Physica Sinica, 2016, 65(19): 194205. doi: 10.7498/aps.65.194205
    [6] Zhang Wen-Xi, Xiang Li-Bin, Kong Xin-Xin, Li Yang, Wu Zhou, Zhou Zhi-Sheng. Resolution of coherent field imaging technique. Acta Physica Sinica, 2013, 62(16): 164203. doi: 10.7498/aps.62.164203
    [7] Zhou Hong-Cheng, Wang Bing-Zhong, Ding Shuai, Ou Hai-Yan. Super-resolution focusing of time reversal electromagnetic waves in metal wire array medium. Acta Physica Sinica, 2013, 62(11): 114101. doi: 10.7498/aps.62.114101
    [8] Fan Sheng-Nan, Wang Bo, Qi Hui-Rong, Liu Mei, Zhang Yu-Lian, Zhang Jian, Liu Rong-Guang, Yi Fu-Ting, Ouyang Qun, Chen Yuan-Bo. Study on the performance of a high-gain gas electron multiplier-MicroMegas chamber. Acta Physica Sinica, 2013, 62(12): 122901. doi: 10.7498/aps.62.122901
    [9] Chen Ying-Ming, Wang Bing-Zhong, Ge Guang-Ding. Mechanism of spatial super-resolution of time-reversed microwave system. Acta Physica Sinica, 2012, 61(2): 024101. doi: 10.7498/aps.61.024101
    [10] Fan Rui-Rui, Hou Feng-Jie, Ouyang Qun, Fan Sheng-Nan, Chen Yuan-Bo, Yi Fu-Ting. The study of micro-bulk micromegas. Acta Physica Sinica, 2012, 61(9): 092901. doi: 10.7498/aps.61.092901
    [11] Wu Dan, Tao Chao, Liu Xiao-Jun. Study of the resolution of limited-view photoacoustic tomography. Acta Physica Sinica, 2010, 59(8): 5845-5850. doi: 10.7498/aps.59.5845
    [12] Li Pan-Lai, Wang Zhi-Jun, Wang Ying, Yang Zhi-Ping, Guo Qing-Lin, Li Xu, Yang Yan-Min, Fu Guang-Sheng. Luminescence characteristics and crystallographic sites of Ce3+ in LiBaBO3. Acta Physica Sinica, 2009, 58(8): 5831-5835. doi: 10.7498/aps.58.5831
    [13] Xiang Liang-Zhong, Xing Da, Guo Hua, Yang Si-Hua. High resolution fast digital photoacoustic CT for breast cancer diagnosis. Acta Physica Sinica, 2009, 58(7): 4610-4617. doi: 10.7498/aps.58.4610
    [14] Ge Guang-Ding, Wang Bing-Zhong, Huang Hai-Yan, Zheng Gang. Super-resolution characteristics of time-reversed electromagnetic wave. Acta Physica Sinica, 2009, 58(12): 8249-8253. doi: 10.7498/aps.58.8249
    [15] Zhang Xiao-Dong, Yang He-Run, Duan Li-Min, Xu Hu-Shan, Hu Bi-Tao, Li Chun-Yan, Li Zu-Yu. Study on the count plateau, gas gain and energy resolution of the Micromegas detectors. Acta Physica Sinica, 2008, 57(4): 2141-2144. doi: 10.7498/aps.57.2141
    [16] Yang Shao-Peng, Zheng Hong-Fang, Li Chun-Lei, Fu Guang-Sheng, Li Xiao-Wei, Xu Chun-Hua, Li Jin-Pei. Investigation of decay characteristics of photoelectrons in nanoparticales of cubic AgBr sensitized by NiS. Acta Physica Sinica, 2006, 55(5): 2144-2148. doi: 10.7498/aps.55.2144
    [17] ZHANG HAI-TAO, GONG MA-LI, ZHAO DA-ZUN, YAN PING, CUI RUI-ZHEN, JIA WEI-PU. SUPERRESOLUTION BY MICRO-ZOOMING TECHNIQUE. Acta Physica Sinica, 2001, 50(8): 1486-1491. doi: 10.7498/aps.50.1486
    [18] Liu Li, Deng Xiao-Qiang, Wang Gui-Ying, Xu Zhi-Zhan. . Acta Physica Sinica, 2001, 50(1): 48-51. doi: 10.7498/aps.50.48
    [19] LI CHEN-XI, LU KUN-QUAN, ZHAO YA-QIN. INFLUENCE OF ENERGY RESOLUTION ON EXAFS. Acta Physica Sinica, 1987, 36(11): 1496-1502. doi: 10.7498/aps.36.1496
    [20] TONG LIN-SU, YIN HAN-CHUNG. STUDY OF THE RESOLUTION IN IMAGING PROCESS OF DIELECTRIC TARGETS. Acta Physica Sinica, 1983, 32(8): 1043-1052. doi: 10.7498/aps.32.1043
Metrics
  • Abstract views:  7622
  • PDF Downloads:  131
  • Cited By: 0
Publishing process
  • Received Date:  13 October 2020
  • Accepted Date:  17 November 2020
  • Available Online:  09 March 2021
  • Published Online:  20 March 2021

/

返回文章
返回