Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Analysis of the unfolded γ energy spectrum based on Boosted-Gold algorithm

Zhang Shuang He San-Jun Liao Feng Luo Wan Zhou Zhi-Qian Gao Bo Liu Li-Yan Zhao Xiu-Liang

Citation:

Analysis of the unfolded γ energy spectrum based on Boosted-Gold algorithm

Zhang Shuang, He San-Jun, Liao Feng, Luo Wan, Zhou Zhi-Qian, Gao Bo, Liu Li-Yan, Zhao Xiu-Liang
PDF
HTML
Get Citation
  • To obtain the characteristic information of unknown radionuclides by analyzing the γ-energy spectrum of a low-resolution detector, and to improve the accuracy and validity of the analysis of overlapping and weak peaks in the γ-energy spectrum, in this paper we analyze the γ-energy spectrum of NaI(Tl) detectors based on the Boosted-Gold algorithm. A simulation model of NaI(TI) detector is established by using MCNPX, and a detector response matrix with dimension 201 × 200 is obtained. The γ-energy spectrum unfolding program is developed based on the Boosted-Gold algorithm. The detector response spectra of the γ radioactive sources 22Na, 133Ba, and 152Eu are measured. Three groups of low-resolution γ spectra are constructed with different γ-ray energy, different energy differences ($ \Delta E $) and different relative intensities by simulation. Combining the response matrix and the unfolding procedures, the measured and simulated γ energy spectra are unfolded. The unfolding results are analyzed with the nuclide standard characteristics information from the IAEA database. The results show that the maximum unfolding error of the characteristic energy of the measured γ-energy spectrum is 2.17% (0.276 MeV for 133Ba source) by the Boosted-Gold algorithm, and the maximum deviation between the unfolded intensity and the standard intensity is 0.197 (1.408 MeV for 152Eu source). For the simulated γ energy spectrum, the characteristic energy of nuclide can be accurately analyzed, and the deviation between unfolded intensity and standard intensity maintains 0.01. When the enhancement factor p ≤ 14, the Boosted-Gold algorithm is beneficial to the quantitative analysis of γ-radionuclides. For the relative intensity of γ-rays greater than 10%, this algorithm has better analysis accuracy.
      Corresponding author: Zhao Xiu-Liang, zhaoxiul@usc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12005098), the Scientific Research Program of Education Department of Hunan Province, China (Grant No. 19A431), and the Postgraduate Innovation Program of Education Department of Hunan Province, China (Grant No. CX20210945).
    [1]

    Li F, Cheng Z Y, Tian C S, Xiao H F, Zhang M, Ge L Q 2020 Appl. Spectrosc. Rev. 56 255

    [2]

    陈晔 2021 博士学位论文 (北京: 军事科学院)

    Chen Y 2021 Ph. D. Dissertation (Beijing: Academy of Military Sciences) (in Chinese)

    [3]

    Rahman M S, Cho G, Kang B S 2009 Radiat. Prot. Dosim. 135 203Google Scholar

    [4]

    Alizadeh D, Ashrafi S 2019 Nucl. Instrum. Methods Phys. Res., Sect. A 915 1Google Scholar

    [5]

    Demir N, Kuluöztürk Z N 2021 Nucl. Eng. Technol. 53 3759Google Scholar

    [6]

    Milbrath B D, Choate B J, Fast J E, Hensley W K, Kouzes R T, Schweppe J E 2007 Nucl. Instrum. Methods Phys. Res., Sect. A 572 774Google Scholar

    [7]

    Baré J, Tondeur F 2011 Appl. Radiat. Isot. 69 1121Google Scholar

    [8]

    Morháč M, Matoušek V 2009 Digital Signal Proces. 19 372Google Scholar

    [9]

    Kwan E, Wu C Y, Haight R C, Lee H Y, Bredeweg T A, Chyzh A, Devlin M, Fotiades N, Gostic J M, Henderson R A, Jandel M, Laptev A, Nelson R O, O’Donnell J M, Perdue B A, Taddeucci T N, Ullmann J L, Wender S A 2014 Nucl. Data Sheets 119 221Google Scholar

    [10]

    Meng L J, Ramsden D 2000 IEEE Trans. Nucl. Sci. 47 1329

    [11]

    Shi R, Tuo X G, Li H L, Xu Y Y, Shi F R, Yang J B, Luo Y 2018 Nucl. Sci. Tech. 29 10Google Scholar

    [12]

    Li L, Tuo X G, Liu M Z, Wang J 2014 Nucl. Sci. Tech. 25 050202

    [13]

    Wachtmeister S, Csillag S 2011 Ultramicroscopy 111 79Google Scholar

    [14]

    Zhou R J, Zhong G Q, Hu L Q, Tardocchi M, Rigamonti D, Giacomelli L, Nocente M, Gorini G, Fan T S, Zhang Y M, Hu Z M, Xiao M, Li K, Zhang Y K, Hong B, Zhang Y, Lin S Y, Zhang J Z 2019 Rev. Sci. Instrum. 90 123510Google Scholar

    [15]

    Morháč M, Matoušek V 2011 J. Comput. Appl. Math. 235 1629Google Scholar

    [16]

    Jandel M, Morháč M, Kliman J, Krupa L, Matoušek V, Hamilton J H, Ramayya A V 2004 Nucl. Instrum. Methods Phys. Res., Sect. A 516 172Google Scholar

    [17]

    He J F, Yang Y Z, Qu J H, Wu Q F, Xiao H L, Yu C C 2016 Nucl. Sci. Tech. 27 111Google Scholar

    [18]

    赵日, 刘立业, 曹勤剑 2019 原子能科学技术 53 1495Google Scholar

    Zhao R, Liu L Y, Cao Q J 2019 At. Energy Sci. Technol. 53 1495Google Scholar

    [19]

    Zhang S J, Liu C Q, Yang X, Huang C, Xie Q, Hu Z J, Hu Z M, Han C, Bai X H, Huo D Y, Wu K, Wang J R, Zhang Y, Wei Z, Yao Z E 2021 Nucl. Instrum. Methods Phys. Res., Sect. A 1006 165407Google Scholar

    [20]

    艾宪芸, 魏义祥, 肖无云 2006 清华大学学报(自然科学版) 46 821Google Scholar

    Ai X Y, Wei Y X, Xiao W Y 2006 J. Tsinghua. Univ. (Sci. & Tech.) 46 821Google Scholar

    [21]

    Khilkevitch E M, Shevelev A E, Chugunov I N, Naidenov V O, Gin D B, Doinikov D N 2013 Tech. Phys. Lett. 39 63Google Scholar

    [22]

    Morháč M, Hlaváč S, Veselský M, Matoušek V 2010 Nucl. Instrum. Methods Phys. Res. , Sect. A 621 539Google Scholar

    [23]

    吴和喜, 袁新宇, 刘庆成, 刘玉娟, 杨磊 2012 原子能科学技术 46 1142

    Wu H X, Yuan X Y, Liu Q C, Liu Y J, Yang L 2012 At. Energy Sci. Technol. 46 1142

    [24]

    Salgado C M, Brandão L E B, Schirru R, Pereira C M N A, Conti C C 2012 Prog. Nucl. Energy 59 19Google Scholar

    [25]

    陈伟, 苏川英, 冯天成, 刘文彪, 田自宁 2018 核技术 41 70

    Cheng W, Su C Y, Feng T C, Liu W B, Tian Z N 2018 Nucl. Tech. 41 70

  • 图 1  Boosted-Gold算法计算过程

    Figure 1.  The calculation process of Boosted-Gold Algorithm.

    图 2  实验平台电子学框图

    Figure 2.  The electronics block diagram of the experimental platform.

    图 3  FJ374型NaI(Tl)探测器能量刻度

    Figure 3.  Energy calibration of FJ374 NaI(Tl) detector.

    图 4  能量(Eγ)与半高宽(FWHM)对应关系

    Figure 4.  The correspondence between energy (Eγ) and half-maximum width (FWHM).

    图 5  FJ374型NaI(Tl)探测器仿真模型

    Figure 5.  The simulation model of FJ374 NaI(Tl) detector.

    图 6  NaI(TI)探测器响应函数

    Figure 6.  Response matrix for the NaI (TI) detector.

    图 7  实测γ能谱与反演能谱的比较 (a) 22Naγ源能谱反演前后结果对比; (b)133Baγ源能谱反演前后结果对比; (c)152Eu γ源能谱反演前后结果对比

    Figure 7.  The comparison between the measured γ energy spectra and the unfolded energy spectrum: (a) Comparison of the results before and after the unfolded of the energy spectrum of the 22Na γ source; (b) comparison of the results before and after the unfolded of the energy spectrum of the 133Baγ source; (c) comparison of the results before and after the algorithm unfolded of the energy spectrum of the 152Eu γ source.

    图 8  模拟γ能谱反演前后结果对比 (a1) 4种能量γ射线模拟谱; (a2) 4种能量γ射线模拟谱反演前后结果对比; (b1)6种能量γ射线模拟谱; (b2) 6种能量γ射线模拟谱反演前后结果对比; (c1) 8种能量γ射线模拟谱; (c2) 8种能量γ射线模拟谱反演前后结果对比

    Figure 8.  The comparison of between the results before and after the unfolding of the simulated γ energy spectrum: (a1) The simulation spectrum of gamma-rays of 4 energies; (a2) the comparison between the results before and after the unfolding of the simulated spectrum of energy γ-rays of 4 energies; (b1) the simulation spectrum of gamma-rays of 6 energies; (b2) the comparison between the results before and after the unfolding of the simulated spectrum of energy γ-rays of 6 energies; (c1) the simulation spectrum of gamma-rays of 8 energies; (c2) the comparison between the results before and after the unfolding of the simulated spectrum of energy γ-rays of 8 energies.

    图 9  不同p值下标准相对强度数据与反演数据的对比

    Figure 9.  The comparison of the standard relative intensity data and the unfolded data at different p-values.

    表 1  实验谱与反演谱结果分析对比

    Table 1.  Analysis and comparison of the experimental spectrum and the unfolded spectrum results.

    定性分析定量分析
    标准能量/MeV反演能量/MeV误差/%标准谱
    强度比
    反演谱
    强度比
    偏差
    22Na0.5110.510.2110
    1.2751.291.180.5560.4380.118
    133Ba0.0810.081.230.550.449–0.101
    0.2760.272.170.1150.1230.008
    0.3030.300.990.2950.3190.024
    0.3560.351.69110
    0.3840.381.040.1440.1620.018
    152Eu0.3440.341.16110
    0.7790.771.150.4860.4950.009
    0.9640.960.410.5460.560.014
    1.0851.090.460.380.4020.022
    1.1121.120.720.5140.461–0.053
    1.4081.40.570.7850.588–0.197
    DownLoad: CSV

    表 2  模拟谱与反演谱结果对比

    Table 2.  Comparison of the simulated spectrum and the unfolded spectrum results.

    定性分析 定量分析
    标准能量/MeV反演能量/MeV标准谱强度比反演谱强度比偏差
    谱10.430.430.30.3020.002
    0.470.47110
    0.50.50.30.3070.007
    0.540.540.40.40
    谱20.670.670.40.4030.003
    0.710.7110.996–0.004
    0.760.760.40.397–0.003
    0.810.810.60.598–0.002
    1.031.03110
    1.081.080.60.6020.002
    谱30.630.630.50.49–0.01
    0.670.67110
    0.720.720.50.495–0.005
    0.770.770.50.495–0.005
    1.281.280.750.744–0.006
    1.341.340.50.494–0.006
    1.391.390.750.7520.002
    1.451.450.50.486–0.014
    DownLoad: CSV
  • [1]

    Li F, Cheng Z Y, Tian C S, Xiao H F, Zhang M, Ge L Q 2020 Appl. Spectrosc. Rev. 56 255

    [2]

    陈晔 2021 博士学位论文 (北京: 军事科学院)

    Chen Y 2021 Ph. D. Dissertation (Beijing: Academy of Military Sciences) (in Chinese)

    [3]

    Rahman M S, Cho G, Kang B S 2009 Radiat. Prot. Dosim. 135 203Google Scholar

    [4]

    Alizadeh D, Ashrafi S 2019 Nucl. Instrum. Methods Phys. Res., Sect. A 915 1Google Scholar

    [5]

    Demir N, Kuluöztürk Z N 2021 Nucl. Eng. Technol. 53 3759Google Scholar

    [6]

    Milbrath B D, Choate B J, Fast J E, Hensley W K, Kouzes R T, Schweppe J E 2007 Nucl. Instrum. Methods Phys. Res., Sect. A 572 774Google Scholar

    [7]

    Baré J, Tondeur F 2011 Appl. Radiat. Isot. 69 1121Google Scholar

    [8]

    Morháč M, Matoušek V 2009 Digital Signal Proces. 19 372Google Scholar

    [9]

    Kwan E, Wu C Y, Haight R C, Lee H Y, Bredeweg T A, Chyzh A, Devlin M, Fotiades N, Gostic J M, Henderson R A, Jandel M, Laptev A, Nelson R O, O’Donnell J M, Perdue B A, Taddeucci T N, Ullmann J L, Wender S A 2014 Nucl. Data Sheets 119 221Google Scholar

    [10]

    Meng L J, Ramsden D 2000 IEEE Trans. Nucl. Sci. 47 1329

    [11]

    Shi R, Tuo X G, Li H L, Xu Y Y, Shi F R, Yang J B, Luo Y 2018 Nucl. Sci. Tech. 29 10Google Scholar

    [12]

    Li L, Tuo X G, Liu M Z, Wang J 2014 Nucl. Sci. Tech. 25 050202

    [13]

    Wachtmeister S, Csillag S 2011 Ultramicroscopy 111 79Google Scholar

    [14]

    Zhou R J, Zhong G Q, Hu L Q, Tardocchi M, Rigamonti D, Giacomelli L, Nocente M, Gorini G, Fan T S, Zhang Y M, Hu Z M, Xiao M, Li K, Zhang Y K, Hong B, Zhang Y, Lin S Y, Zhang J Z 2019 Rev. Sci. Instrum. 90 123510Google Scholar

    [15]

    Morháč M, Matoušek V 2011 J. Comput. Appl. Math. 235 1629Google Scholar

    [16]

    Jandel M, Morháč M, Kliman J, Krupa L, Matoušek V, Hamilton J H, Ramayya A V 2004 Nucl. Instrum. Methods Phys. Res., Sect. A 516 172Google Scholar

    [17]

    He J F, Yang Y Z, Qu J H, Wu Q F, Xiao H L, Yu C C 2016 Nucl. Sci. Tech. 27 111Google Scholar

    [18]

    赵日, 刘立业, 曹勤剑 2019 原子能科学技术 53 1495Google Scholar

    Zhao R, Liu L Y, Cao Q J 2019 At. Energy Sci. Technol. 53 1495Google Scholar

    [19]

    Zhang S J, Liu C Q, Yang X, Huang C, Xie Q, Hu Z J, Hu Z M, Han C, Bai X H, Huo D Y, Wu K, Wang J R, Zhang Y, Wei Z, Yao Z E 2021 Nucl. Instrum. Methods Phys. Res., Sect. A 1006 165407Google Scholar

    [20]

    艾宪芸, 魏义祥, 肖无云 2006 清华大学学报(自然科学版) 46 821Google Scholar

    Ai X Y, Wei Y X, Xiao W Y 2006 J. Tsinghua. Univ. (Sci. & Tech.) 46 821Google Scholar

    [21]

    Khilkevitch E M, Shevelev A E, Chugunov I N, Naidenov V O, Gin D B, Doinikov D N 2013 Tech. Phys. Lett. 39 63Google Scholar

    [22]

    Morháč M, Hlaváč S, Veselský M, Matoušek V 2010 Nucl. Instrum. Methods Phys. Res. , Sect. A 621 539Google Scholar

    [23]

    吴和喜, 袁新宇, 刘庆成, 刘玉娟, 杨磊 2012 原子能科学技术 46 1142

    Wu H X, Yuan X Y, Liu Q C, Liu Y J, Yang L 2012 At. Energy Sci. Technol. 46 1142

    [24]

    Salgado C M, Brandão L E B, Schirru R, Pereira C M N A, Conti C C 2012 Prog. Nucl. Energy 59 19Google Scholar

    [25]

    陈伟, 苏川英, 冯天成, 刘文彪, 田自宁 2018 核技术 41 70

    Cheng W, Su C Y, Feng T C, Liu W B, Tian Z N 2018 Nucl. Tech. 41 70

  • [1] Jiang Cui, Li Jia-Rui, Qi Di, Zhang Lian-Lian. Effect of imaginary potential energy with parity-time symmetry on band structures and edge states of T-graphene. Acta Physica Sinica, 2024, 73(20): 207301. doi: 10.7498/aps.73.20240871
    [2] Li Xiao-Xiao, Li Juan, Bai Cai-Xun, Chang Chen-Guang, Hao Xiong-Bo, Wen Zhen-Qing, Wang Peng-Chong, Feng Yu-Tao. Calibration method of relative spectral response function of indirect imaging spectrometer. Acta Physica Sinica, 2024, 73(12): 120703. doi: 10.7498/aps.73.20240200
    [3] Li Yang, Zhang Yan-Hong, Sheng Liang, Zhang Mei, Yao Zhi-Ming, Duan Bao-Jun, Zhao Ji-Zhen, Guo Quan, Yan Wei-Peng, Li Guo-Guang, Hu Jia-Qi, Li Hao-Qing, Li Lang-Lang. Measurement and analysis of neutron spectrum responses of ST401 scintillators with different thickness. Acta Physica Sinica, 2024, 73(23): 232401. doi: 10.7498/aps.73.20241198
    [4] Cheng Kai, Wei Xin, Zeng De-Kai, Ji Xuan-Tao, Zhu Kun, Wang Xiao-Dong. Unfolding simulation of single-energy and continuous fast neutrons spectrum based on micro-pattern gas detector. Acta Physica Sinica, 2021, 70(11): 112901. doi: 10.7498/aps.70.20201954
    [5] Liu Jun-Yan, Qin Lei, Song Peng, Gong Jin-Long, Wang Yang, A. Mandelis. Infrared radiation dynamic response and parametric analysis for silicon solar cell using photocarrier radiometry. Acta Physica Sinica, 2014, 63(22): 227801. doi: 10.7498/aps.63.227801
    [6] Ju Zai-Qiang, Wang Yan, Bao Yuan, Li Pan-Yun, Zhu Zhong-Zhu, Zhang Kai, Huang Wan-Xia, Yuan Qing-Xi, Zhu Pei-Ping, Wu Zi-Yu. Response function of angle signal in two-dimensional grating imaging. Acta Physica Sinica, 2014, 63(7): 078701. doi: 10.7498/aps.63.078701
    [7] Li Ping, Wang Wei, Zhao Run-Chang, Geng Yuan-Chao, Jia Huai-Ting, Su Jing-Qin. Polarization smoothing design for improving the whole spatial frequency at focal spot. Acta Physica Sinica, 2014, 63(21): 215202. doi: 10.7498/aps.63.215202
    [8] Tu Xiao-Qing, Zhou Rong, Dai Fei, Yang Tian-Li, Yang Chao-Wen. Isomer 178m2Hf prepared by using α particles to bombard a natural ytterbium target and analysis ofhigh purity Ge γ spectrum. Acta Physica Sinica, 2014, 63(16): 162303. doi: 10.7498/aps.63.162303
    [9] Li Cheng, Wang Mei, Yan Jie, Liu Rong, Jiang Li, Lu Xin-Xin. Response function and relative efficiency measurementsof the BC501A scintillator by usinga 252Cf fast fission chamber. Acta Physica Sinica, 2011, 60(3): 032901. doi: 10.7498/aps.60.032901
    [10] Li Yong-Hua, Liu Chang-Sheng, Meng Fan-Ling, Wang Yu-Ming, Zheng Wei-Tao. X-ray photoelectron spectroscopy analysis of the effect of thickness on the transformation temperature of NiTi alloy thin films. Acta Physica Sinica, 2009, 58(4): 2742-2745. doi: 10.7498/aps.58.2742
    [11] Li Ping, Su Jing-Qin, Ma Chi, Zhang Rui, Jing Feng. Effect of smoothing by spectral dispersion on the spatial spectrum of focal spot. Acta Physica Sinica, 2009, 58(9): 6210-6215. doi: 10.7498/aps.58.6210
    [12] Li Han, Tang Xin-Feng, Zhao Wen-Yu, Zhang Qing-Jie. The structure and X-ray photoelectron spectroscopy analysis of double-atom filled skutterudite compounds. Acta Physica Sinica, 2006, 55(12): 6506-6510. doi: 10.7498/aps.55.6506
    [13] Zhang Hai-Tao, Cui Rui-Zhen, Wang Dong-Sheng, Yan Ping, Chen Gang, Liu Qiang. Split Monte Carlo for impulse responses on the infrared indoor channels on the basis of Phong’s model. Acta Physica Sinica, 2005, 54(8): 3610-3615. doi: 10.7498/aps.54.3610
    [14] Gu Juan, Liang Jiu-Qing. Energy spectrum analysis of donor-center quantum dots. Acta Physica Sinica, 2005, 54(11): 5335-5338. doi: 10.7498/aps.54.5335
    [15] LI LIU-HE, ZHANG HAI-QUAN, CUI XU-MING, ZHANG YAN-HUA, XIA LI-FANG, MA XIN-XIN, SUN YUE. COMPARATIVE ANALYSIS OF DLC FLIM FINE STRUCTURE BY RAMAN SPECTRA AND X-RAY PHOTOELECTRON SPECTROSCOPY. Acta Physica Sinica, 2001, 50(8): 1549-1554. doi: 10.7498/aps.50.1549
    [16] CHENG YU-HANG, WU YI-PING, CHEN JIAN-GUO, QIAO XUE-LIANG, XIE CHANG-SHENG, YANG YE-ZHI, MUO SHAO-BO. STUDY ON THE STRUCTURE OF a-C∶H(N) FILMS BY XPS. Acta Physica Sinica, 1998, 47(1): 83-88. doi: 10.7498/aps.47.83
    [17] LIU SHENG-XIA. ANALYSIS OF CHARGE-EXCHANGE SPECTRA DURING NBI HEATING IN THE HT-6M TOKAMAK. Acta Physica Sinica, 1996, 45(3): 449-454. doi: 10.7498/aps.45.449
    [18] GUO YUAN-HENG, CHEN LAN-FENG. SURFACE STUDY OF SUPERCONDUCTING Nb-Ge FILM BY AUGER ELECTRON SPECTROSCOPY AND ELECTRON SPECTROSCOPY FOR CHEMICAL ANALYSIS. Acta Physica Sinica, 1988, 37(7): 1196-1102. doi: 10.7498/aps.37.1196
    [19] XIMEN JI-YE, YAN JI-WEN, HUANG XU. ON ELECTRON OPTICAL TRANSFER FUNCTION AND IMPULSE RESPONSE IN THE PRESENCE OF SPHERICAL ABERRATION AND DEFOCUS. Acta Physica Sinica, 1985, 34(3): 348-358. doi: 10.7498/aps.34.348
    [20] Li Fang-hua, Fan Han-jie, Zhang Pei-shan, Wang Yi-hua. THE APPLICATION OF MICRO-AREA X-RAY ENERGY DISPERSIVE ANALYSIS IN INVESTIGATING BARIUM-RARE EARTH FLUOROCARBONATE MINERALS. Acta Physica Sinica, 1983, 32(4): 460-465. doi: 10.7498/aps.32.460
Metrics
  • Abstract views:  5726
  • PDF Downloads:  126
  • Cited By: 0
Publishing process
  • Received Date:  30 December 2021
  • Accepted Date:  16 February 2022
  • Available Online:  21 February 2022
  • Published Online:  20 May 2022

/

返回文章
返回