Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The study of tight focusing characteristics of azimuthally polarized vortex beams and the implementation of ultra-long super-resolved optical needle

Jiang Chi Geng Tao

Citation:

The study of tight focusing characteristics of azimuthally polarized vortex beams and the implementation of ultra-long super-resolved optical needle

Jiang Chi, Geng Tao
PDF
HTML
Get Citation
  • The tight focusing characteristics of azimuthally polarized vortex beams are systematically investigated in this work. The azimuthally polarized vortex beam can be decomposed into left-handed circularly polarized (LHCP) wave and right-handed circularly polarized ( RHCP) wave. It is found that the longitudinal component of LHCP and RHCP at the focal plane are equal in magnitude but opposite in phase. Thus, the total longitudinal field disappears because of the completely destructive interference. In contrast, there is almost no interference between the transverse component of LHCP and RHCP. Thus, the total transverse field is the incoherent superposition of them. Since the absolute value of the topological charge of LHCP component and RHCP component are not equal, the transverse component of LHCP and RHCP will be concentrated in the different areas on the focal plane. It is the reason for the orbit-induced SAM to be localized on the focal plane. Then, we compare the focal spot characteristics of the radially polarized beam and the azimuthally polarized beam with a first-order vortex. The advantages and disadvantages of them are discussed in detail, respectively.For the radially polarized beam, the central focal spot is mainly longitudinal component, and the sidelobe is mainly transverse component. For the azimuthally polarized vortex beam with $l = 1$, the central focal spot is mainly LHCP component, and the sidelobe is mainly RHCP component. In both cases, the field distributions of the central spots are the same, and both show a distribution similar to the zero-order Bessel function. The situation of the sidelobe is different. The sidelobe of the radially polarized beam shows a distribution similar to the first-order Bessel function and the sidelobe of the azimuthally polarized vortex beam indicates a distribution similar to the second-order Bessel function. Therefore, the sidelobe of the radially polarized beam is closer to that of the optical axis, resulting in a larger central focal spot size. On the other hand, the sidelobe of the radially polarized beam accounts for a much smaller proportion of the total energy than that of the azimuthally polarized vortex beam. So the sidelobe peak intensity of the radially polarized beam is lower. Finally, an optimal binary phase element is designed to obtain an ultra-long super-resolution optical needle. The transverse full weight of half maximum (FWHM) can achieve $0.391\lambda $ and the longitudinal FWHM can reach to $25.5\lambda $ by using only 6 belts.
      Corresponding author: Geng Tao, Tao_Geng@hotmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61975125) and the Natural Science Foundation of Shanghai, China (Grant No. 21ZR1443800).
    [1]

    Li Y C, Xin H B, Lei H X, Liu L L, Li Y Z, Zhang Y, Li B J 2016 Light Sci. Appl. 5 e16176Google Scholar

    [2]

    Gong Z, Pan Y L, Videen G, Wang C 2018 J. Quant. Spectrosc. Ra. 214 94Google Scholar

    [3]

    Wetzstein G, Ozcan A, Gigan S, Fan S, Englund D, Soljačić M, Denz C, Miller D A B, Psaltis D 2020 Nature 588 39Google Scholar

    [4]

    许琳茜, 朱榕琪, 朱竹青, 贡丽萍, 顾兵 2022 物理学报 71 147801Google Scholar

    Xu L X, Zhu R Q, Zhu Z Q, Gong L P, Gu B 2022 Acta Phys. Sin. 71 147801Google Scholar

    [5]

    Zhang L, Qiu X D, Zeng L W, Chen L X 2019 Chin. Phys. B 28 094202Google Scholar

    [6]

    Zhao J, Winetraub Y, Du L, Van Vleck A, Ichimura K, Huang C, Aasi S Z, Sarin K Y, de la Zerda A 2022 Optica 9 859Google Scholar

    [7]

    Cao R, Zhao J J, Li L, Du L, Zhang Y D, Luo Y L, Jiang L M, Davis S, Zhou Q F, de la Zerda A, Wang L V 2022 Nat. Photon. 17 89Google Scholar

    [8]

    Wang H, Shi L, Lukyanchuk B, Sheppard C, Chong C T 2008 Nat. Photon. 2 501Google Scholar

    [9]

    Huang K, Shi P, Kang X L, Zhang X, Li Y P 2010 Opt. Lett. 35 965Google Scholar

    [10]

    Guo H M, Weng X Y, Jiang M, Zhao Y H, Sui G R, Hu Q, Wang Y, Zhuang S L 2013 Opt. Express 21 5363Google Scholar

    [11]

    Zhang T, Li M, Ye H, Shi C 2020 Opt. Commun. 460 125178Google Scholar

    [12]

    He J, Zhuang J C, Ding L, Huang K 2021 Appl. Opt. 60 3081Google Scholar

    [13]

    Hao X, Kuang C F, Wang T T, Liu X 2010 Opt. Lett. 35 3928Google Scholar

    [14]

    Yuan G H, Wei S B, Yuan X C 2011 Opt. Lett. 36 3479Google Scholar

    [15]

    Wang S C, Li X P, Zhou J Y, Gu M 2014 Opt. Lett. 39 5022Google Scholar

    [16]

    Liu L, Shi L, Li F, Yu S, Wang S, Du J, Liu M, Qi B, Yan W 2021 IEEE Photon. J. 13 1Google Scholar

    [17]

    Gao X Z, Zhao P C, Zhao J H, Sun X F, Liu J J, Yang F, Pan Y 2022 Opt. Express 30 26275Google Scholar

    [18]

    Zhan Q 2009 Adv. Opt. Photon. 1 1Google Scholar

    [19]

    Kozawa Y, Sato S 2021 Prog. Opt. 66 35Google Scholar

    [20]

    Sato S, Kozawa Y 2009 J. Opt. Soc. Am. A Opt. Image Sci. Vis. 26 142Google Scholar

    [21]

    Li M M, Cai Y N, Yan S H, Liang Y S, Zhang P, Yao B L 2018 Phys. Rev. A 97 053842Google Scholar

    [22]

    Monteiro P B, Neto P A M, Nussenzveig H M 2009 Phys. Rev. A 79 033830Google Scholar

    [23]

    Ostrovsky A S, Rickenstorff-Parrao C, Arrizón V 2013 Opt. Lett. 38 534Google Scholar

    [24]

    Grosjean T, Courjon D 2007 Opt. Commun. 272 314Google Scholar

    [25]

    Vaity P, Rusch L 2015 Opt. Lett. 40 597Google Scholar

  • 图 1  $l = 1$时, 焦平面的(a)光强和偏振分布; (b)斯托克斯分量S3的分布. 图尺寸为$1.5\lambda \times 1.5\lambda $

    Figure 1.  (a) Intensity and polarization distributions of the beam at the focal plane with $l = 1$; (b) calculation results of Stokes parameters S3 at the focal plane with $l = 1$.

    图 2  (a) $l = 2$和(b) $l = 0$时, 焦平面的左旋分量${I_{{\text{EL}}}}$、右旋分量${I_{{\text{ER}}}}$、总光强${I_0}$以及斯托克斯分量S3分布

    Figure 2.  Intensity of the left-handed component, intensity of the right-handed component, total intensity and the Stokes parameters S3 at the focal plane with (a) $l = 2$ and (b) $l = 0$.

    图 3  $l = 1$时, ${E_{{\text{0 L}}}}$${E_{{\text{0 R}}}}$的横向分量在焦平面的相干叠加和非相干叠加的光强计算结果

    Figure 3.  Calculation results of coherent superposition and incoherent superposition of the transverse components of ${E_{{\text{0 L}}}}$ and ${E_{{\text{0 R}}}}$ with $l = 1$.

    图 4  不同情况下, ${I_{\text{A}}}$${I_{\text{R}}}$的计算结果(图中同时给出了各自的第2项计算结果以便于比较) (a) $n = 1$, ${\text{NA}} = 1$; (b) $n = 1$, ${\text{NA}} = 0.95$; (c) $n = 1.52$, ${\text{NA}} = 1.4$

    Figure 4.  Calculation results of ${I_{\text{A}}}$ and ${I_{\text{R}}}$ under different conditions: (a) $n = 1$, ${\text{NA}} = 1$; (b) $n = 1$, ${\text{NA}} = 0.95$; (c) $n = 1.52$, ${\text{NA}} = 1.4$. The second terms of ${I_{\text{A}}}$ and ${I_{\text{R}}}$ are also shown here for the convenience of comparing

    图 5  $n = 1$, ${\text{NA}} = 0.95$时, 径向偏振光和1阶角向矢量涡旋光的焦斑FWHM随$R/T$的变化曲线

    Figure 5.  Focus FWHM of different beams as a function of $R/T$ with $n = 1$, ${\text{NA}} = 0.95$.

    图 6  (a)六环带相位板示意图; (b)聚焦过程示意图

    Figure 6.  (a) Phase structure of a six-belt binary element; (b) the focusing setup.

    图 7  $n = 1$, ${\text{NA}} = 0.95$, $R/T = 25$时, (a)相位调制前后的焦平面光强分布; (b)相位调制前后的光轴光强分布; (c)调制前焦点区域$\rho {\text{-}}z$面的二维光强分布; (d)调制后焦点区域$\rho {\text{-}}z$面的二维光强分布

    Figure 7.  Under the condition of $n = 1$, ${\text{NA}} = 0.95$, $R/T = 25$, (a) the intensity distributions at the focal plane with and without phase modulation, (b) the intensity distributions at the optic axis with and without phase modulation, (c) the two-dimensional (2D) intensity distribution in the $\rho {\text{-}}z$ plane without phase modulation, and (d) the 2D intensity distribution in the $\rho {\text{-}}z$ plane with phase modulation.

    表 1  不同情况下, 由(30)式和(31)式计算获得的中心焦斑的FWHM (${\lambda _n} = \lambda /n$为介质中波长)

    Table 1.  Calculation results of FWHM of the focal spot by using Eqs. (30) and (31) under different conditions. Here, ${\lambda _n} = \lambda /n$ is the wavelength in the medium.

    $n = 1$, ${\text{NA}} = 1$$n = 1$, ${\text{NA}} = 0.95$$n = 1.52$, ${\text{NA}} = 1.4$
    ${I_{\rm A}}$的FWHM$0.371{\lambda _n}$$0.389{\lambda _n}$$0.403{\lambda _n}$
    ${I_{\text{R}}}$的FWHM$0.359{\lambda _n}$$0.391{\lambda _n}$$0.412{\lambda _n}$
    DownLoad: CSV
  • [1]

    Li Y C, Xin H B, Lei H X, Liu L L, Li Y Z, Zhang Y, Li B J 2016 Light Sci. Appl. 5 e16176Google Scholar

    [2]

    Gong Z, Pan Y L, Videen G, Wang C 2018 J. Quant. Spectrosc. Ra. 214 94Google Scholar

    [3]

    Wetzstein G, Ozcan A, Gigan S, Fan S, Englund D, Soljačić M, Denz C, Miller D A B, Psaltis D 2020 Nature 588 39Google Scholar

    [4]

    许琳茜, 朱榕琪, 朱竹青, 贡丽萍, 顾兵 2022 物理学报 71 147801Google Scholar

    Xu L X, Zhu R Q, Zhu Z Q, Gong L P, Gu B 2022 Acta Phys. Sin. 71 147801Google Scholar

    [5]

    Zhang L, Qiu X D, Zeng L W, Chen L X 2019 Chin. Phys. B 28 094202Google Scholar

    [6]

    Zhao J, Winetraub Y, Du L, Van Vleck A, Ichimura K, Huang C, Aasi S Z, Sarin K Y, de la Zerda A 2022 Optica 9 859Google Scholar

    [7]

    Cao R, Zhao J J, Li L, Du L, Zhang Y D, Luo Y L, Jiang L M, Davis S, Zhou Q F, de la Zerda A, Wang L V 2022 Nat. Photon. 17 89Google Scholar

    [8]

    Wang H, Shi L, Lukyanchuk B, Sheppard C, Chong C T 2008 Nat. Photon. 2 501Google Scholar

    [9]

    Huang K, Shi P, Kang X L, Zhang X, Li Y P 2010 Opt. Lett. 35 965Google Scholar

    [10]

    Guo H M, Weng X Y, Jiang M, Zhao Y H, Sui G R, Hu Q, Wang Y, Zhuang S L 2013 Opt. Express 21 5363Google Scholar

    [11]

    Zhang T, Li M, Ye H, Shi C 2020 Opt. Commun. 460 125178Google Scholar

    [12]

    He J, Zhuang J C, Ding L, Huang K 2021 Appl. Opt. 60 3081Google Scholar

    [13]

    Hao X, Kuang C F, Wang T T, Liu X 2010 Opt. Lett. 35 3928Google Scholar

    [14]

    Yuan G H, Wei S B, Yuan X C 2011 Opt. Lett. 36 3479Google Scholar

    [15]

    Wang S C, Li X P, Zhou J Y, Gu M 2014 Opt. Lett. 39 5022Google Scholar

    [16]

    Liu L, Shi L, Li F, Yu S, Wang S, Du J, Liu M, Qi B, Yan W 2021 IEEE Photon. J. 13 1Google Scholar

    [17]

    Gao X Z, Zhao P C, Zhao J H, Sun X F, Liu J J, Yang F, Pan Y 2022 Opt. Express 30 26275Google Scholar

    [18]

    Zhan Q 2009 Adv. Opt. Photon. 1 1Google Scholar

    [19]

    Kozawa Y, Sato S 2021 Prog. Opt. 66 35Google Scholar

    [20]

    Sato S, Kozawa Y 2009 J. Opt. Soc. Am. A Opt. Image Sci. Vis. 26 142Google Scholar

    [21]

    Li M M, Cai Y N, Yan S H, Liang Y S, Zhang P, Yao B L 2018 Phys. Rev. A 97 053842Google Scholar

    [22]

    Monteiro P B, Neto P A M, Nussenzveig H M 2009 Phys. Rev. A 79 033830Google Scholar

    [23]

    Ostrovsky A S, Rickenstorff-Parrao C, Arrizón V 2013 Opt. Lett. 38 534Google Scholar

    [24]

    Grosjean T, Courjon D 2007 Opt. Commun. 272 314Google Scholar

    [25]

    Vaity P, Rusch L 2015 Opt. Lett. 40 597Google Scholar

  • [1] Hadiqa⋅ Abdugopur, Tan Le-Tao, Yu Tao, Xie Wen-Ke, Liu Jing, Shao Zheng-Zheng. Study of off-axis incident rotational speed measurement based on coherent synthetic vortex beams. Acta Physica Sinica, 2024, 73(16): 168701. doi: 10.7498/aps.73.20240655
    [2] Fan Hai-Ling, Guo Zhi-Jian, Li Ming-Qiang, Zhuo Hong-Bin. Numerical study of self-focusing and filament formation of intense vortex beams in plasmas. Acta Physica Sinica, 2023, 72(1): 014206. doi: 10.7498/aps.72.20221232
    [3] Fan Yu-Ting, Zhu En-Xu, Zhao Chao-Ying, Tan Wei-Han. Dynamic generation of vortex beam based on partial phase modulation of electro-optical crystal plate. Acta Physica Sinica, 2022, 71(20): 207801. doi: 10.7498/aps.71.20220835
    [4] Zhu Xue-Song, Liu Xing-Yu, Zhang Yan. Nonreciprocal transmission of vortex beam in double Laguerre-Gaussian rotational cavity system. Acta Physica Sinica, 2022, 71(15): 150701. doi: 10.7498/aps.71.20220191
    [5] Peng Yi-Ming, Xue Yu, Xiao Guang-Zong, Yu Tao, Xie Wen-Ke, Xia Hui, Liu Shuang, Chen Xin, Chen Fang-Lin, Sun Xue-Cheng. Spiral spectrum analysis and application ofcoherent synthetic vortex beams. Acta Physica Sinica, 2019, 68(21): 214206. doi: 10.7498/aps.68.20190880
    [6] Tian Bo-Yu, Zhong Zhe-Qiang, Sui Zhan, Zhang Bin, Yuan Xiao. Ultrafast azimuthal beam smoothing scheme based on vortex beam. Acta Physica Sinica, 2019, 68(2): 024207. doi: 10.7498/aps.68.20181361
    [7] Fu Shi-Yao, Gao Chun-Qing. Progress of detecting orbital angular momentum states of optical vortices through diffraction gratings. Acta Physica Sinica, 2018, 67(3): 034201. doi: 10.7498/aps.67.20171899
    [8] Yu Tao, Xia Hui, Fan Zhi-Hua, Xie Wen-Ke, Zhang Pan, Liu Jun-Sheng, Chen Xin. Generation of Bessel-Gaussian vortex beam by combining technology. Acta Physica Sinica, 2018, 67(13): 134203. doi: 10.7498/aps.67.20180325
    [9] Shi Jian-Zhen, Xu Tian, Zhou Qiao-Qiao, Ji Xian-Ming, Yin Jian-Ping. Generation of no-diffraction hollow vertex beams with adjustable angular momentum by wave plate phase plates. Acta Physica Sinica, 2015, 64(23): 234209. doi: 10.7498/aps.64.234209
    [10] Wang Ya-Dong, Gan Xue-Tao, Ju Pei, Pang Yan, Yuan Lin-Guang, Zhao Jian-Lin. Control of topological structure in high-order optical vortices by use of noncanonical helical phase. Acta Physica Sinica, 2015, 64(3): 034204. doi: 10.7498/aps.64.034204
    [11] Shi Jian-Zhen, Yang Shen, Zou Ya-Qi, Ji Xian-Ming, Yin Jian-Ping. Generation of vortex beams by the four-step phase plates. Acta Physica Sinica, 2015, 64(18): 184202. doi: 10.7498/aps.64.184202
    [12] Yi Xu-Nong, Li Ying, Ling Xiao-Hui, Zhang Zhi-You, Fan Dian-Yuan. Spin-orbit interaction of light in metasuface. Acta Physica Sinica, 2015, 64(24): 244202. doi: 10.7498/aps.64.244202
    [13] Zhou Qiao-Qiao, Shi Jian-Zhen, Ji Xian-Ming, Yin Jian-Ping. Study on the properties of vector beams generated by a curved wave plate in the strong-focusing regime. Acta Physica Sinica, 2015, 64(5): 053702. doi: 10.7498/aps.64.053702
    [14] Wang Lin, Yuan Cao-Jin, Nie Shou-Ping, Li Chong-Guang, Zhang Hui-Li, Zhao Ying-Chun, Zhang Xiu-Ying, Feng Shao-Tong. Measuring topology charge of vortex beam using digital holography. Acta Physica Sinica, 2014, 63(24): 244202. doi: 10.7498/aps.63.244202
    [15] Huang Su-Juan, Gu Ting-Ting, Miao Zhuang, He Chao, Wang Ting-Yun. Experimental study on multiple-ring vortex beams. Acta Physica Sinica, 2014, 63(24): 244103. doi: 10.7498/aps.63.244103
    [16] Zhang Jin, Zhou Xin-Xing, Luo Hai-Lu, Wen Shuang-Chun. Cross polarization effects of vortex beam in reflection. Acta Physica Sinica, 2013, 62(17): 174202. doi: 10.7498/aps.62.174202
    [17] Ding Pan-Feng, Pu Ji-Xiong. Change of the off-center Laguerre-Gaussian vortex beam while propagation. Acta Physica Sinica, 2012, 61(6): 064103. doi: 10.7498/aps.61.064103
    [18] Wang Zheng, Gao Chun-Qing, Xin Jing-Tao. Focusing properties of the high order vector beam by a high numerical aperture lens. Acta Physica Sinica, 2012, 61(12): 124209. doi: 10.7498/aps.61.124209
    [19] Ding Pan-Feng, Pu Ji-Xiong. Propagation of Laguerre-Gaussian vortex beam. Acta Physica Sinica, 2011, 60(9): 094204. doi: 10.7498/aps.60.094204
    [20] Li Yang-Yue, Chen Zi-Yang, Liu Hui, Pu Ji-Xiong. Generation and interference of vortex beams. Acta Physica Sinica, 2010, 59(3): 1740-1748. doi: 10.7498/aps.59.1740
Metrics
  • Abstract views:  3903
  • PDF Downloads:  175
  • Cited By: 0
Publishing process
  • Received Date:  01 March 2023
  • Accepted Date:  03 April 2023
  • Available Online:  26 April 2023
  • Published Online:  20 June 2023

/

返回文章
返回