-
Based on the tested data of laser absorption spectra, a matrix slicing method is proposed to invert the absorption function of spectral lines by using the two parameters of laser modulation frequency and laser scanning range as well as transmitted wave signal and reference wave signal under the condition of slow uniform scanning wavelength and fast periodic modulation wavelength. When the modulation is single frequency sinusoidal modulation, an accurate contour of the spectral line absorption function can be obtained by using the matrix data consisting of the values of the transmitted wave signal by the reference wave signal through the minimum value of two slice integrals with the interval of half modulation period, and the amplitude of modulation can be estimated. When the fast modulation of the wavelength is distorted to the multi-frequency superposition modulation, the absorption function is also formed by using the complementarity of multiple slices. The method above is utilized for investigating a real absorption function inversion process involving multiple overlapping absorption lines in the range of the scanning wavelengths. Moreover, the scanning range of laser wavelength can be calibrated by the interval parameters of several spectral lines in the scanning wavelength range. The absorption function of CO at 4300.700 cm–1 and CO2 at 6336 cm–1 are successfully obtained by using this matrix slice method for experimental verification.
-
Keywords:
- wavelength modulation /
- wavelength scanning /
- absorption function /
- data matrix
[1] Werle P A 1998 Spectrochim. Acta. A 54 197Google Scholar
[2] Bain J R P, Johnstone W, Ruxton K, Stewart G, Lengden M, Duffin K 2011 J. Lightw. Technol. 29 987Google Scholar
[3] Reid J, Labrie D 1981 Appl. Phys. B: Photophys. Laser Chem. 26 203Google Scholar
[4] Rieker G B, Jeffffries J B, Hanson R K 2009 Appl. Optics. 48 5546Google Scholar
[5] Wang Z H, Fu P F, Chao X 2019 Appl. Sci. 9 2723Google Scholar
[6] Goldenstein C S, Strand C L, Schultz I A, Sun K, Jeffries J B, Hanson R K 2014 Appl. Opt. 53 356Google Scholar
[7] Wang F, Jia S H, Wang Y L, Tang Z H 2019 Appl. Sci-Basel. 9 9142816Google Scholar
[8] Stewart G, Johnstone W, Bain J R P, Ruxton K, Duffin K 2011 J. Lightw. Technol. 29 811Google Scholar
[9] McGettrick J, Duffin K, Johnstone W, Stewart G, Moodie D G 2008 J. Lightw. Technol. 26 432Google Scholar
[10] Duffin K, McGettrick A J, Johnstone W, Stewart G, Moodie D G 2007 J. Lightw. Technol. 25 3114Google Scholar
[11] Sun K, Chao X, Sur R, Goldenstein C S, Jeffries J B, Hanson R K 2013 Meas. Sci. Technol. 24 125203Google Scholar
[12] Peng Z M, Du Y J, Ding Y J 2020 Sensors. 20 681Google Scholar
[13] Sun K, Chao X, Sur R, Jeffries J B, Hanson R K 2013 Appl. Phys. B 110 497Google Scholar
[14] Peng Z M, Ding Y J, Che L, Yang Q S 2012 Opt. Express 20 11976Google Scholar
[15] Du Y J, Peng Z M, Ding Y J 2018 Opt. Express 26 9263Google Scholar
[16] Peng Z M, Du Y J, Ding Y J 2020 Sensors 20 616Google Scholar
[17] Peng Z M, Ding Y J, Che L, Li X H, Zheng K J 2011 Opt. Express 19 23104Google Scholar
[18] Tao B, Lei Q C, Ye J F, Zhang Z R, Hu Z Y, Fan W 2020 Appl. Phys. B: Lasers Opt. 126 31Google Scholar
[19] Tian X, Cao Y, Chen J J, Liu K, Wang G S, Tan T, Mei J X, Chen W D, Gao X M 2019 Sens. 19 820Google Scholar
[20] Li H J, Rieker G B, Liu X, Jeffries J B, Hanson R K 2006 Appl. Opt. 45 1052Google Scholar
[21] Li J D, Du Y J, Peng Z M, Ding Y J 2019 J. Quant. Spectrosc. Ra. 224 197Google Scholar
[22] Sur R, Sun K, Jeffries J B, Socha J G, Hanson R K 2015 Fuel 150 102Google Scholar
[23] Rieker G B, Jeffries J B, Hanson R K 2009 Appl. Phys. B 94 51Google Scholar
[24] Cai T D, Gao G Z, Wang M R, Wang G S, Liu Y, Gao X M 2007 J. Quant. Spectrosc. Radiat. Transfer. 201 136Google Scholar
[25] Gordon I E, Rothman L S, Hill C, et al. 2017 J. Quant. Spectrosc. Ra. 203 3Google Scholar
-
图 2 (a) 对应的两个间隔半个周期的吸收函数面积绝对值之差随调制时间的演化曲线; (b) 两个标准吸收函数曲线和调制时间偏置1/4周期对应的吸收函数曲线; (c) 图(b)中的两个标准吸收函数曲线和理论值的残值误差
Figure 2. (a) Evolution curve of the difference of the absolute values of the areas of two absorption function with a half-period interval; (b) the two standard absorption function curves and the absorption function curves with an offset of 1/4 period; (c) the residuals of the two standard absorption functions in panel (b) and theoretical values.
图 3 (a) 调制为3个频率的叠加时A
$\varphi$ 数据矩阵对应的等高吸收线图; (b) 利用等高吸收图得到的以吸收最大值出现在零波数点的吸收函数曲线Figure 3. (a) Contour absorption map of the data matrix for A
${\varphi }$ with a superposition modulation of three frequencies; (b) the absorption function curve obtained by using contour absorption graph where the absorption maximum is defined at the zero point of the wavenumber changing.图 7 利用图6所示的实验得到的数据矩阵和时间间隔为半个调制周期的两个切片沿波长扫描方向积分值之差的最小绝对值得到的吸收光谱轮廓 (a) CO; (b) CO2
Figure 7. Absorption spectrum profiles for (a) CO and (b) CO2 by minimizing the absolute difference of the integral values along the center wavelength scanning direction between two slices with an interval of half a modulation period and based on the matrix data shown in Fig. 6.
-
[1] Werle P A 1998 Spectrochim. Acta. A 54 197Google Scholar
[2] Bain J R P, Johnstone W, Ruxton K, Stewart G, Lengden M, Duffin K 2011 J. Lightw. Technol. 29 987Google Scholar
[3] Reid J, Labrie D 1981 Appl. Phys. B: Photophys. Laser Chem. 26 203Google Scholar
[4] Rieker G B, Jeffffries J B, Hanson R K 2009 Appl. Optics. 48 5546Google Scholar
[5] Wang Z H, Fu P F, Chao X 2019 Appl. Sci. 9 2723Google Scholar
[6] Goldenstein C S, Strand C L, Schultz I A, Sun K, Jeffries J B, Hanson R K 2014 Appl. Opt. 53 356Google Scholar
[7] Wang F, Jia S H, Wang Y L, Tang Z H 2019 Appl. Sci-Basel. 9 9142816Google Scholar
[8] Stewart G, Johnstone W, Bain J R P, Ruxton K, Duffin K 2011 J. Lightw. Technol. 29 811Google Scholar
[9] McGettrick J, Duffin K, Johnstone W, Stewart G, Moodie D G 2008 J. Lightw. Technol. 26 432Google Scholar
[10] Duffin K, McGettrick A J, Johnstone W, Stewart G, Moodie D G 2007 J. Lightw. Technol. 25 3114Google Scholar
[11] Sun K, Chao X, Sur R, Goldenstein C S, Jeffries J B, Hanson R K 2013 Meas. Sci. Technol. 24 125203Google Scholar
[12] Peng Z M, Du Y J, Ding Y J 2020 Sensors. 20 681Google Scholar
[13] Sun K, Chao X, Sur R, Jeffries J B, Hanson R K 2013 Appl. Phys. B 110 497Google Scholar
[14] Peng Z M, Ding Y J, Che L, Yang Q S 2012 Opt. Express 20 11976Google Scholar
[15] Du Y J, Peng Z M, Ding Y J 2018 Opt. Express 26 9263Google Scholar
[16] Peng Z M, Du Y J, Ding Y J 2020 Sensors 20 616Google Scholar
[17] Peng Z M, Ding Y J, Che L, Li X H, Zheng K J 2011 Opt. Express 19 23104Google Scholar
[18] Tao B, Lei Q C, Ye J F, Zhang Z R, Hu Z Y, Fan W 2020 Appl. Phys. B: Lasers Opt. 126 31Google Scholar
[19] Tian X, Cao Y, Chen J J, Liu K, Wang G S, Tan T, Mei J X, Chen W D, Gao X M 2019 Sens. 19 820Google Scholar
[20] Li H J, Rieker G B, Liu X, Jeffries J B, Hanson R K 2006 Appl. Opt. 45 1052Google Scholar
[21] Li J D, Du Y J, Peng Z M, Ding Y J 2019 J. Quant. Spectrosc. Ra. 224 197Google Scholar
[22] Sur R, Sun K, Jeffries J B, Socha J G, Hanson R K 2015 Fuel 150 102Google Scholar
[23] Rieker G B, Jeffries J B, Hanson R K 2009 Appl. Phys. B 94 51Google Scholar
[24] Cai T D, Gao G Z, Wang M R, Wang G S, Liu Y, Gao X M 2007 J. Quant. Spectrosc. Radiat. Transfer. 201 136Google Scholar
[25] Gordon I E, Rothman L S, Hill C, et al. 2017 J. Quant. Spectrosc. Ra. 203 3Google Scholar
Catalog
Metrics
- Abstract views: 3177
- PDF Downloads: 80
- Cited By: 0