Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Noise analysis of dual-channel light intensity signal based on wavelength-tuned laser system

WU Yupeng MA Kai KONG Xinxin WU Zhou ZHANG Wenxi

Citation:

Noise analysis of dual-channel light intensity signal based on wavelength-tuned laser system

WU Yupeng, MA Kai, KONG Xinxin, WU Zhou, ZHANG Wenxi
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Wavelength-tunable lasers play a crucial role in fields such as precision interferometry and ultra-stable laser applications. The precision of wavelength tuning and the accuracy of frequency stabilization in lasers are the key indicators of their performance. To improve these performance, closed-loop control with dual-beam paths, such as saturated absorption spectrum spatial stabilization, is commonly utilized. The signal-to-noise ratio (SNR) of the control beam detection significantly affects the control precision. Investigating the parameters that influence this SNR and analyzing their relationships are of great engineering significance for further improving the tuning precision and frequency stabilization accuracy of lasers.To increase the SNR, this work examines intensity noise in wavelength-modulation systems based on the polarizer-phase-delay-polarizer model. A polarization beam splitter (PBS) cannot achieve a zero polarization extinction ratio (PER), thus introducing intensity noise from the interference between p and s polarization light. Additionally, non-ideal stray light, such as back-reflected and scattered light from optical components, further reduces the SNR of the detection signal when it converges on the detector’s active area. This work carries out a detailed analysis of these two types of noise, exploring the effects of factors such as PER, wavelength-modulation range, beam diameter, laser polarization direction, and modulation frequency. Based on the theoretical analysis, it also simulates optical phenomena involving half-wave plates with different tilt angles and rotation angles, as well as dual-frequency Gaussian elliptically polarized light under various modulation parameters.The theoretical analysis indicates that the intensities of p and s polarization light undergo periodic variations as the angle between the half-wave plate’s optical axis and the PBS’s slow-axis direction, as well as the angle between the linear-polarization direction and the half-wave plate’s optical axis, changes. The extreme positions of these intensities move with the PER changing. At certain specific angles, destructive interference leads to extremely low intensities in both transmitted and reflected light. Furthermore, when the detector receives stray light of multiple frequencies, the synthesized phase varies periodically with wavelength tuning. This means that over time (corresponding to tuning the center wavelength to different values), the interference intensity exhibits periodic changes from constructive interference to destructive interference and then to constructive interference. Consequently, abnormal dips and peaks may appear in the optical signal intensity.A 633-B-A81-SA-PZT laser from LD-PD INC with a 10mW output is used in the experiment. A true zero-order half-wave plate model centered at 633 nm is adopted in the simulation. The laser wavelength is tunable in the range of 633 nm±10 pm, and 10 kHz sine-wave current modulation is used, with a wavelength-current tuning coefficient of 1 pm/mA. After an isolator, a 90∶10 coupler splits the beam into a 9 mW output and a 1mW experiment beam, which is collimated and adjusted by a polarizer, a true zero-order half-wave plate, and a PBS to set the ratio of p light power to s light power. Two Thorlabs FDS100 detectors capture the beams, with signals collected via a data acquisition card. The PD1 and PD2 signals show significant differences under certain conditions, and the p and s light signals vary periodically with half-wave plate rotating. Adding a polarizer at the laser exit and adjusting its angle can improve signal consistency. After alignment, the SNR increases from 10 dB to 31 dB.In this study, wavelength of a 633nm semiconductor laser is tuned by using a saturated absorption spectrum ring light path. Under different modulation conditions, inconsistencies in the intensity signals of two beams are observed. Polarization control increases the SNR to 31 dB, confirming the theoretical model. Additionally, time domain analysis of stray light from the wavelength-tuned source shows that reducing the wavelength tuning range and modulation frequency can effectively suppress high frequency noise.
  • 图 1  (a)波长调谐激光光源退偏实验装置图; (b)传输过程中偏振态变化示意图

    Figure 1.  (a) Depolarization experimental setup for wavelength modulation laser; (b) schematic diagram of polarization changes during transmission.

    图 3  不同$ \alpha $和$ \beta $下的透射光(左)和反射光强度(右)

    Figure 3.  Transmitted light (left) and reflected light intensity (right) under different $ \alpha $ and $ \beta $.

    图 2  不同$ \alpha $和$ \beta $下的透射光、反射光强度之和

    Figure 2.  Sum of transmitted light and reflected light intensity under different $ \alpha $and $ \beta $.

    图 4  饱和吸收实验装置图

    Figure 4.  Experimental setup for saturated absorption spectroscopy.

    图 5  不同时刻下的双频同偏椭圆高斯光干涉信号

    Figure 5.  Interference signals of double frequency Gaussian light with the same polarization at different time.

    图 6  不同时刻下的双频同偏椭圆高斯光相位差

    Figure 6.  Phase difference of double frequency Gaussian light with the same polarization at different time.

    图 7  相位噪声与调制深度、光束直径、光程差、调制频率的关系

    Figure 7.  Relationship between phase noise and modulation depth, beam diameter, optical path difference and modulation frequency.

    图 8  不同半波片旋转角度及调制参数下的p光、s光信号, 调制深度30%, 正弦波调制, 半波片转角0正弦波调, 30弦波调制, 60弦波调制, POL对准光轴(f); 调制深度60%, 半波片转角0半, 正弦波调制(d), 锯齿波调制(e)

    Figure 8.  Signals of p light & s light under different HWP rotation angles and modulation parameters. Modulation depth 30%, sine wave modulation, half-wave plate angle 0° (a), 30° (b), 60° (c), POL aligned to optical axis (f); modulation depth 60%, half-wave plate angle 0, sine wave modulation (d), sawtooth wave modulation (e).

    图 9  探测器对p光(a)和s光(b)的响应信号

    Figure 9.  Response signals to p light (a) and s light (b).

    图 10  不同半波片倾角下的相位延迟量

    Figure 10.  Phase-delay under different HWP angles.

    图 12  激光器驱动电流稳定性监测(a)及工作温度稳定性监测(b)

    Figure 12.  Laser driver current stability monitoring (a) and operating temperature stability monitoring (b).

    图 11  激光器波长-电流曲线和功率-电流曲线

    Figure 11.  Laser wavelength-current curve and power-current curve.

    表 1  不同半波片旋转角和调制参数下的p光、s光信噪比

    Table 1.  Signals to noise ratio of p light and s light under different HWP rotation angles and modulation parameters.

    SNR/dBp lights light
    Modulation
    depth 30%
    Sine wave-angel 0°25.490737.2894
    Sine wave-angel 30°21.285936.3941
    Sine wave-angel 60°31.604827.4752
    Sine wave-with POL30.666631.3396
    Modulation
    depth 60%
    Sine wave-angel 0°18.128033.0986
    Sawtooth wave-angel 0°15.496637.8797
    DownLoad: CSV

    表 2  波长曲线与功率曲线的线性度分析

    Table 2.  Linearity analysis of wavelength curve and power curve.

    Slope k Intercept b R2
    Power curve 0.0399 –2.5156 0.9897
    Wavelength curve 0.0024 632.4867 0.9483
    DownLoad: CSV
  • [1]

    王小林, 周朴, 马阎星, 马浩统, 李霄, 许晓军, 赵伊君 2011 物理学报 60 084203Google Scholar

    Wang X L, Zhou P, Ma Y X, Ma H T, Li X, Xu X J, Zhao Y J 2011 Acta Phys. Sin. 60 084203Google Scholar

    [2]

    高子翔, 楚秋慧, 舒强, 李峰云, 温雨, 蒋星晨, 陈成, 温静, 张春, 李芳, 李力, 陶汝茂, 林宏奂, 彭志涛, 王建军 2025 激光与光电子学进展62 7] 高

    Gao Z X, Chu Q H, Shu Q, Li F Y, Wen Y, Jiang X C, Chen C, Wen J, Zhang C, Li F, Li L, Tao R M, Lin H H, Peng Z T, Wang J J 2025 Laser Optoelectron. Prog. 62 7

    [3]

    李坤, 杨苏辉, 廖英琦, 林学彤, 王欣, 张金英, 李卓 2021 物理学报 70 084203Google Scholar

    Li K, Yang S H, Liao Y Q, Lin X T, Wang X, Zhang J Y, Li Z. 2021 Acta Phys. Sin. 70 084203Google Scholar

    [4]

    黄知秋, 李启正, 张猛, 彭志敏, 杨乾锁 2023 物理学报 72 123301Google Scholar

    Huang Z Q, Li Q Z, Zhang M, Peng Z M, Yang Q S 2023 Acta Phys. Sin. 72 123301Google Scholar

    [5]

    阳宇, 龙明亮, 丁洁, 卢智勇, 张海峰, 贺红雨, 吴宸光, 张忠萍, 白振旭 2025 激光与光电子学进展 62 0100003Google Scholar

    Yang Y, Long M L, Ding J, Lu Z Y, Zhang H F, He H Y, Wu C G, Zhang Z P, Bai Z X 2025 Laser Optoelectron Prog. 62 0100003Google Scholar

    [6]

    Wallard A J 1972 J. Phys. E Sci. Instr. 5 926Google Scholar

    [7]

    陈卫, 伍越, 罗杰, 刘进博, 王磊, 朱新新, 朱涛 2019 光电工程 46 36

    Chen W, Wu Y, Luo J, Liu J B, Wang L, Zhu X X, Zhu T 2019 Opto Electron. Eng. 46 36

    [8]

    邓忠文, 刘传锋, 张恒康, 孙海峰, 张树威, 李小平 2025 计测技术 45 68Google Scholar

    Deng Z W, Liu C F, Zhang H K, Sun H F, Zhang S W, Li X P 2025 MMT 45 68Google Scholar

    [9]

    张书锋, 蓝丽娟, 丁艳军, 贾军伟, 彭志敏 2015 物理学报 64 053301Google Scholar

    Zhang S F, Lan L J, Ding Y J, Jia J W, Peng Z M 2015 Acta Phys. Sin. 64 053301Google Scholar

    [10]

    Petermann K 1988 Laser Diode Modulation and Noise (Springer Dordrecht) pp78–118

    [11]

    贺子洋, 安炳南, 王韬, 赵晓康, 刘向嵩, 陈力荣, 王雅君 2025 物理学报 74 094203Google Scholar

    He Z Y, An B N, Wang T, Zhao X K, Liu X S, Chen L R, Wang Y J 2025 Acta Phys. Sin. 74 094203Google Scholar

    [12]

    Snigirev V, Riedhauser A, Lihachev G, Churaev M, Riemensberger J, Wang R N, Siddharth A, Huang G H, Möhl C, Popoff Y, Drechsler U, Caimi D, Hönl S, Liu J Q, Seidler P, Kippenberg T J 2023 Nature 615 411

    [13]

    Sheng L W, Wang J J, Huang L, Zhang A G, Zhang Z H, Qiao S, Wei Y, Liu Z M, Ju J W, Zhou S, Liu J Q, Han J L, Jin H 2024 Front. Phys. 12 138

    [14]

    Dai P, Chen Z, Sun Z X, Ge H T, Dai J, Lu J, Wang F, Xiao R L, Tong H, Dou R R, Chen X F 2023 Chin. Opt. Lett. 21 109

    [15]

    杨秀梅, 刘孝兵, 李重阳, 潘浩, 薛驷明, 毛庆和 2024 激光与光电子学进展 61 283

    Yang X M, Liu X B, Li C Y, Pan H, Xue S M, Mao Q H 2024 Laser Optoelectron. Prog. 61 283

    [16]

    尚玉峰, 师钦贤, 杨一粟, 黄永清, 张勇 2024 激光与光电子学进展 59 217

    Shang Y F, Shi Q X, Yang Y S, Huang Y Q, Zhang Y 2022 Laser Optoelectron. Prog. 59 217

    [17]

    Wanner G, Heinzel G 2014 Appl. Opt. 53 3043Google Scholar

    [18]

    张聪跃 2004 硕士学位论文 (天津: 天津大学)

    Zhang C Y 2004 M. S. Thesis (Tianjin: Tianjin University

    [19]

    雷肇棣 1995 物理光学导论(成都: 电子科技大学出版社) 第332—342页

    Lei Z T 1995 Introduction to Physical Optica (Chengdu: Electronic Science and Technology University Press) pp332–342

    [20]

    Hanes G R, Dahlstrom C E 1969 Appl. Phys. Lett. 14 362.Google Scholar

    [21]

    Fang Z J, Cai H W, Chen G T, Qu R H 2017 Single Frequency Semiconductor Lasers (Singapore: Springer Singapore 1 ed) pp167–204

  • [1] JIA Xueqi, DIAO Xincai, CHANG Guoqing. High-power 2-5 μm mid-infrared ultrafast laser based on dual-wavelength femtosecond light source. Acta Physica Sinica, doi: 10.7498/aps.74.20250348
    [2] Ge Shan-Shan, Wang Teng-Wu, Ge Jing-Yi, Zhou Pei, Li Nian-Qiang. Evolution of extreme events in chaotic light-injected semiconductor lasers. Acta Physica Sinica, doi: 10.7498/aps.72.20230759
    [3] Zhang Yi-Ning, Feng Yu-Ling, Wang Xiao-Qian, Zhao Zhen-Ming, Gao Chao, Yao Zhi-Hai. Time delay signature and bandwidth of chaotic laser output from semiconductor laser. Acta Physica Sinica, doi: 10.7498/aps.69.20191881
    [4] Xie Shi-Yong, Zhang Xiao-Fu, Le Xiao-Yun, Yang Cheng-Liang, Bo Yong, Wang Peng-Yuan, Xu Zu-Yan. A quasi-continuous dual-end 885 nm diode-pumped three-mirror ring-cavity laser operating at 1319 nm. Acta Physica Sinica, doi: 10.7498/aps.65.154205
    [5] Geng Hui, Liu Jian-Guo, Zhang Yu-Jun, Kan Rui-Feng, Xu Zhen-Yu, Yao Lu, Ruan Jun. Ethanol vapor measurement based on tunable diode laser absorption spectroscopy. Acta Physica Sinica, doi: 10.7498/aps.63.043301
    [6] Liu Ying-Ying, Pan Wei, Jiang Ning, Xiang Shui-Ying, Lin Yu-Dong. Isochronal chaos synchronization of a chain mutually coupled semiconductor lasers. Acta Physica Sinica, doi: 10.7498/aps.62.024208
    [7] Huang Yi-Ze, Li Yi, Wang Hai-Fang, Yu Xiao-Jing, Zhang Hu, Zhang Wei, Zhu Hui-Qun, Sun Ruo-Xi, Zhou Sheng, Zhang Yu-Ming. Coherence collapse of the dual fiber Bragg grating external cavity semiconductor laser. Acta Physica Sinica, doi: 10.7498/aps.61.014201
    [8] Bai Yang-Bo, Xiang Wang-Hua, Zu Peng, Zhang Gui-Zhong. Wavelength-tunable linear-cavity passively mode-locked Yb-doped fiber laser based on volume Bragg grating. Acta Physica Sinica, doi: 10.7498/aps.61.214208
    [9] Zhang Jian-Zhong, Wang An-Bang, Zhang Ming-Jiang, Li Xiao-Chun, Wang Yun-Cai. Elimination of time-delay signature in an external cavity semiconductor laser by randomly modulating feedback phase. Acta Physica Sinica, doi: 10.7498/aps.60.094207
    [10] Cao liang-Ping, Xia Guang-Qiong, Deng Tao, Lin Xiao-Dong, Wu Zheng-Mao. Bidirectional chaos communication based on semiconductor laser with incoherent optical feedback. Acta Physica Sinica, doi: 10.7498/aps.59.5541
    [11] Zhang Ji-Bing, Zhang Jian-Zhong, Yang Yi-Biao, Liang Jun-Sheng, Wang Yun-Cai. Randomness analysis of external cavity semiconductor laser as entropy source. Acta Physica Sinica, doi: 10.7498/aps.59.7679
    [12] Song Guo-Feng, Wang Wei-Min, Cai Li-Kang, Guo Bao-Shan, Wang Qing, Xu Yun, Wei Xin, Liu Yun-Tao. Sub-wavelength beam lasers with surface plasmon structures. Acta Physica Sinica, doi: 10.7498/aps.59.5105
    [13] Zhao Yan-Feng. Chaos characteristics of the semiconductor laser with double external cavity optical feedback. Acta Physica Sinica, doi: 10.7498/aps.58.6058
    [14] Liu Si-Ping, Zhang Yu-Chi, Zhang Peng-Fei, Li-Gang, Wang Jun-Min, Zhang Tian-Cai. Experimental study on the properties of the AR-coated external cavity diode lasers. Acta Physica Sinica, doi: 10.7498/aps.58.285.1
    [15] Niu Sheng-Xiao, Wang Yun-Cai, He Hu-Cheng, Zhang Ming-Jiang. Tunable photonic microwave generation using optically injected semiconductor laser. Acta Physica Sinica, doi: 10.7498/aps.58.7241
    [16] Fan Yan, Xia Guang-Qiong, Wu Zheng-Mao. The self-correlation performance of semiconductor lasers with optical feedback and optical injection. Acta Physica Sinica, doi: 10.7498/aps.57.7663
    [17] Kong Ling-Qin, Wang An-Bang, Wang Hai-Hong, Wang Yun-Cai. Dynamics of semiconductor laser with optical feedback: Evolution from low-frequency fluctuations to chaos. Acta Physica Sinica, doi: 10.7498/aps.57.2266
    [18] Yu Hai-Ying, Cui Bi-Feng, Chen Yi-Xin, Zou De-Shu, Liu Ying, Shen Gunag-Di. A novel high-power semiconductor laser diode with large cavity for high efficiency coupling with the optical fibers. Acta Physica Sinica, doi: 10.7498/aps.56.3945
    [19] Wang Yun-Cai, Li Yan-Li, Wang An-Bang, Wang Bing-Jie, Zhang Geng-Wei, Guo Ping. High frequency message filtering characteristics of semiconductor laser as receiver in optical chaos communications. Acta Physica Sinica, doi: 10.7498/aps.56.4686
    [20] Wang Yun-Cai. Experimental study on the timing jitter of gain-switched laser diodes with photo n injection. Acta Physica Sinica, doi: 10.7498/aps.52.2190
Metrics
  • Abstract views:  383
  • PDF Downloads:  9
  • Cited By: 0
Publishing process
  • Received Date:  09 May 2025
  • Accepted Date:  05 June 2025
  • Available Online:  13 June 2025
  • /

    返回文章
    返回