Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Noise analysis of dual-channel light intensity signal based on wavelength-tuned laser system

WU Yupeng MA Kai Kong Xinxin Wu Zhou ZHANG Wenxi

Citation:

Noise analysis of dual-channel light intensity signal based on wavelength-tuned laser system

WU Yupeng, MA Kai, Kong Xinxin, Wu Zhou, ZHANG Wenxi
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Wavelength-tunable lasers play a crucial role in fields such as precision interferometry and ultra-stable laser applications. The precision of wavelength tuning and the accuracy of frequency stabilization in lasers serve as key indicators of their performance. To enhance these aspects, closed-loop control with dual-beam paths, such as saturated absorption spectrum spatial stabilization, is commonly employed. The signal-to-noise ratio (SNR) of the control beam detection significantly impacts the control precision. Investigating parameters that influence this SNR and analyzing their relationships hold great engineering significance for further improving the tuning precision and frequency stabilization accuracy of lasers.
    To increase the SNR, this article examines intensity noise in wavelength-modulation systems based on the polarizer — phase-delay — polarizer model. A polarization beam splitter (PBS) cannot achieve a zero polarization extinction ratio (PER), thus introducing intensity noise from the interference of p and s polarization light. Additionally, non-ideal stray light, such as back-reflected and scattered light from optical components, further reduces the SNR of the detection signal when it converges on the detector's active area. This chapter provides a detailed analysis of these two types of noise, exploring the effects of factors such as PER, wavelength-modulation range, beam diameter, laser polarization direction, and modulation frequency. Building on theoretical analysis, it also simulates optical phenomena involving half-wave plates with different tilt and rotation angles, as well as dual-frequency Gaussian elliptically polarized light under various modulation parameters.
    Theoretical analysis indicates that the intensities of p and s polarization light undergo periodic variations as the angles between the half-wave plate's optical axis and the PBS's slow-axis direction and between the linear-polarization direction and the half-wave plate's optical axis change. The positions of the extreme values of these intensities shift with variations in PER. At certain specific angles, destructive interference leads to extremely low intensities in both transmitted and reflected light. Furthermore, when the detector receives stray light of multiple frequencies, the synthesized phase varies periodically with wavelength tuning. This implies that as time progresses (corresponding to the center wavelength being tuned to different values), the interference intensity exhibits periodic changes from constructive interference to destructive interference and back to constructive interference. Consequently, abnormal dips and peaks may appear in the optical signal intensity.
    The experiment employed a 633-B-A81-SA-PZT laser from LD-PD INC with a 10mW output. Simulation used a true zero-order half-wave plate model centered at 633 nm. The laser wavelength was tunable within 633 nm±10 pm, with a 10kHz sine-wave current modulation under wavelength-current tuning coefficient of 1 pm/mA. After an isolator, a 90:10 coupler split the beam into a 9mW output and a 1mW experiment beam, which was collimated and adjusted by a polarizer, a true zero-order half-wave plate, and a PBS to set the p and s light power ratio. Two Thorlabs FDS100 detectors captured the beams, with signals collected via a data acquisition card. PD1 and PD2 signals showed significant differences under certain conditions, and the p and s light signals varied periodically with half-wave plate rotation. Adding a polarizer at the laser exit and adjusting its angle improved signal consistency. After alignment, the SNR rose by 10 dB to 31 dB .
    In this study, wavelength tuning of a 633nm semiconductor laser was performed using a saturated absorption spectrum ring light path. Under different modulation conditions, inconsistencies in the two-beam intensity signals were observed. Polarization control raised the SNR to 31 dB, confirming the theoretical model. Additionally, time domain analysis of stray light from the wavelength-tuned source revealed that reducing the wavelength tuning range and modulation frequency effectively suppresses high frequency noise.
  • [1]

    Wang X L, Zhou P, Ma Y X, Ma H T, Li X, Xu X J, Zhao Y J 2011Acta Phys. Sin. 60 249(in Chinese) [王小林, 周朴, 马阎星, 马浩统, 李霄, 许晓军, 赵伊君2011物理学报60 249]

    [2]

    Gao Z X, Chu Q H,Shu Q, Li F Y, Wen Y, Jiang X C, Chen C, Wen J, Zhang C, Li F, Li L, Tao R M, Lin H H, Peng Z T, Wang J J 2025Laser & Optoelectronics Progress. 62 1(in Chinese) [高子翔, 楚秋慧, 舒强, 李峰云, 温雨, 蒋星晨, 陈成, 温静, 张春, 李芳, 李力, 陶汝茂, 林宏奂, 彭志涛, 王建军2025激光与光电子学进展62 1]

    [3]

    Li K, Yang S H, Liao Y Q, Lin X T, Wang X, Zhang J Y, Li Z. 2021Acta Phys. Sin. 70 242(in Chinese) [李坤, 杨苏辉, 廖英琦, 林学彤, 王欣, 张金英, 李卓2021物理学报70 242]

    [4]

    Huang Z Q, Li Q Z, Zhang M, Peng Z M, Yang Q S 2023Acta Phys. Sin. 72 105(in Chinese) [黄知秋, 李启正, 张猛, 彭志敏, 杨乾锁2023物理学报72 105]

    [5]

    Yang Y, Long M L, Ding J, Lu Z Y, Zhang H F, He H Y, Wu C G, Zhang Z P, Bai Z X 2025Laser & Optoelectronics Progress. 62 36(in Chinese) [阳宇,龙明亮,丁洁,卢智勇,张海峰,贺红雨,吴宸光,张忠萍,白振旭2025激光与光电子学进展62 36]

    [6]

    Wallard A J 1972Journal of Physics E-Scientific Instruments. 5926.

    [7]

    Chen W, Wu Y, Luo J, Liu J B, Wang L, Zhu X X, Zhu T 2019Opto-Electronic Engineering 46 36(in Chinese) [陈卫, 伍越, 罗杰, 刘进博, 王磊, 朱新新, 朱涛2019光电工程46 36]

    [8]

    Deng Z W, Liu C F, Zhang H K, Sun H F, Zhang S W, Li X P 2025 Metrology & Measurement Technology 45 68(in Chinese) [邓忠文, 刘传锋, 张恒康, 孙海峰, 张树威, 李小平2025计测技术45 68]

    [9]

    Zhang S F, Lan L J, Ding Y J, Jia J W, Peng Z M 2015Acta Phys. Sin. 64 136(in Chinese) [张书锋, 蓝丽娟, 丁艳军, 贾军伟, 彭志敏2015物理学报64 136]

    [10]

    K. Petermann 1988Laser Diode Modulation and Noise (Springer Dordrecht) pp78—118

    [11]

    He Z Y, An B N, Wang T, Zhao X K, Liu X S, Chen L R, Wang Y J 2025Acta Phys. Sin. 74 165(in Chinese) [贺子洋, 安炳南, 王韬, 赵晓康, 刘向嵩, 陈力荣, 王雅君2025物理学报74 165]

    [12]

    Viacheslav S, Annina R, Grigory L, Mikhail C, Johann R, Wang R N, Anat S, Huang G H, Charles Möhl, Youri Popoff, Ute Drechsler, Daniele Caimi, Simon Hönl, Junqiu Liu, Paul Seidler, Tobias J. Kippenberg 2023Nature 615 411

    [13]

    Sheng L, Wang J, Huang L, Zhang A, Zhang Z, Qiao S, Wei Y, Liu Z, Ju J, Zhou S, Liu J, Han J and Jin H 2024Frontiers in Physics 12 138

    [14]

    Dai P, Chen Z, Sun Z X, Ge H T, Dai J, Lu J, Wang F, Xiao R L, Tong H, Dou R R, Chen X F 2023Chinese Optics Letters 21109

    [15]

    Yang X M, Liu X B, Li C Y, Pan H, Xue S M, Mao Q H 2024Laser & Optoelectronics Progress 61 283(in Chinese) [杨秀梅, 刘孝兵, 李重阳, 潘浩, 薛驷明, 毛庆和2024激光与光电子学进展61 283]

    [16]

    Shang Y F, Shi Q X, Yang Y S, Huang Y Q, Zhang Y 2022Laser & Optoelectronics Progress. 59 217[尚玉峰, 师钦贤, 杨一粟, 黄永清, 张勇2024激光与光电子学进展59 217]

    [17]

    Wanner G, Heinzel G 2014Applied Optics 53 3043.

    [18]

    Zhang C Y 2004 M.S. Dissertation (Tianjin: Tianjin University) (in Chinese) [张聪跃2004硕士学位论文(天津:天津大学)]

    [19]

    Lei Z T 1995Introduction to Physical Optica (Chengdu: Electronic Science and Technology University Press) pp332-342(in Chinese) [雷肇棣1995物理光学导论(成都: 电子科技大学出版社)第332-342页]

    [20]

    Hanes G R, Dahlstrom C E 1969Applied Physics Letters 14 362.

    [21]

    Fang Z J, Cai H W, Chen G T, Qu R H 2017Single Frequency Semiconductor Lasers (Singapore: Springer Singapore 1 ed) pp167-204

  • [1] JIA Xueqi, DIAO Xincai, CHANG Guoqing. High-power 2-5 μm mid-infrared ultrafast laser based on dual-wavelength femtosecond light source. Acta Physica Sinica, doi: 10.7498/aps.74.20250348
    [2] Ge Shan-Shan, Wang Teng-Wu, Ge Jing-Yi, Zhou Pei, Li Nian-Qiang. Evolution of extreme events in chaotic light-injected semiconductor lasers. Acta Physica Sinica, doi: 10.7498/aps.72.20230759
    [3] Zhang Yi-Ning, Feng Yu-Ling, Wang Xiao-Qian, Zhao Zhen-Ming, Gao Chao, Yao Zhi-Hai. Time delay signature and bandwidth of chaotic laser output from semiconductor laser. Acta Physica Sinica, doi: 10.7498/aps.69.20191881
    [4] Xie Shi-Yong, Zhang Xiao-Fu, Le Xiao-Yun, Yang Cheng-Liang, Bo Yong, Wang Peng-Yuan, Xu Zu-Yan. A quasi-continuous dual-end 885 nm diode-pumped three-mirror ring-cavity laser operating at 1319 nm. Acta Physica Sinica, doi: 10.7498/aps.65.154205
    [5] Geng Hui, Liu Jian-Guo, Zhang Yu-Jun, Kan Rui-Feng, Xu Zhen-Yu, Yao Lu, Ruan Jun. Ethanol vapor measurement based on tunable diode laser absorption spectroscopy. Acta Physica Sinica, doi: 10.7498/aps.63.043301
    [6] Liu Ying-Ying, Pan Wei, Jiang Ning, Xiang Shui-Ying, Lin Yu-Dong. Isochronal chaos synchronization of a chain mutually coupled semiconductor lasers. Acta Physica Sinica, doi: 10.7498/aps.62.024208
    [7] Huang Yi-Ze, Li Yi, Wang Hai-Fang, Yu Xiao-Jing, Zhang Hu, Zhang Wei, Zhu Hui-Qun, Sun Ruo-Xi, Zhou Sheng, Zhang Yu-Ming. Coherence collapse of the dual fiber Bragg grating external cavity semiconductor laser. Acta Physica Sinica, doi: 10.7498/aps.61.014201
    [8] Bai Yang-Bo, Xiang Wang-Hua, Zu Peng, Zhang Gui-Zhong. Wavelength-tunable linear-cavity passively mode-locked Yb-doped fiber laser based on volume Bragg grating. Acta Physica Sinica, doi: 10.7498/aps.61.214208
    [9] Zhang Jian-Zhong, Wang An-Bang, Zhang Ming-Jiang, Li Xiao-Chun, Wang Yun-Cai. Elimination of time-delay signature in an external cavity semiconductor laser by randomly modulating feedback phase. Acta Physica Sinica, doi: 10.7498/aps.60.094207
    [10] Cao liang-Ping, Xia Guang-Qiong, Deng Tao, Lin Xiao-Dong, Wu Zheng-Mao. Bidirectional chaos communication based on semiconductor laser with incoherent optical feedback. Acta Physica Sinica, doi: 10.7498/aps.59.5541
    [11] Zhang Ji-Bing, Zhang Jian-Zhong, Yang Yi-Biao, Liang Jun-Sheng, Wang Yun-Cai. Randomness analysis of external cavity semiconductor laser as entropy source. Acta Physica Sinica, doi: 10.7498/aps.59.7679
    [12] Song Guo-Feng, Wang Wei-Min, Cai Li-Kang, Guo Bao-Shan, Wang Qing, Xu Yun, Wei Xin, Liu Yun-Tao. Sub-wavelength beam lasers with surface plasmon structures. Acta Physica Sinica, doi: 10.7498/aps.59.5105
    [13] Zhao Yan-Feng. Chaos characteristics of the semiconductor laser with double external cavity optical feedback. Acta Physica Sinica, doi: 10.7498/aps.58.6058
    [14] Liu Si-Ping, Zhang Yu-Chi, Zhang Peng-Fei, Li-Gang, Wang Jun-Min, Zhang Tian-Cai. Experimental study on the properties of the AR-coated external cavity diode lasers. Acta Physica Sinica, doi: 10.7498/aps.58.285.1
    [15] Niu Sheng-Xiao, Wang Yun-Cai, He Hu-Cheng, Zhang Ming-Jiang. Tunable photonic microwave generation using optically injected semiconductor laser. Acta Physica Sinica, doi: 10.7498/aps.58.7241
    [16] Fan Yan, Xia Guang-Qiong, Wu Zheng-Mao. The self-correlation performance of semiconductor lasers with optical feedback and optical injection. Acta Physica Sinica, doi: 10.7498/aps.57.7663
    [17] Kong Ling-Qin, Wang An-Bang, Wang Hai-Hong, Wang Yun-Cai. Dynamics of semiconductor laser with optical feedback: Evolution from low-frequency fluctuations to chaos. Acta Physica Sinica, doi: 10.7498/aps.57.2266
    [18] Yu Hai-Ying, Cui Bi-Feng, Chen Yi-Xin, Zou De-Shu, Liu Ying, Shen Gunag-Di. A novel high-power semiconductor laser diode with large cavity for high efficiency coupling with the optical fibers. Acta Physica Sinica, doi: 10.7498/aps.56.3945
    [19] Wang Yun-Cai, Li Yan-Li, Wang An-Bang, Wang Bing-Jie, Zhang Geng-Wei, Guo Ping. High frequency message filtering characteristics of semiconductor laser as receiver in optical chaos communications. Acta Physica Sinica, doi: 10.7498/aps.56.4686
    [20] Wang Yun-Cai. Experimental study on the timing jitter of gain-switched laser diodes with photo n injection. Acta Physica Sinica, doi: 10.7498/aps.52.2190
Metrics
  • Abstract views:  33
  • PDF Downloads:  0
  • Cited By: 0
Publishing process
  • Available Online:  13 June 2025

/

返回文章
返回