Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Erbium-doped tellurium oxide ridge waveguides for optical amplification

YANG Jiaqi LONG Zhe WANG Wei NIU Lei WANG Rongping

Citation:

Erbium-doped tellurium oxide ridge waveguides for optical amplification

YANG Jiaqi, LONG Zhe, WANG Wei, NIU Lei, WANG Rongping
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The rapid advancement of information technology has sparked an exponential demand for high-speed, large-capacity data transmission and processing. Traditional electronic communication systems face inherent limitations such as bandwidth constraints and electromagnetic interference, prompting people to shift toward photonic technologies. Integrated optical waveguides, as core components of on-chip photonic systems, enable efficient light confinement and manipulation at microscale dimensions, offering advantages in miniaturization, low power consumption, and high compatibility with existing optical communication infrastructure. Among these, erbium-doped waveguide amplifiers (EDWAs) have emerged as critical active devices for signal amplification in the 1550 nm communication band, leveraging the radiative transitions of Er3+ ions to achieve optical gain. Numerous studies have shown that the fluorescence performance of Er3+ is closely related to the factors such as doping method, preparation and annealing conditions. Besides, the performance of such amplifiers heavily relies on the choice of host materials, which must exhibit low optical loss, high rare-earth ion solubility, and compatibility with complementary metal-oxide-semiconductor (CMOS) fabrication processes. Tellurium dioxide (TeO2), with its high refractive index (2.1–2.4), broad transparency range (0.33–5 μm), exceptional chemical stability, and low phonon energy, has shown significant promise as a superior alternative to traditional materials such as silicon nitride (Si3N4) and aluminum oxide (Al2O3). This study focuses on the development of erbium-doped TeO2 (Er:TeO2) ridge waveguides for on-chip optical amplification. The Er:TeO2 thin films are deposited via radio frequency (RF) magnetron sputtering using high-purity Te and Er targets. The key deposition parameters, including Er2O3 target sputtering power (10–30 W), Ar/O2 gas flow ratio (1∶1 to 5∶1), and post-deposition annealing conditions (200–300 ℃ under oxygen atmosphere), are systematically optimized to improve photoluminescence properties. Scanning electron microscopy (SEM) and fluorescence spectroscopy are employed to evaluate film morphology and emission characteristics. A bilayer waveguide structure is designed to mitigate surface roughness induced by direct etching of the Er-doped layer. The lower Er:TeO2 active layer (500 nm in thickness) and upper undoped TeO2 cladding layer (150 nm in thickness) are patterned by using ultraviolet lithography and plasma etching (O2/Ar/CHF3 gas mixture), achieving a ridge width of 2 μm. Optical confinement and mode field distribution are simulated by using finite-difference eigenmode (FDE) analysis, confirming effective light-matter overlap within the Er-doped region. Experimental results reveal that the optimal Er:TeO2 film, deposited at an Er target power of 20 W and an Ar/O2 flow ratio of 5∶1, and annealed at 250 ℃ for 10 hours, exhibits a photoluminescence intensity of 3.5 × 106 photon counts at 1545 nm–nearly two orders of magnitude higher than non-annealed samples. Oxygen annealing effectively activates Er3+ ions while passivating oxygen vacancies, which is critical for minimizing non-radiative recombination. Excessive Er doping (30 W in sputtering power) leads to ion clustering and fluorescence quenching, highlighting the importance of controlled dopant concentration. Surface morphology analysis via SEM and optical microscopy confirms smooth, crack-free films with minimal particulate contamination, which is essential for low-loss waveguide fabrication. Waveguide performance is characterized by using the cut-back method at 1310 nm, yielding a propagation loss of 0.607 dB/cm for a 0.5 cm-long device. However, a coupling loss of 6.34 dB/facet is observed due to rough end-faces from mechanical dicing, highlighting the need for post-fabrication polishing or anti-reflective coatings. Amplification tests at 1545 nm under 980 nm pumping demonstrate an internal gain of 7.2 dB/cm at a pump power of 88.45 mW, with gain saturation observed beyond 90 mW. The broadband emission spectrum (80 nm full-width at half-maximum) further validates Er:TeO2’s potential for wideband amplification in the C-bands. In summary, this study elucidates the advantages of erbium-doped tellurium oxide (Er:TeO2) ridge waveguides as on-chip optical amplifiers, optimizes their deposition and annealing protocols, and designs a bilayer waveguide structure. The achieved low propagation loss and significant internal gain highlight the compatibility of materials with photonic integrated circuits (PICs). Future efforts will focus on improving the quality of waveguide endface, enhanc pump efficiency, and scaling device lengths to achieve practical net gains for telecommunications and quantum photonic applications. These advancements render Er:TeO2 a cornerstone material for next-generation compact, high-performance photonic systems.
  • 图 1  不同条件下沉积薄膜的荧光光谱

    Figure 1.  Photoluminescence spectra of the films deposited under different conditions.

    图 2  不同条件下沉积薄膜的荧光光谱 (a) 铒靶材不同溅射功率下沉积薄膜的光致发光光谱; (b) 不同气体比例下沉积薄膜的光致发光光谱

    Figure 2.  Photoluminescence spectra of the films deposited under different conditions: (a) Photoluminescence spectra of the films deposited by different sputtering power in the Er target; (b) photoluminescence spectra of the films deposited by different gas ratio.

    图 3  光学显微镜和SEM下的薄膜表面 (a) 观测图光学显微镜下观测的暗场图像; (b) 薄膜表面的SEM图像

    Figure 3.  Observation of thin film surface under optical microscope and SEM: (a) Darkfield image observed by optical microscopy; (b) SEM image of film surface.

    图 4  波导的结构示意图以及模式分布特性

    Figure 4.  Schematic diagram of the waveguide structure and mode distribution characteristics.

    图 5  通过线性回归拟合得到的波导传输损耗曲线, 插图是波导的界面SEM图

    Figure 5.  Waveguide propagation loss data by linear regression fit lines, the inset is a cross-section SEM of waveguide.

    图 6  (a) 掺铒碲氧化物波导放大效应的测量; (b) 内部增益特性与泵浦强度的关系曲线

    Figure 6.  (a) Measurement of amplification effect of erbium-doped tellurium oxide waveguide; (b) internal gain characteristics versus pump intensities.

  • [1]

    Mizuno T, Miyamoto Y 2017 Opt. Fiber Technol. 35 108Google Scholar

    [2]

    Xiao P P, Wang B 2022 Opt. Commun. 508 127709Google Scholar

    [3]

    Bradley J D B, Pollnau M 2010 Laser Photonics Rev. 5 368

    [4]

    Kish F, Lal V, Evans P, Corzine S W, Ziari M, Butrie T, Reffle M, Tsai H-S, Dentai A, Pleumeekers J, Missey M, Fisher M, Murthy S, Salvatore R, Samra P, Demars S, Kim N, James A, Hosseini A, Studenkov P, Lauermann M, Going R, Lu M, Zhang J, Tang J, Bostak J, Vallaitis T, Kuntz M, Pavinski D, Karanicolas A, Behnia B, Engel D, Khayam O, Modi N, Chitgarha M R, Mertz P, Ko W, Maher R, Osenbach J, Rahn J T, Sun H, Wu K-T, Mitchell M, Welch D 2018 IEEE J. Sel. Top. Quantum Electron. 24 6100120

    [5]

    陈子萍, 舒浩文, 王兴军 2017 中国科学: 物理学 力学 天文学 47 127301Google Scholar

    Chen Z P, Shu H W, Wang X J 2017 Sci. China: Phys. Mech. Astron. 47 127301Google Scholar

    [6]

    Yan K L, Vu K, Madden S 2015 Opt. Lett. 40 796Google Scholar

    [7]

    Yan K L, Vu K, Wang R P, Madden S 2016 Opt. Express 24 23304Google Scholar

    [8]

    Demirtas M, Ay F 2020 IEEE J. Sel. Top. Quantum Electron. 26 9801801

    [9]

    Yang J, van Dalfsen K, Wörhoff K, Ay F, Pollnau M 2010 Applied Physics B 101 119Google Scholar

    [10]

    Zhang Z, Liu R X, Wang W, Yan K L, Yang Z, Song M Z, Wu D D, Xu P P, Wang X S, Wang R P 2023 Opt. Lett. 48 5799Google Scholar

    [11]

    Rönn J, Zhang W, Autere A, Leroux X, Pakarinen L, Alonso-Ramos C, Säynätjoki A, Lipsanen H, Vivien L, Cassan E, Sun Z 2019 Nat. Commun. 10 432Google Scholar

    [12]

    Hu J J, Tarasov V, Agarwal A, Kimerling K 2007 Opt. Express 15 2307Google Scholar

    [13]

    Pelusi M D, Luan F, Madden S, Choi D Y, Bulla D A, Luther-Davies B, Eggleton B J 2010 IEEE Photonics Technol. Lett. 22 3Google Scholar

    [14]

    Vu A T, Vu A N, Grunwald T, Bergs T 2020 Journal of the American Ceramic Society 103 2791Google Scholar

    [15]

    Nayak R, Gupta V, Dawar A L, Sreenivas K 2003 Thin Solid Films 445 118Google Scholar

    [16]

    Pietralunga S M, Lanata M, Ferè M, Piccinin D, Cusmai G, Torregiani M, Martinelli M 2008 Opt. Express 16 21662Google Scholar

    [17]

    Frankis H C, Kiani K M, Su D, Mateman R, Leinse A, Bradley J D B 2018 Opt. Lett. 44 118

    [18]

    Madden S J, Vu K T 2009 Opt. Express 17 17645Google Scholar

    [19]

    Foster M A, Moll K D, Gaeta A L 2004 Opt. Express 12 2880Google Scholar

    [20]

    邬健, 杨振, 魏腾秀, 张政, 王威, 刘瑞雪, 王荣平 2023 应用激光 43 127

    Wu J, Yang Z, Wei T X, Zhang Z, Wang W, Liu R X, Wang R P 2023 Appl. Laser 43 127

    [21]

    Liu R X, Zhang Z, Yang Z, Wang W, Yan K L, Song M Z, Wang R P 2023 Appl. Phys. Lett. 123 151109Google Scholar

    [22]

    刘瑞雪, 张政, 邬健, 杨振, 魏腾秀, 王荣平 2023 光子学报 52 1

    Liu R X, Zhang Z, Wu J, Yang Z, Wang W, Wei T X, Wang R P 2023 Acta Photonica Sin. 52 1

    [23]

    Wang W, Wei T X, Zhang Z, Yang Z, Liu R X, Yan K L, Cai D, Yang X Y, Xu P P, Wang X S, Wang R P 2023 Opt. Lett. 48 5715Google Scholar

    [24]

    Saikumar A K, Nehate S D, Sundaram K B 2019 ECS J. Solid State Sci. Technol. 8 3064Google Scholar

    [25]

    Liang H W, Chen Y P, Xia X C, Zhang C, Shen R S, Liu Y, Luo Y M, Du G T 2015 Mater. Sci. Semicond. Process. 39 582Google Scholar

    [26]

    魏腾秀, 杨振, 邬健, 孙元欢, 王荣平 2022 光子学报 51 117

    Wei T X, Yang Z, Wu J, Sun Y H, Wang R P 2022 Acta Photonica Sin. 51 117

    [27]

    Lu R C, Link S, Zhang S B, Breen M, Gong S B 2019 J. Microelectromech. Syst. 28 569Google Scholar

  • [1] Liao Qin, Liu Hai-Jie, Wang Zheng, Zhu Ling-Jin. Gaussian-modulated continuous-variable quantum key distribution based on untrusted entanglement source. Acta Physica Sinica, doi: 10.7498/aps.72.20221902
    [2] Zhao Song, Zhou Hua, Wang Shu-Ying, Han Fei, Jiang Si-Han, Shen Xiang-Qian. Design of high efficiency perovskite/silicon tandem solar cells based on plasmonic enhancement of metal nanosphere. Acta Physica Sinica, doi: 10.7498/aps.71.20211585
    [3] Xu Xiao-Yin, Liu Sheng-Shuai, Jing Jie-Tai. Amplification of entangled beam based on four-wave mixing process. Acta Physica Sinica, doi: 10.7498/aps.71.20211324
    [4] Li Mu-Ye, Li Fang, Wei Lai, He Zhi-Cong, Zhang Jun-Pei, Han Jun-Bo, Lu Pei-Xiang. Fluorescence resonance energy transfer in a aqueous system of CdTe quantum dots and Rhodamine B with two-photon excitation. Acta Physica Sinica, doi: 10.7498/aps.64.108201
    [5] Wang Jian-Long, Ding Fang, Zhu Xiao-Dong. Optical properties of direct current glow discharge plasmas at high pressures. Acta Physica Sinica, doi: 10.7498/aps.64.045206
    [6] Gan Ping, Gu Min, Qing Sheng-Lan, Xian Xiao-Dong. Absorption and nonlinear optical properties of Te/TeO2-SiO2 composite films. Acta Physica Sinica, doi: 10.7498/aps.62.078101
    [7] Wang Chang-Zhou, Zhu Wei-Ling, Zhai Ji-Wei, Lai Tian-Shu. Phase-change behaviors in Ga30Sb70/Sb80Te20 nanocomposite multilayer films. Acta Physica Sinica, doi: 10.7498/aps.62.036402
    [8] Peng Na-Na, Huo Yan-Yan, Zhou Kan, Jia Xin, Pan Jia, Sun Zhen-Rong, Jia Tian-Qing. The development of femtosecond laser-induced periodic nanostructures and their optical properties. Acta Physica Sinica, doi: 10.7498/aps.62.094201
    [9] Du Yun, Lu Nian-Peng, Yang Hu, Ye Man-Ping, Li Chao-Rong. Electrical, optical properties and structure characterization of In-doped copper nitride thin film. Acta Physica Sinica, doi: 10.7498/aps.62.118104
    [10] Huang Qian, Zhang De-Kun, Xiong Shao-Zhen, Zhao Ying, Zhang Xiao-Dan. Research on reduction of parasitic absorption caused by surface plasmon polariton. Acta Physica Sinica, doi: 10.7498/aps.61.217301
    [11] Zhang Wei, Chen Yu, Fu Jing, Chen Fei-Fei, Shen Xiang, Dai Shi-Xun, Lin Chang-Gui, Xu Tie-Feng. Study on fabrication and optical properties of Ge-Sb-Se thin films. Acta Physica Sinica, doi: 10.7498/aps.61.056801
    [12] Bao Shan-Yong, Dong Wu-Jun, Xu Xing, Luan Tian-Bao, Li Jie, Zhang Qing-Yu. Influence of oxygen partial pressure on the crystal quality and optical properties of Mg-doped ZnO films. Acta Physica Sinica, doi: 10.7498/aps.60.036804
    [13] Yuan Wen-Jia, Zhang Yue-Guang, Shen Wei-Dong, Ma Qun, Liu Xu. Characteristics of Nb2O5 thin films deposited by ion beam sputtering. Acta Physica Sinica, doi: 10.7498/aps.60.047803
    [14] Zhao Chao-Ying, Tan Wei-Han. Quantum fluctuations of the optical parametric amplification system under the consideration of dispersion. Acta Physica Sinica, doi: 10.7498/aps.59.2498
    [15] Shao Gong-Wang, Dai Ya-Jun, Jin Guo-Liang. Overlap factor between intensity profiles of signal and pump light and gain characteristics of Er-doped waveguide amplifier. Acta Physica Sinica, doi: 10.7498/aps.58.2488
    [16] Song Feng, Su Rui-Yuan, Fu Qiang, Qin Bin, Tian Jian-Guo, Zhang Guang-Yin. Gain characteristics of high-concentration Er3+/Yb3+-codoped phosphate fiber amplifier. Acta Physica Sinica, doi: 10.7498/aps.54.5228
    [17] Song Qi, Song Chang-Lie, Li Cheng-Ren, Li Shu-Feng, Li Jian-Yong. Numerical simulation of erbium non-uniformly doped waveguide amplifier in the pr opagation direction. Acta Physica Sinica, doi: 10.7498/aps.54.1624
    [18] Li Tao, Zhang Qin-Yuan, Feng Zhou-Ming, Zhao Chun, Jiang Zhong-Hong. Spectroscopic properties of Er3+-doped alkaline/alkaline-earth metal modified fluorophosphate glasses. Acta Physica Sinica, doi: 10.7498/aps.54.4926
    [19] Luo Xiang-Dong, Sun Bing-Hua, Xu Zhong-Ying. Optical properties of alloy states in GaNxAs1-x(x<0.01). Acta Physica Sinica, doi: 10.7498/aps.54.2385
    [20] Xu Hai-Jun, Fu Xiao-Nan, Sun Xin-Rui, Li Xin-Jian. Investigations on the structural and optical properties of silicon nanoporous pillar array. Acta Physica Sinica, doi: 10.7498/aps.54.2352
Metrics
  • Abstract views:  327
  • PDF Downloads:  1
  • Cited By: 0
Publishing process
  • Received Date:  13 May 2025
  • Accepted Date:  11 June 2025
  • Available Online:  18 June 2025
  • /

    返回文章
    返回