-
Orbital angular momentum, as a basic physical quantity of electromagnetic waves, has been widely studied since 1992. Recently, the geometric phase metasurface, which is also known as Pancharatnam-Berry (P-B) phase metasurface, has been proposed. Because of its frequency-independent and angle-dependent phase control characteristics, it can generate high-performance and broadband vortex wave. However, the current design of reflective metasurface encounters the following problems: 1) the reflected vortex wave is partly blocked by the feeding antenna; 2) in practical applications, the cross-polarized field will inevitably be induced due to the feed antenna and the reflective metasurface. How to avoid the cross-polarization is still worth further investigating. In this work, an offset-fed vortex wave generator is proposed. It consists of a right-handed circularly polarized Archimedes spiral antenna and a reflective metasurface. Firstly, the offset feeding design is introduced to avoid generating the cross-polarized fields caused by the feeding antenna. A geometric meta-atom of the reflective metasurface is designed at a working frequency of 8.5 GHz. By regularly arranging meta-atoms with different orientation angles, the convergence and phase compensation functions are imparted only to the co-polarization field. The cross-polarized field is intentionally weakened and refracted along other directions. Subsequently, a low cross-polarized vortex wave with an enhancement effect is obtained at the desired observation position. There are three contributions made in this work: 1) a P-B meta-atom is proposed to fabricate the reflective metasurface; 2) the conversion relationship between the co-polarized and cross-polarized field is studied from the initial state to the final state, and the four transformation processes are demonstrated in detail; 3) an offset-fed vortex wave generator is established which allows one to generate high-performance vortex beam with arbitrary OAM mode. The experimental results are in good agreement with those simulation results, proving the proposed method effective and feasible. The proposed design shows its advantages including simple structure, polarization selectivity, and regional field enhancement effect, which has great potential applications in vortex wave communication and OAM-based target detection.
-
Keywords:
- metasurfaces /
- vortex wave /
- offset-fed /
- Pancharatnam-Berry phase
[1] Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar
[2] Kim H, Park J, Cho S W, Lee S Y, Kang M, Lee B 2010 Nano Lett. 10 529Google Scholar
[3] Thidé B, Then H, Sjöholm J, Palmer K, Bergman J, Carozzi T D, Istomin Y N, Ibragimov N H, Khamitova R 2007 Phys. Rev. Lett. 99 087701Google Scholar
[4] Jiang X, Liang B, Cheng J C, Qiu C W 2018 Adv. Mater. 30 1800257Google Scholar
[5] 郭忠义, 刘洪郡, 李晶晶, 周红平, 郭凯, 高隽 2020 物理学报 69 244301Google Scholar
Guo Z Y, Liu H J, Li J J, Zhou H P, Guo K, Gao J 2020 Acta Phys. Sin. 69 244301Google Scholar
[6] Liu K, Cheng Y, Gao Y, Li X, Qin Y, Wang H 2017 Appl. Phys. Lett. 110 164102Google Scholar
[7] Herring R A 2011 Science 331 155Google Scholar
[8] Bozinovic N, Yue Y, Ren Y, Tur M, Kristensen P, Huang H, Willner A E, Ramachandran S 2013 Science 340 1545Google Scholar
[9] Yan Y, Xie G, Lavery M P J, Huang H, Ahmed N, Bao C, Ren Y, Cao Y, Li L, Zhao Z, Molisch A F, Tur M, Padgett M J, Willner A E 2014 Nat. Commun. 5 4876Google Scholar
[10] Chen Y, Zheng S, Li Y, Hui X, Jin X, Chi H, Zhang X 2016 IEEE Antennas Wirel. Propag. Lett. 15 1156Google Scholar
[11] Liu K, Liu H, Qin Y, Cheng Y, Wang S, Li X, Wang H 2016 IEEE Trans. Antennas Propag. 64 3850Google Scholar
[12] Yang Y, Zhao Z, Ding X, Nie Z, Liu Q-H 2019 IEEE Trans. Antennas Propag. 67 140Google Scholar
[13] Chen M L N, Jiang L J, Sha W E I 2019 IEEE Antennas Wirel. Propag. Lett. 18 477Google Scholar
[14] Yang L J, Sun S, Sha W E I 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting Montréal, Québec, Canada, July 5–10, 2020 pp923−924
[15] Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar
[16] Yu S, Li L, Shi G, Zhu C, Zhou X, Shi Y 2016 Appl. Phys. Lett. 108 121903Google Scholar
[17] Yu S, Li L, Shi G 2016 Appl. Phys. Express 9 082202Google Scholar
[18] Jiang S, Chen C, Zhang H, Chen W 2018 Opt. Express 26 6466Google Scholar
[19] Chen M, Li J J, Sha W 2016 J. Appl. Phys. 119 064506Google Scholar
[20] Xu H X, Liu H, Ling X, Sun Y, Yuan F 2017 IEEE Trans. Antennas Propag. 65 7378Google Scholar
[21] Ran Y, Liang J, Tong C, Li H 2018 Opt. Commun. 427 101Google Scholar
[22] 李晓楠, 周璐, 赵国忠 2019 物理学报 68 238101Google Scholar
Li X N, Zhou L, Zhao G Z 2019 Acta Phys. Sin. 68 238101Google Scholar
[23] Yang L J, Sun S, Sha W E I 2020 IEEE Trans. Antennas Propag. 68 2166Google Scholar
[24] Yang L J, Sun S, Sha W E I 2021 Adv. Opt. Mater. 9 2001711Google Scholar
[25] Liu H, Xue H, Liu Y, Feng Q, Li L 2020 IEEE Access 8 126504Google Scholar
[26] Zhang K, Yuan Y, Zhang D, Ding X, Ratni B, Burokur S N, Lu M, Tang K, Wu Q 2018 Opt. Express 26 1351Google Scholar
[27] 李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学 2015 物理学报 64 124102Google Scholar
Li Y F, Zhang J Q, Qu S B, Wang J F, Wu X, Xu Z, Zhang A X 2015 Acta Phys. Sin. 64 124102Google Scholar
-
图 4 四种转化过程的场路径描述 (a) 激励的交叉极化到交叉极化; (b) 激励的主极化到主极化; (c) 激励的交叉极化到主极化; (d) 激励的主极化到交叉极化
Figure 4. Path description of field for the four transformation processes: (a) Excited cross polarization to cross polarization; (b) excited main polarization to main polarization; (c) excited cross polarization to main polarization; (d) excited main polarization to cross polarization.
图 5 三个具体案例被仿真并进行场采样对比(观测平面设置在z = 150 mm, 大小为100 mm × 100 mm) (a) 偏馈
${{\boldsymbol{r}}_{\rm{f}}} = [ - 8 p, 0, 8 p]$ , 有汇聚项$ {{\boldsymbol{r}}_{\rm{o}}} = {\rm{ }}\left[ {0, 0, 24 p} \right] $ ; (b) 偏馈$ {{\boldsymbol{r}}_{\rm{f}}} = \left[ { - 8 p, 0, 8 p} \right] $ , 无汇聚项$ {{\boldsymbol{r}}_{\rm{o}}} = {\rm{ }}\left[ {0, 0, \infty } \right] $ ; (c) 正馈$ {{\boldsymbol{r}}_{\rm{f}}} = \left[ {0, 0, 8 p} \right] $ , 有汇聚项$ {{\boldsymbol{r}}_{\rm{o}}} = \left[ {0, 0, 24 p} \right] $ Figure 5. The sampling field for three specific cases (the observation plane at z = 150 mm, and the size 100 mm × 100 mm): (a) Offset reflector with convergence term; (b) offset reflector without convergence term; (c) forward reflector with convergence term.
图 6 实物照片 (a) 超表面正面; (b) 超表面背面; (c) 偏馈式涡旋波发生装置; (d) 暗室测量图
Figure 6. The photograph of the specific generator and the fabricated metasurface: (a) The front view of the metasurface; (b) the back view of the metasurface; (c) the offset-fed vortex wave generator; (d) the measurement scene in anechoic chamber.
-
[1] Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar
[2] Kim H, Park J, Cho S W, Lee S Y, Kang M, Lee B 2010 Nano Lett. 10 529Google Scholar
[3] Thidé B, Then H, Sjöholm J, Palmer K, Bergman J, Carozzi T D, Istomin Y N, Ibragimov N H, Khamitova R 2007 Phys. Rev. Lett. 99 087701Google Scholar
[4] Jiang X, Liang B, Cheng J C, Qiu C W 2018 Adv. Mater. 30 1800257Google Scholar
[5] 郭忠义, 刘洪郡, 李晶晶, 周红平, 郭凯, 高隽 2020 物理学报 69 244301Google Scholar
Guo Z Y, Liu H J, Li J J, Zhou H P, Guo K, Gao J 2020 Acta Phys. Sin. 69 244301Google Scholar
[6] Liu K, Cheng Y, Gao Y, Li X, Qin Y, Wang H 2017 Appl. Phys. Lett. 110 164102Google Scholar
[7] Herring R A 2011 Science 331 155Google Scholar
[8] Bozinovic N, Yue Y, Ren Y, Tur M, Kristensen P, Huang H, Willner A E, Ramachandran S 2013 Science 340 1545Google Scholar
[9] Yan Y, Xie G, Lavery M P J, Huang H, Ahmed N, Bao C, Ren Y, Cao Y, Li L, Zhao Z, Molisch A F, Tur M, Padgett M J, Willner A E 2014 Nat. Commun. 5 4876Google Scholar
[10] Chen Y, Zheng S, Li Y, Hui X, Jin X, Chi H, Zhang X 2016 IEEE Antennas Wirel. Propag. Lett. 15 1156Google Scholar
[11] Liu K, Liu H, Qin Y, Cheng Y, Wang S, Li X, Wang H 2016 IEEE Trans. Antennas Propag. 64 3850Google Scholar
[12] Yang Y, Zhao Z, Ding X, Nie Z, Liu Q-H 2019 IEEE Trans. Antennas Propag. 67 140Google Scholar
[13] Chen M L N, Jiang L J, Sha W E I 2019 IEEE Antennas Wirel. Propag. Lett. 18 477Google Scholar
[14] Yang L J, Sun S, Sha W E I 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting Montréal, Québec, Canada, July 5–10, 2020 pp923−924
[15] Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar
[16] Yu S, Li L, Shi G, Zhu C, Zhou X, Shi Y 2016 Appl. Phys. Lett. 108 121903Google Scholar
[17] Yu S, Li L, Shi G 2016 Appl. Phys. Express 9 082202Google Scholar
[18] Jiang S, Chen C, Zhang H, Chen W 2018 Opt. Express 26 6466Google Scholar
[19] Chen M, Li J J, Sha W 2016 J. Appl. Phys. 119 064506Google Scholar
[20] Xu H X, Liu H, Ling X, Sun Y, Yuan F 2017 IEEE Trans. Antennas Propag. 65 7378Google Scholar
[21] Ran Y, Liang J, Tong C, Li H 2018 Opt. Commun. 427 101Google Scholar
[22] 李晓楠, 周璐, 赵国忠 2019 物理学报 68 238101Google Scholar
Li X N, Zhou L, Zhao G Z 2019 Acta Phys. Sin. 68 238101Google Scholar
[23] Yang L J, Sun S, Sha W E I 2020 IEEE Trans. Antennas Propag. 68 2166Google Scholar
[24] Yang L J, Sun S, Sha W E I 2021 Adv. Opt. Mater. 9 2001711Google Scholar
[25] Liu H, Xue H, Liu Y, Feng Q, Li L 2020 IEEE Access 8 126504Google Scholar
[26] Zhang K, Yuan Y, Zhang D, Ding X, Ratni B, Burokur S N, Lu M, Tang K, Wu Q 2018 Opt. Express 26 1351Google Scholar
[27] 李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学 2015 物理学报 64 124102Google Scholar
Li Y F, Zhang J Q, Qu S B, Wang J F, Wu X, Xu Z, Zhang A X 2015 Acta Phys. Sin. 64 124102Google Scholar
Catalog
Metrics
- Abstract views: 6239
- PDF Downloads: 286
- Cited By: 0