Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study of structural stability and lithium storage property of Sin clusters (n ≤ 6) adsorbed on graphene

Shen Ding Liu Yao-Han Tang Shu-Wei Dong Wei Sun Wen Wang Lai-Gui Yang Shao-Bin

Citation:

First-principles study of structural stability and lithium storage property of Sin clusters (n ≤ 6) adsorbed on graphene

Shen Ding, Liu Yao-Han, Tang Shu-Wei, Dong Wei, Sun Wen, Wang Lai-Gui, Yang Shao-Bin
PDF
HTML
Get Citation
  • Silicon/carbon composite is one of the most potential high-capacity anode materials for lithium-ion batteries. The interface state between silicon and carbon of silicon/carbon composite is an important factor affecting its electrochemical performance. In this paper, Sin (n ≤ 6) clusters with different numbers of Si atoms are constructed on graphene as a structural unit of carbon material. The geometric configuration, structure stability and electronic property of Sin clusters adsorbed on graphene (Sin/Gr) are studied by the first-principles method based on density functional theory (DFT). The results show that when the number of Si atoms n ≤ 4, the Sin clusters are preferentially adsorbed on graphene in a two-dimensional configuration parallel to graphene. When n ≥ 5, the Sin clusters are preferentially adsorbed on graphene in a three-dimensional configuration. With the increase of the number of Si atoms n, the thermodynamic stability of Sin clusters on graphene decreases significantly, the interface binding strength between Sin clusters and graphene decreases, and the charge transfer between Sin clusters and graphene becomes less. At the same time, the storage capacity of Li atoms in Sin/Gr complex is also studied. Li atoms are mainly stored on the graphene surface near Sin clusters and around Sin clusters. The complex synergistic effect of Sin clusters and graphene enhances the thermodynamic stability of Li adsorption. When n ≤ 4, storing two Li atoms is beneficial to improving the thermodynamic stability of xLi-Sin/Gr system, and the thermodynamic stability decreases with the increase of Li atom number. When n ≥ 5, the thermodynamic stability of xLi-Sin/Gr system decreases with the increase of Li atom number. In the xLi-Si5/Gr system, the C-C bond and Si-Si bond are mainly covalent bonds, while the Li-C bond and Li-Si bond are mainly ionic bonds with certain covalent properties.
      Corresponding author: Yang Shao-Bin, lngdysb@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51874167, 21808095, 51774175), the China Postdoctoral Science Foundation (Grant No. 2018M641707), and the Discipline Innovation Team of Liaoning Technical University, China (Grant No. LNTU20TD-09)
    [1]

    王晓钰, 张渝, 马磊, 魏良明 2019 化学学报 77 24Google Scholar

    Wang X Y, Zhang Y, Ma L, Wei L M 2019 Acta Chim. Sin. 77 24Google Scholar

    [2]

    Feng K, Li M, Liu W, Kashkooli A G, Chen Z 2018 Small 14 1702737Google Scholar

    [3]

    魏剑, 秦葱敏, 苏欢, 王佳敏, 李雪婷 2020 新型炭材料 35 97

    Wei J, Qin C M, Su H, Wang J M, Li X T 2020 New Carbon Materials 35 97

    [4]

    Zhao X Y, Lehto V P 2021 Nanotechnology 32 042002Google Scholar

    [5]

    Gao H, Xiao L, Plümel I, Xu G L, Ren Y, Zuo X, Liu Y, Schulz C, Wiggers H, Amine K 2017 Nano Lett. 17 1512Google Scholar

    [6]

    Liu J, Kopold P, Aken P A, Maier J, Yu Y 2015 Angew. Chem. Int. Ed. 54 9632Google Scholar

    [7]

    Li X, Gu M, Hu S, Kennard R, Yan P, Chen X, Wang C, Sailor M J, Zhang J G, Liu J 2014 Nat. Commun. 5 4105Google Scholar

    [8]

    Song H C, Wang H X, Lin Z X, et al. 2016 Adv. Funct. Mater. 26 524Google Scholar

    [9]

    Su J M, Zhang C C, Chen X Liu S Y, Huang T, Yu A S 2018 J. Power Sources 381 66Google Scholar

    [10]

    Zuo X X, Wang X Y, Xia Y G, Yin S S Ji Q, Yang Z H, Wang M M, Zheng X F, Qiu B, Liu Z P, Zhu J, Müller P, Cheng Y J 2019 J. Power Sources 412 93Google Scholar

    [11]

    Shi J, Jiang X S, Sun J F, Ban B Y, Li J W, Chen J 2021 J. Colloid Interface Sci. 588 737Google Scholar

    [12]

    Ko M, Chae S, Ma J, Kim N, Lee H W, Cui Y Cho J 2016 Nat. Energy 1 16113Google Scholar

    [13]

    李昆儒, 胡省辉, 张正富, 郭玉忠, 黄瑞安 2021 无机材料学报 3 454

    Li K R, Hu X H, Zhang Z F, Guo Y Z, Huang R A 2021 Journal of Inorganic Materials 3 454

    [14]

    刘振源, 刘烈凯, 金鑫, 汤昊, 孙润光 2019 复合材料学报 36 1568

    Liu Z Y, Liu L K, Jin X, Tang H, Sun R G 2019 Acta Mater. Compos. Sin. 36 1568

    [15]

    Luo W, Wang Y X, Chou S L, Xu Y F, Li W, Kong B, Dou S X, Liu H K, Yang J P 2016 Nano Energy 27 255Google Scholar

    [16]

    Cai W, Liu X, Zhu Y, Lan Y, Ma K, Qian Y 2016 Dalton Trans. 45 13667Google Scholar

    [17]

    林伟国, 孙伟航, 曲宗凯, 冯晓磊, 荣峻峰, 陈旭, 杨文胜 2019 高等学校化学学报 40 1216Google Scholar

    Lin W G, Sun W H, Qu Z K, Feng X L, Rong J F, Chen X, Yang W S 2019 Chem. J. Chin. Univ. 40 1216Google Scholar

    [18]

    Zhu X, Choi S H, Tao R, Jia X L, Lu Y F 2019 J. Alloys Compd. 791 1105Google Scholar

    [19]

    Yu Y, Li G, Zhou S, Chen X, Yang W 2017 Carbon 120 397Google Scholar

    [20]

    Deiss E, Wokaun A, Barras J L, Daul C, Dufek P 1997 J. Electrochem. Soc. 144 3877Google Scholar

    [21]

    Ullah A, Majid A, Rani N 2018 J. Energy Chem. 27 219

    [22]

    闫小童, 侯育花, 郑寿红, 黄有林, 陶小马 2019 物理学报 68 187101Google Scholar

    Yan X Tong, Hou Y H, Zheng S H, Huang Y L, Tao X M 2019 Acta Phys. Sin. 68 187101Google Scholar

    [23]

    张伟, 齐小鹏, 方升, 张健华, 史碧梦, 杨娟玉 2020 化学进展 32 454

    Zhang W, Qing X P, Fang S, Zhang J H, Shi B M, Yang J Y 2020 Prog. Chem. 32 454

    [24]

    Li G C, Yang Z W, Yin Z L, Guo H J, Wang Z X, Yan G C, Liu Y, Li L J, Wang J X 2019 J. Mater. Chem. A 26 15541

    [25]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M J, Refson K, Payne M C 2005 Z. Kristallogr. 220 567

    [26]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [27]

    Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar

    [28]

    Vanderbilt D 1990 Phys. Rev. B 41 7892Google Scholar

    [29]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [30]

    Gao H, Jian Z, Lu M, Wei F, Chen Y 2010 J. Appl. Phys. 107 666

    [31]

    Aktuerk E, Ataca C, Ciraci S 2010 Appl. Phys. Lett. 96 123112Google Scholar

    [32]

    Stockmeier M, Müller R, Sakwe S A, Wellmann P J, Magerl A 2009 J. Appl. Phys. 105 033511Google Scholar

    [33]

    Tsirelson V, Stash A 2002 Chem. Phys. Lett. 351 142Google Scholar

    [34]

    Zhang S, Wang Q, Kawazoe Y, Jena P 2013 J. Am. Chem. Soc. 135 18216Google Scholar

  • 图 1  单个Si原子在石墨烯表面的吸附行为 (a)吸附能量ΔEab; (b) Si—C键长dSi—C和C原子位移高度Δh

    Figure 1.  Adsorption behavior for a single Si atom on graphene: (a) Adsorption energy ΔEab; (b) length of Si—C dSi—C and shift height Δh of C atom.

    图 2  石墨烯表面Sin团簇的构型 (ΔErel为亚稳态与稳态构型的总能量之差)

    Figure 2.  Configuration for Sin clusters on graphene (ΔErel is the difference of total energy between metastable and steady-state configurations).

    图 3  孤立Sin团簇和Sin/Gr复合材料的态密度图 (a) 孤立Sin团簇的分波态密度; (b), (c) Sin/Gr复合材料的分波态密度; (d) Sin/Gr复合材料的总态密度

    Figure 3.  Density of states for isolated Sin clusters and Sin/Gr composites: (a) Partial density of states for isolated Sin clusters; (b), (c) partial density of states for Sin/Gr composites; (d) total density of states for Sin/Gr composites.

    图 4  Sin/Gr复合结构吸附不同Li原子数的稳态构型

    Figure 4.  Configuration for Sin/Gr system with different Li atom numbers.

    图 5  稳态构型(xLi-Sin/Gr)中Li原子数与平均吸附能ΔEab的关系

    Figure 5.  Relationship between the average adsorption energy ΔEab and the number of Li atoms in the steady-state configuration (xLi-Sin/Gr).

    图 6  xLi-Si5/Gr体系(x = 1, 3和6)稳态构型的电子结构分析(图中数据为Mulliken布局)

    Figure 6.  Electronic structure analysis of steady-state configuration of xLi-Si5/Gr system (x = 1, 3 and 6) (The data in figure is Mulliken population).

    表 1  石墨烯表面Sin团簇的平均吸附能、结构参数和Mulliken布局

    Table 1.  Average adsorption energy, structural parameters and Mulliken population for Sin clusters on graphene.

    nΔEab/eVhΔhdSi—CdSi—SiMulliken
    population/e
    1–1.2162.1680.0782.0930.50
    2–0.3122.5320.1672.2232.2620.30
    3–0.1163.3650.0073.4562.187–0.02
    4–0.1523.2350.0103.2462.335–0.02
    5–0.0883.3140.0053.4032.3160.02
    6–0.0833.4250.0083.5122.3710.04
    DownLoad: CSV
  • [1]

    王晓钰, 张渝, 马磊, 魏良明 2019 化学学报 77 24Google Scholar

    Wang X Y, Zhang Y, Ma L, Wei L M 2019 Acta Chim. Sin. 77 24Google Scholar

    [2]

    Feng K, Li M, Liu W, Kashkooli A G, Chen Z 2018 Small 14 1702737Google Scholar

    [3]

    魏剑, 秦葱敏, 苏欢, 王佳敏, 李雪婷 2020 新型炭材料 35 97

    Wei J, Qin C M, Su H, Wang J M, Li X T 2020 New Carbon Materials 35 97

    [4]

    Zhao X Y, Lehto V P 2021 Nanotechnology 32 042002Google Scholar

    [5]

    Gao H, Xiao L, Plümel I, Xu G L, Ren Y, Zuo X, Liu Y, Schulz C, Wiggers H, Amine K 2017 Nano Lett. 17 1512Google Scholar

    [6]

    Liu J, Kopold P, Aken P A, Maier J, Yu Y 2015 Angew. Chem. Int. Ed. 54 9632Google Scholar

    [7]

    Li X, Gu M, Hu S, Kennard R, Yan P, Chen X, Wang C, Sailor M J, Zhang J G, Liu J 2014 Nat. Commun. 5 4105Google Scholar

    [8]

    Song H C, Wang H X, Lin Z X, et al. 2016 Adv. Funct. Mater. 26 524Google Scholar

    [9]

    Su J M, Zhang C C, Chen X Liu S Y, Huang T, Yu A S 2018 J. Power Sources 381 66Google Scholar

    [10]

    Zuo X X, Wang X Y, Xia Y G, Yin S S Ji Q, Yang Z H, Wang M M, Zheng X F, Qiu B, Liu Z P, Zhu J, Müller P, Cheng Y J 2019 J. Power Sources 412 93Google Scholar

    [11]

    Shi J, Jiang X S, Sun J F, Ban B Y, Li J W, Chen J 2021 J. Colloid Interface Sci. 588 737Google Scholar

    [12]

    Ko M, Chae S, Ma J, Kim N, Lee H W, Cui Y Cho J 2016 Nat. Energy 1 16113Google Scholar

    [13]

    李昆儒, 胡省辉, 张正富, 郭玉忠, 黄瑞安 2021 无机材料学报 3 454

    Li K R, Hu X H, Zhang Z F, Guo Y Z, Huang R A 2021 Journal of Inorganic Materials 3 454

    [14]

    刘振源, 刘烈凯, 金鑫, 汤昊, 孙润光 2019 复合材料学报 36 1568

    Liu Z Y, Liu L K, Jin X, Tang H, Sun R G 2019 Acta Mater. Compos. Sin. 36 1568

    [15]

    Luo W, Wang Y X, Chou S L, Xu Y F, Li W, Kong B, Dou S X, Liu H K, Yang J P 2016 Nano Energy 27 255Google Scholar

    [16]

    Cai W, Liu X, Zhu Y, Lan Y, Ma K, Qian Y 2016 Dalton Trans. 45 13667Google Scholar

    [17]

    林伟国, 孙伟航, 曲宗凯, 冯晓磊, 荣峻峰, 陈旭, 杨文胜 2019 高等学校化学学报 40 1216Google Scholar

    Lin W G, Sun W H, Qu Z K, Feng X L, Rong J F, Chen X, Yang W S 2019 Chem. J. Chin. Univ. 40 1216Google Scholar

    [18]

    Zhu X, Choi S H, Tao R, Jia X L, Lu Y F 2019 J. Alloys Compd. 791 1105Google Scholar

    [19]

    Yu Y, Li G, Zhou S, Chen X, Yang W 2017 Carbon 120 397Google Scholar

    [20]

    Deiss E, Wokaun A, Barras J L, Daul C, Dufek P 1997 J. Electrochem. Soc. 144 3877Google Scholar

    [21]

    Ullah A, Majid A, Rani N 2018 J. Energy Chem. 27 219

    [22]

    闫小童, 侯育花, 郑寿红, 黄有林, 陶小马 2019 物理学报 68 187101Google Scholar

    Yan X Tong, Hou Y H, Zheng S H, Huang Y L, Tao X M 2019 Acta Phys. Sin. 68 187101Google Scholar

    [23]

    张伟, 齐小鹏, 方升, 张健华, 史碧梦, 杨娟玉 2020 化学进展 32 454

    Zhang W, Qing X P, Fang S, Zhang J H, Shi B M, Yang J Y 2020 Prog. Chem. 32 454

    [24]

    Li G C, Yang Z W, Yin Z L, Guo H J, Wang Z X, Yan G C, Liu Y, Li L J, Wang J X 2019 J. Mater. Chem. A 26 15541

    [25]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M J, Refson K, Payne M C 2005 Z. Kristallogr. 220 567

    [26]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [27]

    Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar

    [28]

    Vanderbilt D 1990 Phys. Rev. B 41 7892Google Scholar

    [29]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [30]

    Gao H, Jian Z, Lu M, Wei F, Chen Y 2010 J. Appl. Phys. 107 666

    [31]

    Aktuerk E, Ataca C, Ciraci S 2010 Appl. Phys. Lett. 96 123112Google Scholar

    [32]

    Stockmeier M, Müller R, Sakwe S A, Wellmann P J, Magerl A 2009 J. Appl. Phys. 105 033511Google Scholar

    [33]

    Tsirelson V, Stash A 2002 Chem. Phys. Lett. 351 142Google Scholar

    [34]

    Zhang S, Wang Q, Kawazoe Y, Jena P 2013 J. Am. Chem. Soc. 135 18216Google Scholar

  • [1] Zheng Qin-Ren, Zhan Fu-Zhi, She Jun-Yi, Wang Jian-Yu, Shi Ruo-Li, Meng Guo-Dong. Influence of morphological characteristics of graphene on its field emission properties. Acta Physica Sinica, 2024, 73(8): 086101. doi: 10.7498/aps.73.20231784
    [2] Zhang Gai, Xie Hai-Mei, Song Hai-Bin, Li Xiao-Fei, Zhang Qian, Kang Yi-Lan. Experimental analysis of influence of different charge-discharge modes on lithium storage performance of reduced graphene oxide electrodes. Acta Physica Sinica, 2022, 71(6): 066501. doi: 10.7498/aps.71.20211405
    [3] Xu Xiang, Zhang Ying, Yan Qing, Liu Jing-Jing, Wang Jun, Xu Xin-Long, Hua Deng-Xin. Photochemical properties of rhenium disulfide/graphene heterojunctions with different stacking structures. Acta Physica Sinica, 2021, 70(9): 098203. doi: 10.7498/aps.70.20201904
    [4] Liao Tian-Jun, Yang Zhi-Min, Lin Bi-Hong. Performance optimization of graphene thermionicdevices based on charge and heat transport. Acta Physica Sinica, 2021, 70(22): 227901. doi: 10.7498/aps.70.20211110
    [5] Zhang Yuan, Chen Chen, Li Mei-Ya, Luoshan Mengdai. Significant enhancement of the performance of dye-sensitized solar cells with photoelectrode co-doped graphene and hybrid SiO2@Au nanostructure. Acta Physica Sinica, 2020, 69(16): 160201. doi: 10.7498/aps.69.20191722
    [6] Zhang Na, Liu Bo, Lin Li-Wei. Effect of He ion irradiation on microstructure and electrical properties of graphene. Acta Physica Sinica, 2020, 69(1): 016101. doi: 10.7498/aps.69.20191344
    [7] Bai Qing-Shun, Shen Rong-Qi, He Xin, Liu Shun, Zhang Fei-Hu, Guo Yong-Bo. Interface adhesion property between graphene film and surface of nanometric microstructure. Acta Physica Sinica, 2018, 67(3): 030201. doi: 10.7498/aps.67.20172153
    [8] Liu Le, Tang Jian, Wang Qin-Qin, Shi Dong-Xia, Zhang Guang-Yu. Thermal stability of MoS2 encapsulated by graphene. Acta Physica Sinica, 2018, 67(22): 226501. doi: 10.7498/aps.67.20181255
    [9] Gu Ji-Wei, Wang Jin-Cheng, Wang Zhi-Jun, Li Jun-Jie, Guo Can, Tang Sai. Phase-field crystal modelling the nucleation processes of graphene structures on different substrates. Acta Physica Sinica, 2017, 66(21): 216101. doi: 10.7498/aps.66.216101
    [10] Yang Guang-Min, Liang Zhi-Cong, Huang Hai-Hua. The first-principle calculation on the Li cluster adsorbed on graphene. Acta Physica Sinica, 2017, 66(5): 057301. doi: 10.7498/aps.66.057301
    [11] Huang Le, Zhang Zhi-Yong, Peng Lian-Mao. High performance graphene Hall sensors. Acta Physica Sinica, 2017, 66(21): 218501. doi: 10.7498/aps.66.218501
    [12] Ye Peng-Fei, Chen Hai-Tao, Bu Liang-Min, Zhang Kun, Han Jiu-Rong. Synthesis of SnO2 quantum dots/graphene composite and its photocatalytic performance. Acta Physica Sinica, 2015, 64(7): 078102. doi: 10.7498/aps.64.078102
    [13] Lou Li-Fei, Pan Qing-Biao, Wu Zhi-Hua. A flexible microstructure based on graphene for harvesting weak energy. Acta Physica Sinica, 2014, 63(15): 158501. doi: 10.7498/aps.63.158501
    [14] Liu Ben-Qiong, Xie Lei, Duan Xiao-Xi, Sun Guang-Ai, Chen Bo, Song Jian-Ming, Liu Yao-Guang, Wang Xiao-Lin. First principles studies of phase transition and mechanical properties of uranium. Acta Physica Sinica, 2013, 62(17): 176104. doi: 10.7498/aps.62.176104
    [15] Wu Jiang-Bin, Qian Yao, Guo Xiao-Jie, Cui Xian-Hui, Miao Ling, Jiang Jian-Jun. First-principles study on the Li-storage performance of silicon clusters and graphene composite structure. Acta Physica Sinica, 2012, 61(7): 073601. doi: 10.7498/aps.61.073601
    [16] Li Li-Min, Pan Hai-Bin, Yan Wen-Sheng, Xu Peng-Shou, Wei Shi-Qiang, Chen Xiu-Fang, Xu Xian-Gang, Kang Chao-Yang, Tang Jun. Preparation of graphene on different-polarity 6H-SiC substrates and the study of their electronic structures. Acta Physica Sinica, 2011, 60(4): 047302. doi: 10.7498/aps.60.047302
    [17] Wang Yi-Jun, Wang Liu-Ding, Yang Min, Yan Cheng, Wang Xiao-Dong, Xi Cai-Ping, Li Zhao-Ning. Structural stability and field emission propertiesof cone-capped carbon nanotubes. Acta Physica Sinica, 2011, 60(7): 077303. doi: 10.7498/aps.60.077303
    [18] Wang Yong-Long, Pan Hong-Zhe, Xu Ming, Chen Li, Sun Yuan-Yuan. Electronic structure and magnetism of single-layer trigonal graphene quantum dots with zigzag edges. Acta Physica Sinica, 2010, 59(9): 6443-6449. doi: 10.7498/aps.59.6443
    [19] Han Tong-Wei, He Peng-Fei. Molecular dynamics simulation of relaxation properties of graphene sheets. Acta Physica Sinica, 2010, 59(5): 3408-3413. doi: 10.7498/aps.59.3408
    [20] Wang Xiao-Chun, Lin Qiu-Bao, Li Ren-Quan, Zhu Zi-Zhong. Structural stability and electronic properties of ordered identical Nb4 clusters on the Cu(100) surface. Acta Physica Sinica, 2007, 56(5): 2813-2820. doi: 10.7498/aps.56.2813
Metrics
  • Abstract views:  4843
  • PDF Downloads:  87
  • Cited By: 0
Publishing process
  • Received Date:  18 March 2021
  • Accepted Date:  30 May 2021
  • Available Online:  18 September 2021
  • Published Online:  05 October 2021

/

返回文章
返回