Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Generation of Bessel beam by manipulating Pancharatnam-Berry phase

Chen Huan Ling Xiao-Hui He Wu-Guang Li Qian-Guang Yi Xu-Nong

Citation:

Generation of Bessel beam by manipulating Pancharatnam-Berry phase

Chen Huan, Ling Xiao-Hui, He Wu-Guang, Li Qian-Guang, Yi Xu-Nong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Bessel beam is one of diffraction-free beams and has some peculiar properties. Varieties of its applications have been found, such as microparticle manipulating, material processing and biological studies. In this work, we propose a method of creating a Bessel beam by manipulating Pancharatnam-Berry phase. Using femtosecond laser, nano waveplatelets are written on a fused silicon glass to form a metasurface. The optical axis of waveplatelets rotating in the radial direction can produce the space-varying Pancharatnam-Berry phase. The designed metasurface acts as a planar axicon to generate Bessel beams by replacing the traditional one. A Jones calculation is employed to analyze the transformation of the metasurface. The theoretical results indicate that a left-handed circularly polarized light passing through the planar axicon is convergent, while a right-handed circularly polarized one is divergent. The intrinsic physical reason is that Pancharatnam-Berry phase is spin-dependent. Therefore, Bessel beams are generated by the planar axicon only when a left-handed circularly polarized light inputs the system. It is notable that the maximum nondiffracting distance is determined by the rate of rotation of the metasurface microstructure. By reducing the rate of rotation, we can easily obtain a longer nondiffracting distance, thus avoiding the problem that the base angle of the traditional axicon is too small to fabricate. According to the Fresnel diffraction integral, we simulate the propagation of the field emerging from the planar axicon and obtain the intensity distributions behind the planar axicon with different distances. The results show that the intensity pattern remains unchanged in the propagating process and possesses the propagation properties of Bessel beam. It implies that approximate nondiffraction Bessel beams can be achieved by employing the planar axicon with metasurface. Finally, we set up an experimental system with the Pancharatnam-Berry phase metasurface with period d=1000 upm to verify the theoretical analysis. Theoretically, the maximum nondiffraction distance is 7.9 m. In the shaded region, we measure the intensity distributions at different distances. The experimental results are in good agreement with the simulation results, so the planar axicon based on Pancharatnam-Berry phase can be an effective Bessel beam generator. We believe that these results are helpful for developing more spin-dependent photonic devices.
      Corresponding author: Yi Xu-Nong, xnyi@szu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos.11547017,11547018),the Foundation of Hubei Educational Committee,China (Grant No.B2015031),and the Foundation of Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables,China.
    [1]

    Bouchal Z, Wagner J, Chlup M 1998 Opt. Commun. 151 207

    [2]

    Durnin J, Miceli J J, Eberly J H 1987 Phys. Rev. Lett. 58 1499

    [3]

    McGloin D, Dholakia K 2005 Contemp. Phys. 46 15

    [4]

    Zhao L, Wang F, Jiang L, Lu Y, Zhao W, Xie J, Li X 2015 Chin. Opt. Lett. 13 041405

    [5]

    Cai Y, Lv X 2007 Opt. Commun. 274 1

    [6]

    Chen B, Pu J 2009 Chin. Phys. B 18 1033

    [7]

    Scott G, McArdle N 1992 Opt. Eng. 31 2640

    [8]

    Sun Q, Zhou K, Fang G, Liu Z, Liu S 2012 Chin. Phys. B 21 014208

    [9]

    Wu F, Chen Y, Guo D 2007 Appl. Opt. 46 4943

    [10]

    Turuenen J, Vasara A, Friberg A T 1988 Appl. Opt. 27 3959

    [11]

    Sochacki J, Kolodziejczyk A, Jaroszewicz Z, Bara S 1992 Appl. Opt. 31 5326

    [12]

    Zheng W T, Wu F T, Zhang Q A, Cheng Z M 2012 Acta Phys. Sin. 61 144201 (in Chinese)[郑维涛, 吴逢铁, 张前安, 程治明 2012 物理学报 61 144201]

    [13]

    Kildishev A V, Boltasseva A, Shalaev V M 2013 Science 339 1232009

    [14]

    Li X, Pu M, Zhao Z, Ma X, Jin J, Wang Y, Gao P, Luo X 2016 Sci. Rep. 6 20524

    [15]

    Ke Y, Liu Y, Zhou J, Liu Y, Luo H, Wen S 2016 Appl. Phys. Lett. 108 101102

    [16]

    Bomzon Z, Biener G, Kleiner V, Hasman E 2001 Opt. Lett. 26 33

    [17]

    Pfeiffer C, Grbic A 2013 Phys. Rev. Lett. 110 197401

    [18]

    Ni X, Emani N K, Kildishev A V, Boltasseva A, Shalaev V M 2012 Science 335 427

    [19]

    Yu N, Aieta F, Genevet P, Kats M A, Gaburro Z, Capasso F 2012 Nano Lett. 12 6328

    [20]

    Liu L, Zhang X, Kenney M, Su X, Xu N, Ouyang C, Shi Y, Han J, Zhang W, Zhang S 2014 Adv. Mater. 26 5031

    [21]

    Kang M, Guo Q, Chen J, Gu B, Li Y, Wang H 2011 Phys. Rev. A 84 045803

    [22]

    Kang M, Chen J, Wang X, Wang H 2012 J. Opt. Soc. Am. B 29 572

    [23]

    Lin J, Wang Q, Yuan G, Du L, Kou S S, Yuan X 2015 Sci. Rep. 5 10529

    [24]

    Yi X, Ling X, Zhang Z, Li Y, Zhou X, Liu Y, Chen S, Luo H, Wen S 2014 Opt. Express 22 17207

    [25]

    Beresna M, Gecevičius M, Kazansky P G, Gertus T 2011 Appl. Phys. Lett. 98 201101

    [26]

    Liu Y, Ling X, Yi X, Zhou X, Luo H, Wen S 2014 Appl. Phys. Lett. 104 191110

    [27]

    Yi X, Liu Y, Ling X, Zhou X, Ke Y, Luo H, Wen S, Fan D 2015 Phys. Rev. A 91 023801

    [28]

    Courtial J 1999 Opt. Commun. 171 179

  • [1]

    Bouchal Z, Wagner J, Chlup M 1998 Opt. Commun. 151 207

    [2]

    Durnin J, Miceli J J, Eberly J H 1987 Phys. Rev. Lett. 58 1499

    [3]

    McGloin D, Dholakia K 2005 Contemp. Phys. 46 15

    [4]

    Zhao L, Wang F, Jiang L, Lu Y, Zhao W, Xie J, Li X 2015 Chin. Opt. Lett. 13 041405

    [5]

    Cai Y, Lv X 2007 Opt. Commun. 274 1

    [6]

    Chen B, Pu J 2009 Chin. Phys. B 18 1033

    [7]

    Scott G, McArdle N 1992 Opt. Eng. 31 2640

    [8]

    Sun Q, Zhou K, Fang G, Liu Z, Liu S 2012 Chin. Phys. B 21 014208

    [9]

    Wu F, Chen Y, Guo D 2007 Appl. Opt. 46 4943

    [10]

    Turuenen J, Vasara A, Friberg A T 1988 Appl. Opt. 27 3959

    [11]

    Sochacki J, Kolodziejczyk A, Jaroszewicz Z, Bara S 1992 Appl. Opt. 31 5326

    [12]

    Zheng W T, Wu F T, Zhang Q A, Cheng Z M 2012 Acta Phys. Sin. 61 144201 (in Chinese)[郑维涛, 吴逢铁, 张前安, 程治明 2012 物理学报 61 144201]

    [13]

    Kildishev A V, Boltasseva A, Shalaev V M 2013 Science 339 1232009

    [14]

    Li X, Pu M, Zhao Z, Ma X, Jin J, Wang Y, Gao P, Luo X 2016 Sci. Rep. 6 20524

    [15]

    Ke Y, Liu Y, Zhou J, Liu Y, Luo H, Wen S 2016 Appl. Phys. Lett. 108 101102

    [16]

    Bomzon Z, Biener G, Kleiner V, Hasman E 2001 Opt. Lett. 26 33

    [17]

    Pfeiffer C, Grbic A 2013 Phys. Rev. Lett. 110 197401

    [18]

    Ni X, Emani N K, Kildishev A V, Boltasseva A, Shalaev V M 2012 Science 335 427

    [19]

    Yu N, Aieta F, Genevet P, Kats M A, Gaburro Z, Capasso F 2012 Nano Lett. 12 6328

    [20]

    Liu L, Zhang X, Kenney M, Su X, Xu N, Ouyang C, Shi Y, Han J, Zhang W, Zhang S 2014 Adv. Mater. 26 5031

    [21]

    Kang M, Guo Q, Chen J, Gu B, Li Y, Wang H 2011 Phys. Rev. A 84 045803

    [22]

    Kang M, Chen J, Wang X, Wang H 2012 J. Opt. Soc. Am. B 29 572

    [23]

    Lin J, Wang Q, Yuan G, Du L, Kou S S, Yuan X 2015 Sci. Rep. 5 10529

    [24]

    Yi X, Ling X, Zhang Z, Li Y, Zhou X, Liu Y, Chen S, Luo H, Wen S 2014 Opt. Express 22 17207

    [25]

    Beresna M, Gecevičius M, Kazansky P G, Gertus T 2011 Appl. Phys. Lett. 98 201101

    [26]

    Liu Y, Ling X, Yi X, Zhou X, Luo H, Wen S 2014 Appl. Phys. Lett. 104 191110

    [27]

    Yi X, Liu Y, Ling X, Zhou X, Ke Y, Luo H, Wen S, Fan D 2015 Phys. Rev. A 91 023801

    [28]

    Courtial J 1999 Opt. Commun. 171 179

  • [1] Lai Zhen-Xin, Zhang Ye, Zhong Fan, Wang Qiang, Xiao Yan-Ling, Zhu Shi-Ning, Liu Hui. Wavelength-selective thermal emission metasurfaces based on synthetic dimensional topological Weyl points. Acta Physica Sinica, 2024, 73(11): 117802. doi: 10.7498/aps.73.20240512
    [2] Jiang Zai-Chao, Gong Zheng, Zhong Yun-Xiang, Cui Bin, Zou Bin, Yang Yu-Ping. Encoding terahertz metasurface reflectors based on geometrical phase modulation. Acta Physica Sinica, 2023, 72(24): 248707. doi: 10.7498/aps.72.20230989
    [3] Fan Hui-Ying, Luo Jie. Research progress of non-Hermitian electromagnetic metasurfaces. Acta Physica Sinica, 2022, 71(24): 247802. doi: 10.7498/aps.71.20221706
    [4] Long Jie, Li Jiu-Sheng. Terahertz phase shifter based on phase change material-metasurface composite structure. Acta Physica Sinica, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [5] Gao Xi, Tang Li-Guang. Wideband and high efficiency orbital angular momentum generator based on bi-layer metasurface. Acta Physica Sinica, 2021, 70(3): 038101. doi: 10.7498/aps.70.20200975
    [6] Yan Wei, Wang Ji-Yong, Qu Yu-Rui, Li Qiang, Qiu Min. Tunable metasurfaces based on phase-change materials. Acta Physica Sinica, 2020, 69(15): 154202. doi: 10.7498/aps.69.20200453
    [7] Xie Zhi-Qiang, He Yan-Liang, Wang Pei-Pei, Su Ming-Yang, Chen Xue-Yu, Yang Bo, Liu Jun-Min, Zhou Xin-Xing, Li Ying, Chen Shu-Qing, Fan Dian-Yuan. Two-dimensional optical edge detection based on Pancharatnam-Berry phase metasurface. Acta Physica Sinica, 2020, 69(1): 014101. doi: 10.7498/aps.69.20191181
    [8] Li Xiao-Nan, Zhou Lu, Zhao Guo-Zhong. Terahertz vortex beam generation based on reflective metasurface. Acta Physica Sinica, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [9] Zhou Lu, Zhao Guo-Zhong, Li Xiao-Nan. Broadband terahertz vortex beam generation based on metasurface of double-split resonant rings. Acta Physica Sinica, 2019, 68(10): 108701. doi: 10.7498/aps.68.20182147
    [10] Wei Xiang, Wu Zhi-Zheng, Cao Zhan, Wang Yuan-Yuan, Dziki Mbemba. Shaping self-accelerating Bessel-like optical beams along arbitrary trajectories by magnetic fluid deformable mirror. Acta Physica Sinica, 2019, 68(11): 114701. doi: 10.7498/aps.68.20190063
    [11] Liu Jin-An, Tu Jia-Long, Lu Zhi-Li, Wu Bai-Wei, Hu Qi, Ma Hong-Hua, Chen Huan, Yi Xu-Nong. Manipulating longitudinal photonic spin Hall effect based on dynamic and Pancharatnam-Berry phase. Acta Physica Sinica, 2019, 68(6): 064201. doi: 10.7498/aps.68.20182004
    [12] Liu Hui-Long, Hu Zong-Hua, Xia Jing, Lü Yan-Fei1\2Generation and applications of non-diffraction beam. Acta Physica Sinica, 2018, 67(21): 214204. doi: 10.7498/aps.67.20181227
    [13] Guo Wen-Long, Wang Guang-Ming, Li Hai-Peng, Hou Hai-Sheng. Utra-thin single-layered high-efficiency focusing metasurface lens. Acta Physica Sinica, 2016, 65(7): 074101. doi: 10.7498/aps.65.074101
    [14] Liu Sha, Li Ya-Fei, Cai Xian-Yong, Zhang Nan. Double-core optical waveguides fabricated by astigmatic femtosecond Bessel beam in silica glass. Acta Physica Sinica, 2016, 65(19): 194210. doi: 10.7498/aps.65.194210
    [15] Li Yong-Feng, Zhang Jie-Qiu, Qu Shao-Bo, Wang Jia-Fu, Wu Xiang, Xu Zhuo, Zhang An-Xue. Circularly polarized wave reflection focusing metasurfaces. Acta Physica Sinica, 2015, 64(12): 124102. doi: 10.7498/aps.64.124102
    [16] Wu Chen-Jun, Cheng Yong-Zhi, Wang Wen-Ying, He Bo, Gong Rong-Zhou. Design and radar cross section reduction experimental verification of phase gradient meta-surface based on cruciform structure. Acta Physica Sinica, 2015, 64(16): 164102. doi: 10.7498/aps.64.164102
    [17] Fan Ya, Qu Shao-Bo, Wang Jia-Fu, Zhang Jie-Qiu, Feng Ming-De, Zhang An-Xue. Broadband anomalous reflector based on cross-polarized version phase gradient metasurface. Acta Physica Sinica, 2015, 64(18): 184101. doi: 10.7498/aps.64.184101
    [18] Li Yong-Feng, Zhang Jie-Qiu, Qu Shao-Bo, Wang Jia-Fu, Chen Hong-Ya, Xu Zhuo, Zhang An-Xue. Design and experimental verification of a two-dimensional phase gradient metasurface used for radar cross section reduction. Acta Physica Sinica, 2014, 63(8): 084103. doi: 10.7498/aps.63.084103
    [19] Du Tuan-Jie, Wang Tao, Wu Feng-Tie. Line focusing characteristics of axicon illuminated by non-diffracting Bessel beam. Acta Physica Sinica, 2013, 62(13): 134103. doi: 10.7498/aps.62.134103
    [20] Ren Zhi-Jun, Wu Qiong, Zhou Wei-Dong, Wu Gen-Zhu, Shi Yi-Le. Spatially induced Airy-Bessel light bullets. Acta Physica Sinica, 2012, 61(17): 174207. doi: 10.7498/aps.61.174207
Metrics
  • Abstract views:  9813
  • PDF Downloads:  719
  • Cited By: 0
Publishing process
  • Received Date:  17 September 2016
  • Accepted Date:  26 November 2016
  • Published Online:  05 February 2017

/

返回文章
返回