Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Terahertz wave absorption for alkylcyclohexyl-isothiocyanatobenzene liquid crystal materials

Yan Hao-Lan Cheng Ya-Qing Wang Kai-Li Wang Ya-Xin Chen Yang-Wei Yuan Qiu-Lin Ma Heng

Citation:

Terahertz wave absorption for alkylcyclohexyl-isothiocyanatobenzene liquid crystal materials

Yan Hao-Lan, Cheng Ya-Qing, Wang Kai-Li, Wang Ya-Xin, Chen Yang-Wei, Yuan Qiu-Lin, Ma Heng
PDF
HTML
Get Citation
  • According to density functional theory, in this paper we report a simulation result obtained by using the Gaussian09 package. Adopted in the calculation are an optimized Opt Freq and a base group of B3LYP/6-311g to simulate the absorption of 16 kinds of liquid crystal (LC) molecules of 4-(trans-4-n-alkylcyclohexyl) isothiocyanatobenzenes (CHBT) in a 0.1−5.0 terahertz band (THz). The results show that in the low terahertz band, the absorption is caused mainly by the vibration and rotation of the molecules. So for convenience, we present an novel analytical method of studying the influence of molecular moment of inertia and mass center of gravity shift on absorption. An important result is found that the length of the molecular alkyl chain can lead to different molecular mass, mass center of gravity and moment of inertia, which causes the rotation and vibration of the molecule to be different. These factors lead to the difference in terahertz wave absorption. In the 0.1−5.0 terahertz band, the molecules with 3−7 alkyl chain carbon atoms show a strong absorption. As a reference, reducing and increasing the carbon atoms in the alkyl chain will cause the molecules to reduce the absorption of terahertz waves . In the end, the calculated results are compared with the experimental results obtained from 10 molecules according to the reference data in a frequency range of 0.3−3.0 terahertz. It is found that in the low frequency band there exist some differences between the calculation results and the experimental measurements, in which the difference in the position of the absorption peak may originate from a hydrogen bond. Comparing the relative magnitudes of the absorption intensities, it is found that the experimental measurements are consistent with the calculated results, indicating that the absorption intensity comes from the absorption of dipole vibration and rotation, which demonstrates the positive significance of computational simulation. We look forward to the experimental measurements in the future, and correct the calculation methods and keywords as well as the parameters such as temperature calculation that is to be done in future work. As a theoretical basis, the calculation results can better reflect the absorption of molecular materials, and it is expected to provide useful suggestions for designing and synthesizing the liquid crystal molecules.
      Corresponding author: Ma Heng, hengma@henannu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61540016).
    [1]

    Lagerwall J P F, Scalla G 2012 Curr. Appl. Phys. 12 1387Google Scholar

    [2]

    Ghasemi M, Choudhury P K, Pankaj K 2014 J. Nanophoton. 8 083997Google Scholar

    [3]

    Kumar R, Aain K K 2014 Liq. Cryst. 41 228Google Scholar

    [4]

    Bisoy H K, Li Q 2014 Acc Chem. Res. 47 3184Google Scholar

    [5]

    Hartmann R R, Kono J, Portnoi M E 2014 Nanotechnology 25 1

    [6]

    李弦 2016 博士学位论文 (杭州: 浙江大学)

    Li X 2016 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese)

    [7]

    Dhillon S S, Vitiello M S, Linfield E H 2017 J. Phys. D: Appl. Phys. 50 043001Google Scholar

    [8]

    Zhao L, Hao Y H, Peng R Y 2014 Mil. Med. Res. 27 p1

    [9]

    Mittleman D M 2017 J. Appl. Phys. 122 p1

    [10]

    陈泽章 2016 博士学位论文(新乡: 河南师范大学)

    Chen Z Z 2016 Ph. D. Dissertation (Xinxiang: Henan Normal University) (in Chinese)

    [11]

    Mueller E R 2006 Photon. Spectra 40 p60

    [12]

    Park H, Fan F, Li M M, Han H, Chigrinov V G, Macpherson E 2011 36th International Conference on Infrared, Millimeter, and Terahertz Waves Houston, USA, 2011 p6104918

    [13]

    Ma H 2004 Ph. D. Dissertation (Toyama: Toyama University)

    [14]

    Vieweg N, Shakfa M K, Scherger B, Mikulics M, Koch M 2010 J. Infrared Millim. Terahertz Waves 31 1312Google Scholar

    [15]

    Wang L, Ge S J, Hu W, Nakajima M, Lu Y Q 2017 Opt. Mater. Express 7 2023Google Scholar

    [16]

    Silverstein R M, Webster F X, Kiemle D J 2005 Spectrometric Identification of Organic Compounds (7th Ed.) (New york: John Wiley & Sons) p512

    [17]

    Ma H, Shi D H, He J, Peng Y F 2009 Chin. Phys. B 18 1085Google Scholar

    [18]

    Dong J Q, Cheng W Q, Li M G, Wang K L, Ma H 2017 J. Phys. D: Appl. Phys. 50 1

    [19]

    Chodorow U, Parka J, Garbat K, Robb M A 2015 Liq. Cryst. 40 1089

    [20]

    Frisch M J, Trucks G W, Cheeseman J R, et al. 2013 Gaussian, Inc, Wallingford 1 09

    [21]

    Peng F L, Chen Y, Wu S T, Tripathi S, Twieg R G 2014 Liquid Crystals 41 1545Google Scholar

    [22]

    Depalma J W, Bzdek B R, Ridge D P, Johnston M V 2014 J. Phys. Chem. A 118 11547Google Scholar

    [23]

    Kreutzer J, Blahal P, Schubert U 2016 Comput. Theor. Chem 1084 162Google Scholar

    [24]

    Priest C, Zhou J W, Jiang D E 2017 Inor. Chim. Acta 458 39Google Scholar

    [25]

    王雅昕, 程雅青, 王凯礼, 陈洋玮, 阎昊岚, 袁秋林, 马恒 2018 液晶与显示 33 645

    Wang Y X, Cheng Y Q, Wang K L, Chen Y W, Yan H L, Yuan Q L, Ma H 2018 Chin. J. Liquid Crystals and Displays 33 645

    [26]

    董建奇, 程文其, 李梦阁, 王凯礼, 马恒 2017 液晶与显示 32 590

    Dong J Q, Cheng W Q, Li M G, Wang K L, Ma H 2017 Chin. J. Liquid Crystals and Displays 32 590

    [27]

    Vieweg N, Fischer B M, Reuter M, Kula P, Dabrowski R, Celik M A, Frenking G, Koch M, Jepsen P U 2012 Opt. Express 20 28249Google Scholar

    [28]

    Parka J, Sielezin K 2017 Molecular Crystals and Liquid Crystals 657 66Google Scholar

    [29]

    Vieweg N, Celik M A, Zakel S, Gupta V, Frenking G, Koch M 2014 J. Infrared, Millimeter and Terahertz Waves 35 478Google Scholar

  • 图 1  (a) 5CB计算值和实验值对比; (b) MBBA计算值和实验值对比

    Figure 1.  (a) Comparison of calculations and experimental results about 5CB; (b) comparison of calculations and experimental results about MBBA.

    图 2  16个棒状液晶分子的化学结构 (n = 0—15)

    Figure 2.  Chemical structure of 16 liquid crystal molecules (n = 0−15)

    图 3  0—5 THz波段分子吸收光谱

    Figure 3.  Molecular absorption spectroscopy at 0−5 THz.

    图 4  16个分子在其长轴的转动惯量值的变化趋势

    Figure 4.  Trend of the rotational inertia of 16 molecules on their long axis.

    图 5  16个分子在其长轴的总偶极矩值的变化趋势

    Figure 5.  Trend of the total dipole moment of 16 molecules on their long axis.

    图 6  1CHBT的分子质量分布和重心位置标定

    Figure 6.  Calibration of mass distribution and center of gravity for 1CHBT.

    图 7  0.3—3.0 THz波段(3—12)CHBT吸收光谱的实验值与计算值对比

    Figure 7.  Comparison of calculations and experimental results about (3−12)CHBT in 0.3−3.0 THz.

    图 8  计算结果与实验测量的吸收峰值分析 (a)实验测量; (b) 计算在1.2—3.0 THz的吸收峰值

    Figure 8.  Analysis of the absorption peaks between the calculation and the experimental data: (a) The experimental measurements; (b) the calculation of absorption peaks in 1.2−3.0 THz.

    表 1  16个分子各个组成部分的原子质量

    Table 1.  Atom mass of each component of 16 molecules.

    nCHBTNCS/
    g·mol–1
    Benzene/
    g·mol–1
    NCS+ Benzene/
    g·mol–1
    Cyclohexane/
    g·mol–1
    NCS+ Benzene +
    Cyclohexane/g· mol–1
    CnH2n+1/
    g·mol–1
    Cyclohexane + CnH2n+1/
    g·mol–1
    0CHBT587613482216183
    1CHBT5876134822161597
    2CHBT58761348221629111
    3CHBT58761348221643125
    4CHBT58761348221657139
    5CHBT58761348221671153
    6CHBT58761348221685167
    7CHBT58761348221699181
    8CHBT587613482216113195
    9CHBT587613482216127209
    10CHBT587613482216141223
    11CHBT587613482216155237
    12CHBT587613482216169251
    13CHBT587613482216183265
    14CHBT587613482216197279
    15CHBT587613482216211293
    DownLoad: CSV
  • [1]

    Lagerwall J P F, Scalla G 2012 Curr. Appl. Phys. 12 1387Google Scholar

    [2]

    Ghasemi M, Choudhury P K, Pankaj K 2014 J. Nanophoton. 8 083997Google Scholar

    [3]

    Kumar R, Aain K K 2014 Liq. Cryst. 41 228Google Scholar

    [4]

    Bisoy H K, Li Q 2014 Acc Chem. Res. 47 3184Google Scholar

    [5]

    Hartmann R R, Kono J, Portnoi M E 2014 Nanotechnology 25 1

    [6]

    李弦 2016 博士学位论文 (杭州: 浙江大学)

    Li X 2016 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese)

    [7]

    Dhillon S S, Vitiello M S, Linfield E H 2017 J. Phys. D: Appl. Phys. 50 043001Google Scholar

    [8]

    Zhao L, Hao Y H, Peng R Y 2014 Mil. Med. Res. 27 p1

    [9]

    Mittleman D M 2017 J. Appl. Phys. 122 p1

    [10]

    陈泽章 2016 博士学位论文(新乡: 河南师范大学)

    Chen Z Z 2016 Ph. D. Dissertation (Xinxiang: Henan Normal University) (in Chinese)

    [11]

    Mueller E R 2006 Photon. Spectra 40 p60

    [12]

    Park H, Fan F, Li M M, Han H, Chigrinov V G, Macpherson E 2011 36th International Conference on Infrared, Millimeter, and Terahertz Waves Houston, USA, 2011 p6104918

    [13]

    Ma H 2004 Ph. D. Dissertation (Toyama: Toyama University)

    [14]

    Vieweg N, Shakfa M K, Scherger B, Mikulics M, Koch M 2010 J. Infrared Millim. Terahertz Waves 31 1312Google Scholar

    [15]

    Wang L, Ge S J, Hu W, Nakajima M, Lu Y Q 2017 Opt. Mater. Express 7 2023Google Scholar

    [16]

    Silverstein R M, Webster F X, Kiemle D J 2005 Spectrometric Identification of Organic Compounds (7th Ed.) (New york: John Wiley & Sons) p512

    [17]

    Ma H, Shi D H, He J, Peng Y F 2009 Chin. Phys. B 18 1085Google Scholar

    [18]

    Dong J Q, Cheng W Q, Li M G, Wang K L, Ma H 2017 J. Phys. D: Appl. Phys. 50 1

    [19]

    Chodorow U, Parka J, Garbat K, Robb M A 2015 Liq. Cryst. 40 1089

    [20]

    Frisch M J, Trucks G W, Cheeseman J R, et al. 2013 Gaussian, Inc, Wallingford 1 09

    [21]

    Peng F L, Chen Y, Wu S T, Tripathi S, Twieg R G 2014 Liquid Crystals 41 1545Google Scholar

    [22]

    Depalma J W, Bzdek B R, Ridge D P, Johnston M V 2014 J. Phys. Chem. A 118 11547Google Scholar

    [23]

    Kreutzer J, Blahal P, Schubert U 2016 Comput. Theor. Chem 1084 162Google Scholar

    [24]

    Priest C, Zhou J W, Jiang D E 2017 Inor. Chim. Acta 458 39Google Scholar

    [25]

    王雅昕, 程雅青, 王凯礼, 陈洋玮, 阎昊岚, 袁秋林, 马恒 2018 液晶与显示 33 645

    Wang Y X, Cheng Y Q, Wang K L, Chen Y W, Yan H L, Yuan Q L, Ma H 2018 Chin. J. Liquid Crystals and Displays 33 645

    [26]

    董建奇, 程文其, 李梦阁, 王凯礼, 马恒 2017 液晶与显示 32 590

    Dong J Q, Cheng W Q, Li M G, Wang K L, Ma H 2017 Chin. J. Liquid Crystals and Displays 32 590

    [27]

    Vieweg N, Fischer B M, Reuter M, Kula P, Dabrowski R, Celik M A, Frenking G, Koch M, Jepsen P U 2012 Opt. Express 20 28249Google Scholar

    [28]

    Parka J, Sielezin K 2017 Molecular Crystals and Liquid Crystals 657 66Google Scholar

    [29]

    Vieweg N, Celik M A, Zakel S, Gupta V, Frenking G, Koch M 2014 J. Infrared, Millimeter and Terahertz Waves 35 478Google Scholar

  • [1] Chen Wen-Bo, Chen He-Ming. Terahertz liquid crystal phase shifter based on metamaterial composite structure. Acta Physica Sinica, 2022, 71(17): 178701. doi: 10.7498/aps.71.20212400
    [2] Wang Zhi-Peng, Zhang Feng, Yang Jia-Wei, Li Peng-Tao, Guan Bao-Lu. Thermal characteristics of surface liquid crystal vertical cavity surface emitting laser arrays. Acta Physica Sinica, 2020, 69(6): 064203. doi: 10.7498/aps.69.20191793
    [3] Wang Lei, Xiao Rui-Wen, Ge Shi-Jun, Shen Zhi-Xiong, Lü Peng, Hu Wei, Lu Yan-Qing. Research progress of terahertz liquid crystal materials and devices. Acta Physica Sinica, 2019, 68(8): 084205. doi: 10.7498/aps.68.20182275
    [4] Liang Qin, Jeff Z. Y. Chen. Recent theoretical development in confined liquid-crystal polymers. Acta Physica Sinica, 2016, 65(17): 174201. doi: 10.7498/aps.65.174201
    [5] Chen Ze-Zhang. Theoretical study on the polarizability properties of liquid crystal in the THz range. Acta Physica Sinica, 2016, 65(14): 143101. doi: 10.7498/aps.65.143101
    [6] Yang Fu-Zi. From plasmon to nanoplasmonics-the frontiers of modern photonics and the role of liquid crystals in tuneable nanoplasmonics. Acta Physica Sinica, 2015, 64(12): 124214. doi: 10.7498/aps.64.124214
    [7] Wang Jia-Lu, Du Mu-Qing, Zhang Ling-Li, Liu Yong-Jun, Sun Wei-Min. Transmission characteristics of photonic crystal fibers based on filling different kinds of liquid crystals. Acta Physica Sinica, 2015, 64(12): 120702. doi: 10.7498/aps.64.120702
    [8] Wang Qi-Dong, Peng Zeng-Hui, Liu Yong-Gang, Yao Li-Shuang, Ren Gan, Xuan Li. Rotational viscosity comparison of liquid crystals based on the molecular dynamics of mixtures. Acta Physica Sinica, 2015, 64(12): 126102. doi: 10.7498/aps.64.126102
    [9] Tang Yuan-He, Wu Yong. Study on the partial gating smart network camera for controlling strong light intensity based on DSP and liquid crystal. Acta Physica Sinica, 2013, 62(21): 214210. doi: 10.7498/aps.62.214210
    [10] Qiao Xiao-Xi, Zhang Xiang-Jun, Tian Yu, Meng Yong-Gang, Wen Shi-Zhu. Study the coupling effect of shear and electric field on rheological behaviors of liquid crystals. Acta Physica Sinica, 2013, 62(17): 176101. doi: 10.7498/aps.62.176101
    [11] Zhou Jian-Wei, Liang Jing-Qiu, Liang Zhong-Zhu, Tian Chao, Qin Yu-Xin, Wang Wei-Biao. Tunable two-dimensional photonic crystal cavity all-optical switching infiltrated with liquid-crystal. Acta Physica Sinica, 2013, 62(13): 134208. doi: 10.7498/aps.62.134208
    [12] Wang Dou-Dou, Wang Li-Li, Li Dong-Dong. Design and analysis of thermally tunable liquid-crystal-filled microstructured polymer optical fiber. Acta Physica Sinica, 2012, 61(12): 128101. doi: 10.7498/aps.61.128101
    [13] Wang Chang-Hui, Zhao Guo-Hua, Chang Sheng-Jiang. Photonic-crystal-waveguide based Mach-Zehnder interferometer for terahertz switch and modulator. Acta Physica Sinica, 2012, 61(15): 157805. doi: 10.7498/aps.61.157805
    [14] Wang Xiao-Dong, Ouyang Jie, Su Jin. Simulation of microstructure of liquid-crystalline polymers in nonhomogenous shear flow by EFG method. Acta Physica Sinica, 2010, 59(9): 6369-6376. doi: 10.7498/aps.59.6369
    [15] Wu Ben, Zhang Hui, Zhu Liang-Dong, Guo Peng, Wang Qian, Gao Run-Mei, Chang Sheng-Jiang. Magnetically tunable liquid crystal terahertz switch based on Bragg fiber. Acta Physica Sinica, 2009, 58(3): 1838-1843. doi: 10.7498/aps.58.1838
    [16] Zheng Zhi-Gang, Li Wen-Cui, Liu Yong-Gang, Xuan Li. Electrically tunable multiplexed grating with alternate liquid crystal-polymer structure. Acta Physica Sinica, 2008, 57(11): 7344-7348. doi: 10.7498/aps.57.7344
    [17] Ren Guang-Jun, Yao Jian-Quan, Wang Peng, Zhang Qiang, Zhang Hui-Yun, Zhang Yu-Ping. Research of magneto-optical rotation of liquid crystal. Acta Physica Sinica, 2007, 56(2): 994-998. doi: 10.7498/aps.56.994
    [18] Yin Jian-Ling, Huang Xu-Guang, Liu Song-Hao, Hu She-Jun. Photonic crystal field-sensitive polarizer and switch modulated by nemaic liquid crystals. Acta Physica Sinica, 2006, 55(10): 5268-5276. doi: 10.7498/aps.55.5268
    [19] Miao Ming-Chuan, Xu Ze-Da, Hou Gang, Fan Shang-Chun. Transient and steady-state multi-wave nonlinear optical properties of liquid crystal film. Acta Physica Sinica, 2005, 54(10): 4776-4781. doi: 10.7498/aps.54.4776
    [20] Yu Tao, Peng Zeng-Hui, Ruan Sheng-Ping, Xuan Li. Vertically aligned films for liquid crystals fabricated by monomer photo-crosslinking. Acta Physica Sinica, 2004, 53(1): 316-319. doi: 10.7498/aps.53.316
Metrics
  • Abstract views:  7931
  • PDF Downloads:  43
  • Cited By: 0
Publishing process
  • Received Date:  18 February 2019
  • Accepted Date:  02 April 2019
  • Available Online:  01 June 2019
  • Published Online:  05 June 2019

/

返回文章
返回