-
In recent years, metamaterials (MMs) have been widely investigated for their exotic electromagnetic characteristics which cannot be achieved in nature. However, one of the main limitations in traditional metallic-film MMs is a high level of radiation loss in metal and insertion loss of the high-permittivity or thick substrate. Fortunately, all-dielectric MMs with high refractive-index dielectric structures show significantly less material loss than their metallic counterparts. In this paper, an all-dielectric grating is fabricated on a 100-m-thick silicon wafer by using direct-laser-writing technique, and the properties of its Mie resonances are investigated by THz time-domain spectroscopy. Then we measure the spectral response of the all-dielectric grating under the optical modulation by a near-infrared pump-THz probe method. The modulation light source is an 808 nm continuous semiconductor laser with a maximum power (10 W). To give an insight into the underlying mechanisms of the Mie-type resonance effects on the arrayed, silicon pillars, the transmission of the all-dielectric grating is investigated numerically by the finite-element simulations through using CST Microwave Studio. In our experiment, the incident THz magnetic field is along the grating lines. The research results show that three typical Mie resonances are excited from 0 to 1 THz in the all-dielectric structure, and all the three resonant modes are different in the distributions of electric field and magnetic field. Furthermore, it is found that the resonance intensities of these three resonance peaks appear to be weakened variously with the increase of the optical power, and the first resonant peak modulation amplitude maximally reaches more than 50%. Combining the simulation results, we prove that the decrease of Mie resonance intensity under photo-excitation is caused by the absorption and the scattering of the incident THz wave by photo-generated carriers. Besides, we estimate the conductivity values of the all-dielectric grating under different optical excitations and find that the conductivity values reach 1000 S/m and 1500 S/m corresponding to 5 W and 10 W optical excitation, respectively. The estimated conductivity data will play an important role in the prospective optical modulation simulation. All the results mentioned above will provide an important reference for researches on the resonance properties of the all-dielectric metamaterials and the development of related functional devices.
-
Keywords:
- all-dielectric grating /
- terahertz /
- optical modulation
[1] Wu X J, Quan B G, Pan X C, Xu X L, Lu X C, Gu C Z, Wang L 2013 Biosens. Bioelectron. 42 626
[2] O'Hara J F, Singh R, Brener I, Smirnova E, Han J, Taylor A J, Zhang W 2008 Opt. Express 16 1786
[3] Zhang Y P, Li T T, L H H, Huang X Y, Zhang H Y 2015 Acta Phys. Sin. 64 117801 (in Chinese) [张玉萍, 李彤彤, 吕欢欢, 黄晓燕, 张会云 2015 物理学报 64 117801]
[4] Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534
[5] Gu J Q, Singh R, Liu X J, Zhang X Q, Ma Y F, Zhang S, Maier S A, Tian Z, Azad A K, Chen H T, Taylor A J, Han J G, Zhang W L 2012 Nat. Commun. 3 1151
[6] Ding C F, Zhang Y T, Yao J Q, Sun C L, Xu D G, Zhang G Z 2014 Chin. Phys. B 23 124203
[7] Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402
[8] Li L Y, Wang J, Du H L, Wang J F, Qu S B 2015 Chin. Phys. B 24 064201
[9] Xiao S, Drachev V P, Kildishev A V, Ni X, Chettiar U K, Yuan H K, Shalaev V M 2010 Nature 466 735
[10] Yang Y P, Singh R, Zhang W L 2014 Chin. Phys. B 23 128702
[11] Vynck K, Felbacq D, Centeno E, Cãbuz A I, Cassagne D, Guizal B 2009 Phys. Rev. Lett. 102 133901
[12] Zhao Q, Zhou J, Zhang F L, Lippens D 2009 Mater. Today 12 60
[13] Bi K, Guo Y S, Liu X M, Zhao Q, Xiao J H, Lei M, Zhou J 2014 Sci. Rep. 4 7001
[14] Peng L, Ran L, Chen H, Zhang H, Kong J A, Grzegorczyk T M 2007 Phys. Rev. Lett. 98 157403
[15] Zhang J, Macdonald K F, Zheludev N I 2013 Opt. Express 21 26721
[16] Shi L, Harris J T, Fenollosa R, Rodriguez I, Lu X, Korgel B A, Meseguer F 2013 Nat. Commun. 4 1904
[17] O'Brien S, Pendry J B 2002 Condens. Matter 14 6383
[18] Yang Y, Kravchenko I I, Briggs D P, Valentine J 2014 Nat. Commun. 5 5753
[19] Narayana S, Sato Y 2012 Adv. Mater. 24 71
[20] Moitra P, Yang Y, Anderson Z, Kravchenko I I, Briggs D P, Valentine J 2013 Nat. Photon. 7 791
[21] Slovick B, Yu Z G, Berding M, Krishnamurthy S 2013 Phys. Rev. B 8 165116
[22] Rahm M, Li J S, Padilla W J 2013 J. Infr. Milli. Terahz. Waves 34 1
[23] Li Q, Tian Z, Zhang X Q, Singh R, Du L L, Gu J Q, Han J G, Zhang W L 2015 Nat. Commun. 6 7082
[24] Moitra P, Slovick B A, Yu Z G, Krishnamurthy S, Valentine J 2014 Appl. Phys. Lett. 104 171102
[25] Yang Y P, Cui B, Geng Z X, Feng S 2015 Appl. Phys. Lett. 106 111106
-
[1] Wu X J, Quan B G, Pan X C, Xu X L, Lu X C, Gu C Z, Wang L 2013 Biosens. Bioelectron. 42 626
[2] O'Hara J F, Singh R, Brener I, Smirnova E, Han J, Taylor A J, Zhang W 2008 Opt. Express 16 1786
[3] Zhang Y P, Li T T, L H H, Huang X Y, Zhang H Y 2015 Acta Phys. Sin. 64 117801 (in Chinese) [张玉萍, 李彤彤, 吕欢欢, 黄晓燕, 张会云 2015 物理学报 64 117801]
[4] Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534
[5] Gu J Q, Singh R, Liu X J, Zhang X Q, Ma Y F, Zhang S, Maier S A, Tian Z, Azad A K, Chen H T, Taylor A J, Han J G, Zhang W L 2012 Nat. Commun. 3 1151
[6] Ding C F, Zhang Y T, Yao J Q, Sun C L, Xu D G, Zhang G Z 2014 Chin. Phys. B 23 124203
[7] Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402
[8] Li L Y, Wang J, Du H L, Wang J F, Qu S B 2015 Chin. Phys. B 24 064201
[9] Xiao S, Drachev V P, Kildishev A V, Ni X, Chettiar U K, Yuan H K, Shalaev V M 2010 Nature 466 735
[10] Yang Y P, Singh R, Zhang W L 2014 Chin. Phys. B 23 128702
[11] Vynck K, Felbacq D, Centeno E, Cãbuz A I, Cassagne D, Guizal B 2009 Phys. Rev. Lett. 102 133901
[12] Zhao Q, Zhou J, Zhang F L, Lippens D 2009 Mater. Today 12 60
[13] Bi K, Guo Y S, Liu X M, Zhao Q, Xiao J H, Lei M, Zhou J 2014 Sci. Rep. 4 7001
[14] Peng L, Ran L, Chen H, Zhang H, Kong J A, Grzegorczyk T M 2007 Phys. Rev. Lett. 98 157403
[15] Zhang J, Macdonald K F, Zheludev N I 2013 Opt. Express 21 26721
[16] Shi L, Harris J T, Fenollosa R, Rodriguez I, Lu X, Korgel B A, Meseguer F 2013 Nat. Commun. 4 1904
[17] O'Brien S, Pendry J B 2002 Condens. Matter 14 6383
[18] Yang Y, Kravchenko I I, Briggs D P, Valentine J 2014 Nat. Commun. 5 5753
[19] Narayana S, Sato Y 2012 Adv. Mater. 24 71
[20] Moitra P, Yang Y, Anderson Z, Kravchenko I I, Briggs D P, Valentine J 2013 Nat. Photon. 7 791
[21] Slovick B, Yu Z G, Berding M, Krishnamurthy S 2013 Phys. Rev. B 8 165116
[22] Rahm M, Li J S, Padilla W J 2013 J. Infr. Milli. Terahz. Waves 34 1
[23] Li Q, Tian Z, Zhang X Q, Singh R, Du L L, Gu J Q, Han J G, Zhang W L 2015 Nat. Commun. 6 7082
[24] Moitra P, Slovick B A, Yu Z G, Krishnamurthy S, Valentine J 2014 Appl. Phys. Lett. 104 171102
[25] Yang Y P, Cui B, Geng Z X, Feng S 2015 Appl. Phys. Lett. 106 111106
Catalog
Metrics
- Abstract views: 6276
- PDF Downloads: 764
- Cited By: 0