Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Terahertz metasurface with independent control of spatial and spatiotemporal optical vortices

LI Yuxi ZHANG Huiyun CHEN Jiongxu WANG Jiacheng ZHANG Min JIANG Qingyou LIU Meng ZHANG Yuping

Citation:

Terahertz metasurface with independent control of spatial and spatiotemporal optical vortices

LI Yuxi, ZHANG Huiyun, CHEN Jiongxu, WANG Jiacheng, ZHANG Min, JIANG Qingyou, LIU Meng, ZHANG Yuping
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • The optical vortex (OV) and spatiotemporal optical vortex (STOV) are special beams carrying different forms of orbital angular momentum (OAM). OV has longitudinal OAM, while STOV has transverse OAM and is coordinated with time to achieve control. Due to their reliance on different physical mechanisms, traditional optical platforms are difficult to independently control these two vortex beams on the same platform, which to some extent limits the understanding of the unified physical mechanism of spatial and spatiotemporal orbital angular momentum and hinders the development of multi-dimensional light field manipulation technology. This paper proposes a terahertz (THz) metasurface device based on vanadium dioxide (VO2) phase change material, integrating the in-plane asymmetry (provided by triangular pores) required to excite STOV and the anisotropic phase units (realized by VO2 broken rings) required to generate OV into one metasurface platform, enabling the dynamic switching of OV and STOV on the same metasurface platform. The uniqueness of its design and the key to achieving functional integration lies in the selection of Si and VO2 materials on the upper layer of the metasurface. When VO2 is in the insulating state, its dielectric constant in the THz band is similar to that of Si and its conductivity is very low. Different rotation angles of the units can still be considered as a periodic structure with the same symmetry on a macroscopic scale. The structure uses circularly polarized waves for reflection, generating a topological dark point at approximately 1.376 THz and a topological dark line between 1.3765 THz and 1.378 THz, exciting STOV. When VO2 transforms into a metallic state, its high conductivity makes the broken ring the dominant scatterer. By reasonably arranging the encoded units of the metasurface and combining the Pancharatnam-Berry (PB) phase, not only can OV with different topological charges be generated, but also multi-channel and multi-functional OV can be generated through convolution theorem and shared aperture theorem. Subsequently, the influence of structural parameters was analyzed in detail. By changing the shape of the triangular pores and the thickness of the broken ring, the two vortex beams were adjusted, and it was found that they have strong topological stability under different conditions and can be reversibly switched through temperature control. This research provides a new idea for realizing multifunctional vortex light generation in the terahertz frequency band and opens up new avenues for the application of vortex light in terahertz communication and optical information processing.
  • [1]

    Tonouchi M 2007 Nat. Photonics 1 97

    [2]

    El Haddad J, Bousquet B, Canioni L, Mounaix P 2013 TrAC, Trends Anal. Chem. 44 98

    [3]

    Yu X-Q, Zeng Y-S, Song L-W, Kong D-Y, Hao S-B, Gui J-Y, Yang X-J, Xu Y, Wu X-J, Leng Y-X 2023 Nat. Photonics 17 957

    [4]

    Jiang W, Zhou Q, He J, Habibi M A, Melnyk S, El-Absi M, Han B, Di Renzo M, Schotten H D, Luo F-L 2024 IEEE Commun. Surv. Tutor. 26 2326

    [5]

    Boulogeorgos A-A A, Alexiou A, Merkle T, Schubert C, Elschner R, Katsiotis A, Stavrianos P, Kritharidis D, Chartsias P-K, Kokkoniemi J 2018 IEEE Commun. Mag. 56 144

    [6]

    Akyildiz I F, Jornet J M 2016 Nano Commun. Netw. 8 46

    [7]

    Lee D-K, Kang J-H, Lee J-S, Kim H-S, Kim C, Hun Kim J, Lee T, Son J-H, Park Q-H, Seo M 2015 Sci. Rep. 5 15459

    [8]

    Zhang X, Liu J, Qin J 2023 Nanoscale Adv. 5 2210

    [9]

    Zhang Z, Wang Z, Zhang C, Yao Z, Zhang S, Wang R, Tian Z, Han J, Chang C, Lou J 2024 Adv. Mater. 36 2308453

    [10]

    Giordano M C, Viti L, Mitrofanov O, Vitiello M S 2018 Optica 5 651

    [11]

    Vallés A, He J, Ohno S, Omatsu T, Miyamoto K 2020 Opt. Express 28 28868

    [12]

    Kuo C-H, Wu M-H, Chen C-R, Lin Y-J, Laurell F, Huang Y-C 2023 Sci. Rep. 13 5843

    [13]

    Jia M, Wang Z, Li H, Wang X, Luo W, Sun S, Zhang Y, He Q, Zhou L 2019 Light:Sci. Appl. 8 16

    [14]

    Guo Z, Zhou Y, Yang H, Li S, Li T, Cao X 2023 Opt. Express 31 35086

    [15]

    Zhou Y, Zhang T, Wang G, Guo Z, Zang X, Zhu Y, Ding F, Zhuang S 2024 Adv. Sci. 11 2406571

    [16]

    Jiang M, Li J 2025 Acta Phys. Sin. 74 028701(in Chinese)[蒋铭阳,李九生2025 物理学报74 028701]

    [17]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light:Sci. Appl. 3 e218

    [18]

    Wu R Y, Shi C B, Liu S, Wu W, Cui T J 2018 Adv. Opt. Mater. 6 1701236

    [19]

    Liu S, Cui T J, Zhang L, Xu Q, Wang Q, Wan X, Gu J Q, Tang W X, Qing Qi M, Han J G 2016 Adv. Sci. 3 1600156

    [20]

    Zhang L, Wang Z X, Shao R W, Shen J L, Chen X Q, Wan X, Cheng Q, Cui T J 2019 IEEE Trans. Antennas Propag. 68 2984

    [21]

    Tian S, Li Y, Xu J 2025 Phys. Lett. A 532 130186

    [22]

    Zhu S, Deng X-H, Liu Y, Geng J, Bao Y, Zhang Y, Lou Y 2025 Phys. Lett. A 555 130776

    [23]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J-P, Capasso F, Gaburro Z 2011 Science 334 333

    [24]

    Devlin R C, Ambrosio A, Rubin N A, Mueller J B, Capasso F 2017 Science 358 896

    [25]

    Huang R-T, Li J-S 2023 Acta Phys. Sin. 72 054203(in Chinese)[黄若彤,李九生 2023物理学报72 054203]

    [26]

    Zi-Rui Wang D-C C, Rui Hong,, Wu D-J 2025 Chin. Phys. B 34 094302(in Chinese)[王子睿,陈帝超,洪瑞,吴大建2025中国物理B 34 094302]

    [27]

    Yao A M, Padgett M J 2011 Adv. Opt. Photonics 3 161

    [28]

    Wang X, Nie Z, Liang Y, Wang J, Li T, Jia B 2018 Nanophotonics 7 1533

    [29]

    Bliokh K Y, Bekshaev A Y, Nori F 2017 Phys. Rev. Lett. 119 073901

    [30]

    Firth W J, Skryabin D V 1997 Phys. Rev. Lett. 79 2450

    [31]

    Soskin M, Gorshkov V, Vasnetsov M, Malos J, Heckenberg N 1997 Phys. Rev. A 56 4064

    [32]

    Chen M, Mazilu M, Arita Y, Wright E M, Dholakia K 2013 Opt. Lett. 38 4919

    [33]

    Prinz E, Hartelt M, Spektor G, Orenstein M, Aeschlimann M 2023 ACS Photonics 10 340

    [34]

    Zhang Z, Qiao X, Midya B, Liu K, Sun J, Wu T, Liu W, Agarwal R, Jornet J M, Longhi S 2020 Science 368 760

    [35]

    Liu Y, Lao C, Wang M, Cheng Y, Wang Y, Fu S, Gao C, Wang J, Li B-B, Gong Q 2024 Nat. Photonics 18 632

    [36]

    Chen B, Zhou Y, Liu Y, Ye C, Cao Q, Huang P, Kim C, Zheng Y, Oxenløwe L K, Yvind K 2024 Nat. Photonics 18 625

    [37]

    Perez N, Preece D, Wilson R, Bezryadina A 2022 Sci. Rep. 12 14144

    [38]

    Zhao M, Liang X, Li J, Xie M, Zheng H, Zhong Y, Yu J, Zhang J, Chen Z, Zhu W 2022 Laser Photonics Rev. 16 2200230

    [39]

    Bliokh K Y, Nori F 2012 Phys. Rev. A 86 033824

    [40]

    Hancock S, Zahedpour S, Milchberg H 2021 Phys. Rev. Lett. 127 193901

    [41]

    Jhajj N, Larkin I, Rosenthal E, Zahedpour S, Wahlstrand J, Milchberg H 2016 Phys. Rev. X 6 031037

    [42]

    Cao Q, Chen J, Lu K, Wan C, Chong A, Zhan Q 2022 Sci. Bull. 67 133

    [43]

    Wan C, Chong A, Zhan Q 2023 Elight 3 11

    [44]

    Liu X, Cao Q, Zhang N, Chong A, Cai Y, Zhan Q 2024 Nat. Commun. 15 5435

    [45]

    Chong A, Wan C, Chen J, Zhan Q 2020 Nat. Photonics 14 350

    [46]

    Liu W, Wang J, Tang Y, Wang X, Zhao X, Shi L, Zi J, Chan C 2024 Nano Lett. 24 943

    [47]

    Che Z, Liu W, Ye J, Shi L, Chan C, Zi J 2024 Phys. Rev. Lett. 132 044001

    [48]

    Zhou Y, Zou R, Zhan J, Wang Y, Dai D, Choudhury P K, Forbes A, Ma Y 2025 Laser Photonics Rev. 19 2401391

    [49]

    Li Y, Zhang H, Chen J, Wang J, Yu J, Liu M, Zhang M, Zhang Y 2025 Opt. Express 33 34604

    [50]

    Deng F, Ma K, Ma Y, Hou X, Han Z, Li Y, Cheng K, Shao Y, Wang C, Liu M 2025 Photonics Res. 13 1408

    [51]

    Huang J, Zhang H, Wu B, Zhu T, Ruan Z 2023 Phys. Rev. B 108 104106

    [52]

    Liu M, Hwang H Y, Tao H, Strikwerda A C, Fan K, Keiser G R, Sternbach A J, West K G, Kittiwatanakul S, Lu J 2012 Nature 487 345

    [53]

    Zylbersztejn A, Mott N F 1975 Phys. Rev. B 11 4383

    [54]

    Shao Z, Cao X, Luo H, Jin P 2018 NPG Asia Mater. 10 581

    [55]

    Wang S, Kang L, Werner D H 2017 Sci. Rep. 7 4326

    [56]

    Fan S, Suh W, Joannopoulos J D 2003 J. Opt. Soc. Am. A 20 569

    [57]

    Suh W, Wang Z, Fan S 2004 IEEE J. Quantum Electron. 40 1511

  • [1] Wang Yue, Wang Hao-Jie, Cui Zi-Jian, Zhang Da-Chi. Bound states in continuum domain of double resonant ring metal metasurfaces. Acta Physica Sinica, doi: 10.7498/aps.73.20231556
    [2] Wang Dan, Li Jiu-Sheng, Guo Feng-Lei. Switchable ultra-broadband absorption and polarization conversion terahertz metasurface. Acta Physica Sinica, doi: 10.7498/aps.73.20240525
    [3] Zhang Xiang, Wang Yue, Zhang Wan-Ying, Zhang Xiao-Ju, Luo Fan, Song Bo-Chen, Zhang Kuang, Shi Wei. Narrow band absorption and sensing properties of the THz metasurface based on single-walled carbon nanotubes. Acta Physica Sinica, doi: 10.7498/aps.73.20231357
    [4] Zhu Xiang-Ning, Feng Dai-Li, Feng Yan-Hui, Lin Lin, Zhang Xin-Xin. Enhanced heat storage and heat transfer performance of wood-based biomass carbonized skeleton loaded with polyethylene glycol phase change material by surface modification. Acta Physica Sinica, doi: 10.7498/aps.72.20222466
    [5] Xiang Xing-Cheng, Ma Hai-Bei, Wang Lei, Tian Da, Zhang Wei, Zhang Cai-Hong, Wu Jing-Bo, Fan Ke-Bin, Jin Biao-Bing, Chen Jian, Wu Pei-Heng. Ultramicro-sensing of terahertz metamaterials implemented by using sample traps. Acta Physica Sinica, doi: 10.7498/aps.72.20230080
    [6] Jin Jia-Sheng, Ma Cheng-Ju, Zhang Yao, Zhang Yue-Bin, Bao Shi-Qian, Li Mi, Li Dong-Ming, Liu Ming, Liu Qian-Zhen, Zhang Yi-Xin. Switchable multifunctional terahertz metamaterial with slow-light and absorption functions based on phase change materials. Acta Physica Sinica, doi: 10.7498/aps.72.20222336
    [7] Yang Dong-Ru, Cheng Yong-Zhi, Luo Hui, Chen Fu, Li Xiang-Cheng. Double-split-ring structure based ultra-broadband and ultra-thin dual-polarization terahertz metasurface with half-reflection and half-transmission. Acta Physica Sinica, doi: 10.7498/aps.72.20230471
    [8] Ge Hong-Yi, Li Li, Jiang Yu-Ying, Li Guang-Ming, Wang Fei, Lü Ming, Zhang Yuan, Li Zhi. Double-opening metal ring based terahertz metamaterial absorber sensor. Acta Physica Sinica, doi: 10.7498/aps.71.20212303
    [9] Chen Wen-Bo, Chen He-Ming. Terahertz liquid crystal phase shifter based on metamaterial composite structure. Acta Physica Sinica, doi: 10.7498/aps.71.20212400
    [10] Yu Bo, Zhuang Shu-Lei, Wang Zheng-Xin, Wang Man-Shi, Guo Lan-Jun, Li Xin-Yu, Guo Wen-Rui, Su Wen-Ming, Gong Cheng, Liu Wei-Wei. Nano-printing technology based double-spiral terahertz tunable metasurface. Acta Physica Sinica, doi: 10.7498/aps.71.20212408
    [11] Pang Hui-Zhong, Wang Xin, Wang Jun-Lin, Wang Zong-Li, Liu Su-Yalatu, Tian Hu-Qiang. Sensing characteristics of dual band terahertz metamaterial absorber sensor. Acta Physica Sinica, doi: 10.7498/aps.70.20210062
    [12] Li Guo-Qiang, Shi Hong-Yu, Liu Kang, Li Bo-Lin, Yi Jian-Jia, Zhang An-Xue, Xu Zhuo. Multi-beam multi-mode vortex beams generation based on metasurface in terahertz band. Acta Physica Sinica, doi: 10.7498/aps.70.20210897
    [13] Long Jie, Li Jiu-Sheng. Terahertz phase shifter based on phase change material-metasurface composite structure. Acta Physica Sinica, doi: 10.7498/aps.70.20201495
    [14] Yan Wei, Wang Ji-Yong, Qu Yu-Rui, Li Qiang, Qiu Min. Tunable metasurfaces based on phase-change materials. Acta Physica Sinica, doi: 10.7498/aps.69.20200453
    [15] Zhou Lu, Zhao Guo-Zhong, Li Xiao-Nan. Broadband terahertz vortex beam generation based on metasurface of double-split resonant rings. Acta Physica Sinica, doi: 10.7498/aps.68.20182147
    [16] Li Xiao-Nan, Zhou Lu, Zhao Guo-Zhong. Terahertz vortex beam generation based on reflective metasurface. Acta Physica Sinica, doi: 10.7498/aps.68.20191055
    [17] Yan Xin, Liang Lan-Ju, Zhang Zhang, Yang Mao-Sheng, Wei De-Quan, Wang Meng, Li Yuan-Ping, Lü Yi-Ying, Zhang Xing-Fang, Ding Xin, Yao Jian-Quan. Dynamic multifunctional control of terahertz beam based on graphene coding metamaterial. Acta Physica Sinica, doi: 10.7498/aps.67.20180125
    [18] Zhang Yin, Feng Yi-Jun, Jiang Tian, Cao Jie, Zhao Jun-Ming, Zhu Bo. Graphene based tunable metasurface for terahertz scattering manipulation. Acta Physica Sinica, doi: 10.7498/aps.66.204101
    [19] Zhang Yu-Ping, Li Tong-Tong, Lü Huan-Huan, Huang Xiao-Yan, Zhang Hui-Yun. Study on sensing characteristics of I-shaped terahertz metamaterial absorber. Acta Physica Sinica, doi: 10.7498/aps.64.117801
    [20] Hu Hai-Feng, Cai Li-Kang, Bai Wen-Li, Zhang Jing, Wang Li-Na, Song Guo-Feng. Simulation research on the control of terahertz beam direction by surface plasmon. Acta Physica Sinica, doi: 10.7498/aps.60.014220
Metrics
  • Abstract views:  15
  • PDF Downloads:  2
  • Cited By: 0
Publishing process
  • Available Online:  31 October 2025
  • /

    返回文章
    返回