-
A metamaterial sensor implemented by using sample traps based on terahertz electromagnetically-induced-transparency-like (EIT-like) effect is proposed. The basic unit structure of the sensor is composed of a metal wire and a pair of split ring resonators (SRRs), which are coupled to produce EIT-like effect. The full width at half maximum of transparency peak is 178 GHz obtained at 1.067 THz, and the maximum transmittance of the transparency peak is 89.71%. The sensing characteristics of the structure are studied, and the sensitivity per unit volume is
$178\;{\rm{G}}{\rm{H}}{\rm{z}}/({\rm{R}}{\rm{I}}{\rm{U}}{\cdot} {{\rm{m}}{\rm{m}}}^{3})$ . The analysis of electric field distribution at the resonant frequency point of the metamaterial indicates that the electric field at the gap of the SRRs on both sides is strongest. Sample traps are constructed at the gap where the electric field is strongest. The photoresist is filled into the sample traps as the object to be measured, and 50 GHz frequency offset is successfully measured, verifying that the sample trap structure can be applied to sensing. With samples placed in the sample traps, the sample volume is reduced to the ultra-micro level, and the sensitivity per unit volume is increased to$5538\;{\rm{G}}{\rm{H}}{\rm{z}}/({\rm{R}}{\rm{I}}{\rm{U}}{\cdot} {{\rm{m}}{\rm{m}}}^{3})$ , which is 31 times higher than original one. The successful identification of water, human skin and rat skin samples show that the metamaterial sensor implemented by using sample traps has potential applications in the field of ultra-micro detection.-
Keywords:
- terahertz /
- metamaterial sensors /
- sample trap /
- ultra-micro
[1] Chen H T, Kersting R, Cho G C 2003 Appl. Phys. Lett. 83 3009Google Scholar
[2] Sunaguchi N, Sasaki Y, Maikusa N, Kawai M, Yuasa T, Otani C 2009 Opt. Express 17 9558Google Scholar
[3] 彭晓昱, 周欢 2021 物理学报 70 240701Google Scholar
Peng X Y, Zhou H 2021 Acta Phys. Sin. 70 240701Google Scholar
[4] Arbab M H, Dickey T C, Winebrenner D P, Chen A, Klein M B, Mourad P D 2011 Biomed. Opt. Express 2 2339Google Scholar
[5] Beruete M, Jáuregui-López I 2020 Adv. Opt. Mater. 8 1900721Google Scholar
[6] Kindt J T, Schmuttenmaer C A 1996 J. Phys. Chem. 100 10373Google Scholar
[7] Wang Y, Minamide H, Ming T, Notake T, Ito H 2010 Opt. Express 18 15504Google Scholar
[8] Li H, Wan W J, Tan Z Y, Fu Z L, Wang H X, Zhou T, Li Z P, Wang C, Guo X G, Cao J C 2017 Sci. Rep. 7 3452Google Scholar
[9] Sun J D, Zhu Y F, Feng W, et al. 2020 Opt. Express 28 4911Google Scholar
[10] Zhang Y X, Xu G Q, Qiao S, Zhou Y C, Wu Z H, Yang Z Q 2015 J. Phys. D-Appl. Phys. 48 485105Google Scholar
[11] Duponchel L, Laurette S, Hatirnaz B, Treizebre A, Affouard F, Bocquet B 2013 Chemometrics Intell. Lab. Syst. 123 28Google Scholar
[12] Seo M, Park H R 2020 Adv. Opt. Mater. 8 1900662Google Scholar
[13] 李化月, 刘建军, 韩张华, 洪治 2014 光学学报 34 0223003Google Scholar
Li H Y, Liu J J, Han Z H, Hong Z 2014 Acta Opt. Sin. 34 0223003Google Scholar
[14] Debus C, Bolivar P H 2007 Appl. Phys. Lett. 91 184102Google Scholar
[15] Hu X, Xu G Q, Wen L, Wang H C, Zhao Y C, Zhang Y X, Cumming D R S, Chen Q 2016 Laser Photon. Rev. 10 962Google Scholar
[16] Jakšić Z, Vuković S, Matovic J, Tanasković D 2011 Materials 4 1Google Scholar
[17] Zhang X Q, Xu N N, Qu K N, Tian Z, Singh R, Han J G, Agarwal G S, Zhang W L 2015 Sci. Rep. 5 10737Google Scholar
[18] Driscoll T, Andreev G O, Basov D N, Palit S, Cho S Y, Jokerst N M, Smith D R 2007 Appl. Phys. Lett. 91 062511Google Scholar
[19] Withayachumnankul W, Lin H, Serita K, et al. 2012 Opt. Express 20 3345Google Scholar
[20] Wu D W, Liu J J, Han H, Han Z H, Hong Z 2015 Front. Optoelectron. 8 68Google Scholar
[21] Zhang C H, Liang L J, Ding L, et al. 2016 Appl. Phys. Lett. 108 241105Google Scholar
[22] Zhang R, Chen Q M, Liu K, Chen Z F, Li K D, Zhang X M, Xu J B, Pickwell-MacPherson E 2019 IEEE Trans. Terahertz Sci. Technol. 9 209Google Scholar
[23] Zhang X Q, Li Q, Cao W, Gu J Q, Singh R, Tian Z, Han J G, Zhang W L 2012 IEEE J. Sel. Top. Quantum Electron. 19 8400707Google Scholar
[24] Pan W, Yan Y J, Ma Y, Shen D J 2019 Opt. Commun. 431 115Google Scholar
[25] Jing H H, Zhu Z H, Zhang X Q, Gu J Q, Tian Z, Ouyang C M, Han J G, Zhang W L 2013 Sci. China-Inf. Sci. 56 1Google Scholar
[26] Serita K, Matsuda E, Okada K, Murakami H, Kawayama I, Tonouchi M 2018 Apl Photonics 3 051603Google Scholar
[27] 杨宏艳, 肖功利 2012 光学学报 32 0716002Google Scholar
Yang H Y, Xiao G L 2012 Acta Opt. Sin. 32 0716002Google Scholar
[28] Arscott S, Garet F, Mounaix P, Duvillaret L, Coutaz J L, Lippens D 1999 Electron. Lett. 35 433Google Scholar
[29] 常文保, 江子伟, 廖一平, 等 2005 分析化学教程 (北京: 北京大学出版社) 第18页
Chang W B, Jiang Z W, Liao Y P, et al. 2005 Analytical Chemistry Course (Beijing: Peking University Press) p18 (in Chinese)
[30] 王志群, 严拯宇, 杜迎翔, 等 2006 分析化学 (南京: 东南大学出版社) 第3页
Wang Z Q, Yan Z Y, Du Y X, et al. 2006 Analytical Chemistry (Nanjing: Southeast University Press) p3 (in Chinese)
[31] Pupeza I, Wilk R, Koch M 2007 Opt. Express 15 4335Google Scholar
[32] 许景周, 张希成 2007 太赫兹科学技术和应用 (北京: 北京大学出版社) 第207页
Xu J Z, Zhang X C 2007 Terahertz Science and Technology and Applications (Beijing: Peking University Press) p207 (in Chinese)
[33] Dorney T D, Baraniuk R G, Mittleman D M 2001 J. Opt. Soc. Am. A 18 1562Google Scholar
-
图 1 (a) 类EIT超材料单元结构, a = 30 μm, l = 104 μm , g = 2 μm , w = 5 μm , s = 7.5 μm , P = 120 μm; (b)传感示意图, nsam为样本折射率, Hsam为样本厚度; (c)类EIT结构及拆分为金属线和SRRs后的传输谱; (d)传感器频率偏移随折射率变化的曲线, 插图为传感器表面加不同折射率样本时对应的传输谱
Figure 1. (a) Geometry of the unit structure of EIT-like metamaterial, a = 30 μm, l = 104 μm, g = 2 μm, w = 5 μm, s = 7.5 μm, P = 120 μm; (b) schematic diagram of sensing, nsam for sample refractive index, Hsam for sample thickness; (c) transmission spectra of EIT-like structures, wires and SRRs; (d) curve of the frequency shift of the sensor changing with the refractive index, illustrated with the corresponding transmission spectra of different refractive index samples.
图 3 (a)不放样品, 整体和局部对应传输谱; (b)右侧放样, 整体和局部对应传输谱; (c)双侧放样, 整体和局部对应传输谱; (d)不同数量样本阱示意图及传输谱, 插图为开口处样本阱3D放大图
Figure 3. (a) Global and local corresponding transmission spectra without sample; (b) global and local corresponding transmission spectra with samples on right sides; (c) global and local corresponding transmission spectra with samples on both sides; (d) schematic diagram and transmission spectra of different number of sample traps, illustrated with 3D enlarged view of the sample trap at the gap.
图 4 对于样品阱传感器用于超微量传感可行性的验证 (a)空样品阱及填充光刻胶样品阱的单元结构示意图; (b)空样品阱和填充光刻胶样品阱传感器仿真传输谱; (c)带样品阱传感器照片; (d)空样品阱和填充光刻胶样品阱的传感器显微镜照片; (e)利用太赫兹光谱系统测量得到的传感器传输谱
Figure 4. Verification of the feasibility of the sensor with sample traps for ultra-micro sensing: (a) Schematic diagram of unit structure of sensor with empty sample traps and with photoresist-filled sample traps; (b) simulation transmission spectrum of sensor with empty sample traps and with photoresist-filled sample traps; (c) photo of the sensor with sample trap; (d) microscopic photographs of the sensor with empty sample trap and the photoresist filled sample trap; (e) the transmission spectrum of the sensor measured by the terahertz spectrum system.
图 5 类EIT样品阱传感器的应用 (a) 传感器频率偏移随折射率变化的曲线图, 插图为不同折射率样本的传输谱; (b) 3种不同生物样本作为待测物对应的太赫兹传输谱
Figure 5. Application of EIT-like sensor using sample trap: (a) Curve of the frequency shift of the sensor changing with the refractive index, illustrated with the transmission spectrum of samples with different refractive index; (b) transmission spectrum corresponding to different biological samples.
表 1 水、人类皮肤和大鼠皮肤的双德拜介电弛豫模型参数及传感结果
Table 1. Double Debye dielectric relaxation model parameters and sensing results of water, human skin and rat skin.
$ {\varepsilon }_{{\rm{\infty }}} $ $ {\varepsilon }_{2} $ $ {\varepsilon }_{{\rm{s}}} $ $ {\tau }_{1}/ $ps $ {\tau }_{2} $/ps Δf/GHz ΔA/% 水 3.5 4.9 78.4 8.2 0.18 52 31.94 人类皮肤 3.0 3.6 60.0 10.0 0.20 42 22.09 大鼠皮肤 3.0 3.6 60.0 2.2—5.19 0.20 42 46.82 -
[1] Chen H T, Kersting R, Cho G C 2003 Appl. Phys. Lett. 83 3009Google Scholar
[2] Sunaguchi N, Sasaki Y, Maikusa N, Kawai M, Yuasa T, Otani C 2009 Opt. Express 17 9558Google Scholar
[3] 彭晓昱, 周欢 2021 物理学报 70 240701Google Scholar
Peng X Y, Zhou H 2021 Acta Phys. Sin. 70 240701Google Scholar
[4] Arbab M H, Dickey T C, Winebrenner D P, Chen A, Klein M B, Mourad P D 2011 Biomed. Opt. Express 2 2339Google Scholar
[5] Beruete M, Jáuregui-López I 2020 Adv. Opt. Mater. 8 1900721Google Scholar
[6] Kindt J T, Schmuttenmaer C A 1996 J. Phys. Chem. 100 10373Google Scholar
[7] Wang Y, Minamide H, Ming T, Notake T, Ito H 2010 Opt. Express 18 15504Google Scholar
[8] Li H, Wan W J, Tan Z Y, Fu Z L, Wang H X, Zhou T, Li Z P, Wang C, Guo X G, Cao J C 2017 Sci. Rep. 7 3452Google Scholar
[9] Sun J D, Zhu Y F, Feng W, et al. 2020 Opt. Express 28 4911Google Scholar
[10] Zhang Y X, Xu G Q, Qiao S, Zhou Y C, Wu Z H, Yang Z Q 2015 J. Phys. D-Appl. Phys. 48 485105Google Scholar
[11] Duponchel L, Laurette S, Hatirnaz B, Treizebre A, Affouard F, Bocquet B 2013 Chemometrics Intell. Lab. Syst. 123 28Google Scholar
[12] Seo M, Park H R 2020 Adv. Opt. Mater. 8 1900662Google Scholar
[13] 李化月, 刘建军, 韩张华, 洪治 2014 光学学报 34 0223003Google Scholar
Li H Y, Liu J J, Han Z H, Hong Z 2014 Acta Opt. Sin. 34 0223003Google Scholar
[14] Debus C, Bolivar P H 2007 Appl. Phys. Lett. 91 184102Google Scholar
[15] Hu X, Xu G Q, Wen L, Wang H C, Zhao Y C, Zhang Y X, Cumming D R S, Chen Q 2016 Laser Photon. Rev. 10 962Google Scholar
[16] Jakšić Z, Vuković S, Matovic J, Tanasković D 2011 Materials 4 1Google Scholar
[17] Zhang X Q, Xu N N, Qu K N, Tian Z, Singh R, Han J G, Agarwal G S, Zhang W L 2015 Sci. Rep. 5 10737Google Scholar
[18] Driscoll T, Andreev G O, Basov D N, Palit S, Cho S Y, Jokerst N M, Smith D R 2007 Appl. Phys. Lett. 91 062511Google Scholar
[19] Withayachumnankul W, Lin H, Serita K, et al. 2012 Opt. Express 20 3345Google Scholar
[20] Wu D W, Liu J J, Han H, Han Z H, Hong Z 2015 Front. Optoelectron. 8 68Google Scholar
[21] Zhang C H, Liang L J, Ding L, et al. 2016 Appl. Phys. Lett. 108 241105Google Scholar
[22] Zhang R, Chen Q M, Liu K, Chen Z F, Li K D, Zhang X M, Xu J B, Pickwell-MacPherson E 2019 IEEE Trans. Terahertz Sci. Technol. 9 209Google Scholar
[23] Zhang X Q, Li Q, Cao W, Gu J Q, Singh R, Tian Z, Han J G, Zhang W L 2012 IEEE J. Sel. Top. Quantum Electron. 19 8400707Google Scholar
[24] Pan W, Yan Y J, Ma Y, Shen D J 2019 Opt. Commun. 431 115Google Scholar
[25] Jing H H, Zhu Z H, Zhang X Q, Gu J Q, Tian Z, Ouyang C M, Han J G, Zhang W L 2013 Sci. China-Inf. Sci. 56 1Google Scholar
[26] Serita K, Matsuda E, Okada K, Murakami H, Kawayama I, Tonouchi M 2018 Apl Photonics 3 051603Google Scholar
[27] 杨宏艳, 肖功利 2012 光学学报 32 0716002Google Scholar
Yang H Y, Xiao G L 2012 Acta Opt. Sin. 32 0716002Google Scholar
[28] Arscott S, Garet F, Mounaix P, Duvillaret L, Coutaz J L, Lippens D 1999 Electron. Lett. 35 433Google Scholar
[29] 常文保, 江子伟, 廖一平, 等 2005 分析化学教程 (北京: 北京大学出版社) 第18页
Chang W B, Jiang Z W, Liao Y P, et al. 2005 Analytical Chemistry Course (Beijing: Peking University Press) p18 (in Chinese)
[30] 王志群, 严拯宇, 杜迎翔, 等 2006 分析化学 (南京: 东南大学出版社) 第3页
Wang Z Q, Yan Z Y, Du Y X, et al. 2006 Analytical Chemistry (Nanjing: Southeast University Press) p3 (in Chinese)
[31] Pupeza I, Wilk R, Koch M 2007 Opt. Express 15 4335Google Scholar
[32] 许景周, 张希成 2007 太赫兹科学技术和应用 (北京: 北京大学出版社) 第207页
Xu J Z, Zhang X C 2007 Terahertz Science and Technology and Applications (Beijing: Peking University Press) p207 (in Chinese)
[33] Dorney T D, Baraniuk R G, Mittleman D M 2001 J. Opt. Soc. Am. A 18 1562Google Scholar
Catalog
Metrics
- Abstract views: 4136
- PDF Downloads: 206
- Cited By: 0