Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical study on effect of Ge-S/F co-doping on crystal structure and properties of Li2MSiO4(M = Mn, Fe)

Guo Xia-Lei Hou Yu-Hua Zheng Shou-Hong Huang You-Lin Tao Xiao-Ma

Citation:

Theoretical study on effect of Ge-S/F co-doping on crystal structure and properties of Li2MSiO4(M = Mn, Fe)

Guo Xia-Lei, Hou Yu-Hua, Zheng Shou-Hong, Huang You-Lin, Tao Xiao-Ma
PDF
HTML
Get Citation
  • The effects of Ge-S/F co-doping on the structural stability and electrochemical properties of Li2MSiO4 (M = Mn, Fe) crystal are systematically studied by the first-principle calculations based on density functional theory combined with the generalized gradient approximation (GGA) + U method. The calculation results show that the Ge-S/F co-doping Li2MSiO4 (M = Mn, Fe) system undergoes the site exchange between Li and M in the delithiation process. Compared with Li2MSiO4(M = Mn, Fe), the doped system has good toughness, and lithium ions migrate easily in the doped system. And the doped system with site exchange is more stable in the process of delithium, especially the volume change of Li2Mn0.5Ge0.5SiO3.5S0.5 is very small, indicating that it has good structural cyclic stability. Moreover, the theoretical average deintercalation voltages of Li2MSiO4 (M = Mn, Fe) are reduced by Ge-S/F co-doping. The combination of the density of states with magnetic moment shows that the Ge-S/F co-doping can improve the conductivity of Li2MnSiO4 and delay the appearance of the Jahn-Teller effect in the Li2MnSiO4 system, which is beneficial to the improvement of the structural cycling stability of Li2MnSiO4. Meanwhile, the Ge-S/F co-doping can not only improve the conductivity of Li2FeSiO4, but also facilitate the removal of more Li+ from Li2FeSiO4 system, especially the complete delithium of Ge-F co-doping system is expected to be achieved.
      Corresponding author: Hou Yu-Hua, hyhhyl@163.com
    • Funds: Project supported by the Jiangxi Provincial Key R&D Program, China (Grant No. 20192ACB50020), the Natural Science Foundation of Jiangxi Province, China (Grant No. 20202BABL204022), and the Jiangxi Postgraduate Innovation Fund, China (Grant No. YC2021-S657).
    [1]

    Dominko R, Bele M, Kokalj A, Gaberscek, M, Jamnik J 2007 J. Power Sources 174 457Google Scholar

    [2]

    Sasaki H, Nemoto A, Moriya M, Masahiko M, Mana H, Shingo K, Yuji A, Akira N, Shinichi H 2015 Ceram. Int. 41 S680Google Scholar

    [3]

    Li Y X, Gong Z L, Yang Y 2007 J. Power Sources 174 528Google Scholar

    [4]

    Dominko R 2008 J. Power Sources 184 462Google Scholar

    [5]

    Muraliganth T, Stroukoff K R, Manthiram A 2010 Chem. Mater. 22 5754Google Scholar

    [6]

    Liu S S, Song L J, Yu B J, Wang C Y, Li M W 2016 Electrochim. Acta 188 145Google Scholar

    [7]

    Nyten A, Abouimrane A, Armand M, Gustafsson T, Thomas J O 2005 Electrochem. Commun. 7 156Google Scholar

    [8]

    Arroyo-de Dompablo M E, Armand M, Tarascon J M, Amador U 2006 Electrochem. Commun. 8 1292Google Scholar

    [9]

    Wang C, Xu Y L, Zhang B F, Ma X N 2019 Solid State Ionics 338 39Google Scholar

    [10]

    Ma D W, Feng Y Y, Zhang B, Feng J, Pan J H 2021 Scr. Mater. 193 122Google Scholar

    [11]

    Wang K, Teng G F, Yang J L, Tan R, Duan Y D, Zheng J X, Pan F 2015 J. Mater. Chem. A 3 24437Google Scholar

    [12]

    Li T, Jiang X T, Gao K, Wang C Y, Li S D 2016 J. Chin. Chem. Soc. 63 800Google Scholar

    [13]

    Zhu L, Li L, Cheng T M, Xu D S 2015 J. Mater. Chem. A 10 5449

    [14]

    Singh S, Raj A K, Sen R, Johari P, Mitra S 2017 ACS Appl. Mater. Interfaces 9 26885Google Scholar

    [15]

    Nytén A, Kamali S, Haggstrom L, Torbjorn G, John O T 2006 J. Mater. Chem. 16 2266Google Scholar

    [16]

    Yan X T, Hou Y H, Huang Y L, Zheng S H, Shi Z Q, Tao X M 2019 J. Electrochem. Soc. 166 A3874Google Scholar

    [17]

    Yan X T, Hou Y H, Zheng S H, Huang Y L, Shi Z Q, Tao X M 2020 Phys. Chem. Chem. Phys. 22 14712Google Scholar

    [18]

    Zheng S H, Hou Y H, Guo X L, Huang Y L, Li W, Tao X M 2021 Electrochim. Acta 367 137553Google Scholar

    [19]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [20]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [21]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [22]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [23]

    Monkhorst H J 1976 Phys. Rev. B 13 5188Google Scholar

    [24]

    Anisimov V I, Zaanen J, Andersen O K 1991 Phys. Rev. B 44 943Google Scholar

    [25]

    Feng Y M, Ji R, Ding Z P, Zhang D L, Liang C P, Chen L B, Ivey, Douglas G, Wei W F 2018 Inorg. Chem. 57 3223Google Scholar

    [26]

    Zeng Y, Chiu H C, Ouyang B, Song J, Zaghib K, Demopoulos G P 2019 J. Mater. Chem. A 7 25399Google Scholar

    [27]

    Lian D X, Zhao Y H, Hou H, Wang S, Wen Z Q, Zhang Q, Guo Q W 2019 Comput. Mater. Sci. 168 260Google Scholar

    [28]

    Mouhat F, Coudert F X 2014 Phys. Rev. B 90 224104Google Scholar

    [29]

    Li L, Zhu L, Xu L H, Cheng T M, Wang W, Li X, Sui Q T 2014 J. Mater. Chem. A 2 4251Google Scholar

    [30]

    Hill R 1952 Proc. Phys. Soc. 65 349Google Scholar

    [31]

    Watt J P 1979 J. Appl. Phys. 50 6290Google Scholar

    [32]

    Pugh S F 1954 Philos. Mag. 45 823Google Scholar

    [33]

    Frantsevich I N, Voronov F F, Bokuta S A 1983 Naukova Dumka Kiev 43 60

    [34]

    郑寿红, 李 伟, 姜茗浩, 闫小童, 侯育花, 陶小马 2021 功能材料 52 06084Google Scholar

    Zheng S H, Li W, Jiang M H, Yan X T, Hou Y H, Tao X M 2021 Funct. Mater. 52 06084Google Scholar

    [35]

    Dominko R, Arcon I, Kodre A, Hanzel D, Gaberšček M 2009 J. Power Sources 189 51Google Scholar

    [36]

    Zhong G H, Li Y L, Yan P, Liu, Z, Xie M H, Lin H Q 2010 J. Phys. Chem. C 114 3693Google Scholar

    [37]

    Marianetti C A, Kotliar G, Ceder G 2004 Phy. Rev. Lett. 92 196405Google Scholar

    [38]

    Brese B N E, O’Keeffe M 1991 Acta Crystallogr. B47 192

  • 图 1  (a) 位置交换的LiMn0.5Ge0.5SiO3.5S0.5的晶胞结构; (b) 位置交换的LiMn0.5Ge0.5SiO3.5F0.5; (c) 位置交换的LiFe0.5Ge0.5SiO3.5S0.5; (d) 位置交换的LiFe0.5Ge0.5SiO3.5F0.5

    Figure 1.  Crystal cell structure of (a) site exchange LiMn0.5Ge0.5SiO3.5S0.5, (b) site exchange LiMn0.5Ge0.5SiO3.5F0.5, (c) site exchange LiFe0.5Ge0.5SiO3.5S0.5, (d) site exchange LiFe0.5Ge0.5SiO3.5F0.5.

    图 2  (a) 初始LixM0.5Ge0.5SiO3.5R0.5 (M = Mn, Fe; R = S, F; x = 0, 1, 2) 的晶胞体积; (b) 发生位置交换LixM0.5Ge0.5SiO3.5R0.5 (M = Mn, Fe; R = S, F; x = 0, 1, 2) 的晶胞体积

    Figure 2.  (a) The unit cell volume of initial LixM0.5Ge0.5SiO3.5R0.5 (M = Mn, Fe; R = S, F; x = 0, 1, 2); (b) the unit cell volume of site exchange LixM0.5Ge0.5SiO3.5R0.5 (M = Mn, Fe; R = S, F; x = 0, 1, 2).

    图 3  初始和位置交换LixM0.5Ge0.5SiO3.5R0.5 (M = Mn, Fe; R = S, F; x = 0, 1, 2) 的晶格常数

    Figure 3.  Lattice parameters of initial and site exchange LixM0.5Ge0.5SiO3.5R0.5 (M = Mn, Fe; R = S, F; x = 0, 1, 2).

    图 4  (a) 初始和位置交换Li2Mn0.5Ge0.5SiO3.5R0.5的平均脱嵌电压(R = S, F); (b) 初始和位置交换Li2Fe0.5Ge0.5SiO3.5R0.5的平均脱嵌电压 (R = S, F)

    Figure 4.  (a) Average deintercalation voltage of initial and site exchange Li2Mn0.5Ge0.5SiO3.5R0.5 (R = S, F); (b) average deintercalation voltage of initial and site exchange Li2Fe0.5Ge0.5SiO3.5R0.5 (R = S, F).

    图 5  (a) 初始LixMn0.5Ge0.5SiO3.5S0.5 (x = 0, 1, 2)的TDOS和PDOS; (b) 初始 LixMn0.5Ge0.5SiO3.5S0.5 (x = 0, 1, 2) 中 Mn和Ge的PDOS; (c) 位置交换LixMn0.5Ge0.5SiO3.5S0.5 (x = 0, 1, 2)的TDOS和PDOS; (d) Mn和Ge在位置交换 LixMn0.5Ge0.5SiO3.5S0.5 (x = 0, 1, 2) 中的PDOS

    Figure 5.  (a) TDOS and PDOS of initial LixMn0.5Ge0.5SiO3.5S0.5 (x = 0, 1, 2); (b) PDOS of Mn and Ge in initial LixMn0.5Ge0.5SiO3.5S0.5 (x = 0, 1, 2); (c) TDOS and PDOS of site exchange LixMn0.5Ge0.5SiO3.5S0.5 (x = 0, 1, 2); (d) PDOS of Mn and Ge in site exchange LixMn0.5Ge0.5SiO3.5S0.5 (x = 0, 1, 2).

    图 6  (a) 初始LixMn0.5Ge0.5SiO3.5F0.5 (x = 0, 1, 2)的TDOS和PDOS; (b) 初始 LixMn0.5Ge0.5SiO3.5F0.5 (x = 0, 1, 2) 中Mn和Ge的 PDOS; (c) 位置交换LixMn0.5Ge0.5SiO3.5F0.5 (x = 0, 1, 2)的TDOS和PDOS; (d) 位置交换LixMn0.5Ge0.5SiO3.5F0.5 (x = 0, 1, 2) 中的Mn和Ge的PDOS

    Figure 6.  (a) TDOS and PDOS of initial LixMn0.5Ge0.5SiO3.5F0.5 (x = 0, 1, 2); (b) PDOS of Mn and Ge in initial LixMn0.5Ge0.5SiO3.5F0.5 (x = 0, 1, 2); (c) TDOS and PDOS of site exchange LixMn0.5Ge0.5SiO3.5F0.5 (x = 0, 1, 2); (d) PDOS of Mn and Ge in site exchange LixMn0.5Ge0.5SiO3.5F0.5 (x = 0, 1, 2).

    图 7  (a) 初始LixFe0.5Ge0.5SiO3.5S0.5 (x = 0, 1, 2)的TDOS和PDOS; (b) 初始 LixFe0.5Ge0.5SiO3.5S0.5 (x = 0, 1, 2) 中Fe和Ge的 PDOS; (c) 位置交换LixFe0.5Ge0.5SiO3.5S0.5 (x = 0, 1, 2)的TDOS和PDOS; (d) 位置交换LixFe0.5Ge0.5SiO3.5S0.5 (x = 0, 1, 2)中Fe和Ge的 PDOS

    Figure 7.  (a) TDOS and PDOS of initial LixFe0.5Ge0.5SiO3.5S0.5 (x = 0, 1, 2); (b) PDOS of Fe and Ge in initial LixFe0.5Ge0.5SiO3.5S0.5 (x = 0, 1, 2); (c) TDOS and PDOS of site exchange LixFe0.5Ge0.5SiO3.5S0.5 (x = 0, 1, 2); (d) PDOS of Fe and Ge in site exchange LixFe0.5Ge0.5SiO3.5S0.5 (x = 0, 1, 2).

    图 8  (a) 初始LixFe0.5Ge0.5SiO3.5F0.5 (x = 0, 1, 2)的TDOS和PDOS; (b) 初始 LixFe0.5Ge0.5SiO3.5F0.5 (x = 0, 1, 2) 中Fe和Ge的PDOS; (c) 位置交换LixFe0.5Ge0.5SiO3.5F0.5 (x = 0, 1, 2)的TDOS和PDOS; (d) 位置交换LixFe0.5Ge0.5SiO3.5F0.5 (x = 0, 1, 2)中Fe和Ge的PDOS

    Figure 8.  (a) TDOS and PDOS of initial LixFe0.5Ge0.5SiO3.5F0.5 (x = 0, 1, 2); (b) PDOS of Fe and Ge in initial LixFe0.5Ge0.5SiO3.5F0.5 (x = 0, 1, 2); (c) TDOS and PDOS of site exchange LixFe0.5Ge0.5SiO3.5F0.5 (x = 0, 1, 2); (d) PDOS of Fe and Ge in site exchange LixFe0.5Ge0.5SiO3.5F0.5 (x = 0, 1, 2) .

    表 1  Li2M0.5Ge0.5SiO3.5R0.5 (M = Mn, Fe; R = S, F)的弹性常数矩阵的特征值和形成能(ΔEf)

    Table 1.  The eigenvalues of the elastic constant matrix and formation energy (ΔEf) of Li2M0.5Ge0.5SiO3.5R0.5 (M = Mn, Fe; R = S, F).

    Mn-SMn-FFe-SFe-F
    特征值12.0023.5616.1713.52
    19.0828.8520.1222.87
    29.8737.6920.7636.42
    37.2253.0539.8253.41
    62.4173.1753.5268.55
    207.87209.12222.90225.26
    ΔEf /eV–17.39–17.88–17.02–17.30
    DownLoad: CSV

    表 2  计算的Li2M0.5Ge0.5SiO3.5R0.5体积模量B、剪切模量G、模量比B/G、泊松比ν、杨氏模量E和德拜温度θD (M = Mn, Fe; R = S, F )

    Table 2.  Calculated bulk modulus B, shear modulus G, modulus ratio B/G, Poisson’s ratio ν, Young’s modulus E and Debye temperature θD of Li2M0.5Ge0.5SiO3.5R0.5 (M = Mn, Fe; R = S, F).

    B/GPaG/GPaB/GνE/GPaθD/K
    Li2Mn0.5Ge0.5SiO3.5S0.556.0621.522.600.3357.24387
    Li2Mn0.5Ge0.5SiO3.5F0.567.0330.372.210.3079.15462
    Li2Fe0.5Ge0.5SiO3.5S0.563.9121.153.020.3557.15383
    Li2Fe0.5Ge0.5SiO3.5F0.568.8525.652.680.3368.45426
    DownLoad: CSV

    表 3  位置交换的LixM0.5Ge0.5SiO3.5R0.5 (M = Mn, Fe; R = S, F; x = 0, 1)的平均键长 (单位: Å)

    Table 3.  The average bond length (in Å) of LixM0.5Ge0.5SiO3.5R0.5 (M = Mn, Fe; R = S, F; x = 0, 1) with the site exchange case

    M—OMRGe—OGe—RSi1—OSi1—RSi2—OSi2—R
    Mn—S (x = 2)2.2202.4732.2161.6382.1561.667
    Mn—S (x = 1∶SE)2.0921.8102.1961.6332.1781.657
    Mn—S (x = 0∶SE)1.8261.7942.2001.6442.1311.639
    Mn—F (x = 2)2.1082.1632.8921.6561.6441.725
    Mn—F (x = 1∶SE)2.0101.8631.6561.6241.658
    Mn—F (x = 0∶SE)1.9381.8171.6281.7081.666
    Fe—S (x = 2)2.1462.4502.2141.6661.6422.137
    Fe—S (x = 1∶SE)1.9822.3501.8041.6541.7032.057
    Fe—S (x = 0∶SE)1.8521.7842.2391.6391.6262.179
    Fe—F (x = 2)2.0582.1802.3961.6581.6472.646
    Fe—F (x = 1∶SE)1.9001.9752.7931.6511.6261.661
    Fe—F (x = 0∶SE)1.8631.7551.9831.6441.6121.817
    DownLoad: CSV

    表 4  位置交换的LixM0.5Ge0.5SiO3.5R0.5中(M = Mn, Fe; R = S, F; x = 0, 1 )、Ge 和 Si 的键合价和 BVS

    Table 4.  Bond-valence sums (BVS) of M (M = Mn, Fe), Ge and Si in LixM0.5Ge0.5SiO3.5R0.5 (M = Mn, Fe; R = S, F; x = 0, 1) with site exchange case.

    MGeSi1Si2
    Mn—S (x = 2)1.421.233.813.56
    Mn—S (x = 1∶SE)1.773.603.813.68
    Mn—S (x = 0∶SE)3.353.703.833.85
    Mn—F (x = 2)1.701.013.673.52
    Mn—F (x = 1∶SE)2.282.203.703.82
    Mn—F (x = 0∶SE)2.503.353.963.21
    Fe—S (x = 2)1.441.183.573.83
    Fe—S (x = 1∶SE)2.143.453.723.67
    Fe—S (x = 0∶SE)3.123.663.853.85
    Fe—F (x = 2)1.681.083.652.88
    Fe—F (x = 1∶SE)2.741.673.723.78
    Fe—F (x = 0∶SE)3.023.373.823.65
    DownLoad: CSV

    表 5  初始和位点交换情况下 M (M = Mn, Fe) 离子的磁矩 (μB) 和氧化态

    Table 5.  Magnetic moment (in μB) and oxidation state of M (M = Mn, Fe) ions in the case of initial and site exchange.

    结构磁矩M(初始)/
    M(位置交换)
    氧化态M(初始)/
    M(位置交换)
    Mn—S (x = 2)4.64/4.64+2(3d5)/+2(3d5)
    Mn—S (x = 1)4.61/4.65+2(3d5)/+2(3d5)
    Mn—S (x = 0)3.78/3.41+(3 + δ)(3d(4–δ))/
    +(3 + φ)(3d(4–φ))
    Mn—F (x = 2)4.65/4.65+2(3d5)/+2(3d5)
    Mn—F (x = 1)4.64/4.17+2(3d5)/
    +(2 + α)(3d(5–α))
    Mn—F (x = 0)3.87/3.98+3(3d4)/+3(3d4)
    Fe—S (x = 2)3.73/3.73+2(3d6)/+2(3d6)
    Fe—S (x = 1)3.71/3.68+2(3d6)/+2(3d6)
    Fe—S (x = 0)4.02/4.14+(3 + τ)(3d(5–τ))/
    +(3 + ψ)(3d(5–ψ))
    Fe—F (x = 2)3.73/3.73+2(3d6)/+2(3d6)
    Fe—F (x = 1)4.23/4.23+3(3d5)/+3(3d5)
    Fe—F (x = 0)4.25/4.26+3(3d5)/+3(3d5)
    DownLoad: CSV
  • [1]

    Dominko R, Bele M, Kokalj A, Gaberscek, M, Jamnik J 2007 J. Power Sources 174 457Google Scholar

    [2]

    Sasaki H, Nemoto A, Moriya M, Masahiko M, Mana H, Shingo K, Yuji A, Akira N, Shinichi H 2015 Ceram. Int. 41 S680Google Scholar

    [3]

    Li Y X, Gong Z L, Yang Y 2007 J. Power Sources 174 528Google Scholar

    [4]

    Dominko R 2008 J. Power Sources 184 462Google Scholar

    [5]

    Muraliganth T, Stroukoff K R, Manthiram A 2010 Chem. Mater. 22 5754Google Scholar

    [6]

    Liu S S, Song L J, Yu B J, Wang C Y, Li M W 2016 Electrochim. Acta 188 145Google Scholar

    [7]

    Nyten A, Abouimrane A, Armand M, Gustafsson T, Thomas J O 2005 Electrochem. Commun. 7 156Google Scholar

    [8]

    Arroyo-de Dompablo M E, Armand M, Tarascon J M, Amador U 2006 Electrochem. Commun. 8 1292Google Scholar

    [9]

    Wang C, Xu Y L, Zhang B F, Ma X N 2019 Solid State Ionics 338 39Google Scholar

    [10]

    Ma D W, Feng Y Y, Zhang B, Feng J, Pan J H 2021 Scr. Mater. 193 122Google Scholar

    [11]

    Wang K, Teng G F, Yang J L, Tan R, Duan Y D, Zheng J X, Pan F 2015 J. Mater. Chem. A 3 24437Google Scholar

    [12]

    Li T, Jiang X T, Gao K, Wang C Y, Li S D 2016 J. Chin. Chem. Soc. 63 800Google Scholar

    [13]

    Zhu L, Li L, Cheng T M, Xu D S 2015 J. Mater. Chem. A 10 5449

    [14]

    Singh S, Raj A K, Sen R, Johari P, Mitra S 2017 ACS Appl. Mater. Interfaces 9 26885Google Scholar

    [15]

    Nytén A, Kamali S, Haggstrom L, Torbjorn G, John O T 2006 J. Mater. Chem. 16 2266Google Scholar

    [16]

    Yan X T, Hou Y H, Huang Y L, Zheng S H, Shi Z Q, Tao X M 2019 J. Electrochem. Soc. 166 A3874Google Scholar

    [17]

    Yan X T, Hou Y H, Zheng S H, Huang Y L, Shi Z Q, Tao X M 2020 Phys. Chem. Chem. Phys. 22 14712Google Scholar

    [18]

    Zheng S H, Hou Y H, Guo X L, Huang Y L, Li W, Tao X M 2021 Electrochim. Acta 367 137553Google Scholar

    [19]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [20]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [21]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [22]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [23]

    Monkhorst H J 1976 Phys. Rev. B 13 5188Google Scholar

    [24]

    Anisimov V I, Zaanen J, Andersen O K 1991 Phys. Rev. B 44 943Google Scholar

    [25]

    Feng Y M, Ji R, Ding Z P, Zhang D L, Liang C P, Chen L B, Ivey, Douglas G, Wei W F 2018 Inorg. Chem. 57 3223Google Scholar

    [26]

    Zeng Y, Chiu H C, Ouyang B, Song J, Zaghib K, Demopoulos G P 2019 J. Mater. Chem. A 7 25399Google Scholar

    [27]

    Lian D X, Zhao Y H, Hou H, Wang S, Wen Z Q, Zhang Q, Guo Q W 2019 Comput. Mater. Sci. 168 260Google Scholar

    [28]

    Mouhat F, Coudert F X 2014 Phys. Rev. B 90 224104Google Scholar

    [29]

    Li L, Zhu L, Xu L H, Cheng T M, Wang W, Li X, Sui Q T 2014 J. Mater. Chem. A 2 4251Google Scholar

    [30]

    Hill R 1952 Proc. Phys. Soc. 65 349Google Scholar

    [31]

    Watt J P 1979 J. Appl. Phys. 50 6290Google Scholar

    [32]

    Pugh S F 1954 Philos. Mag. 45 823Google Scholar

    [33]

    Frantsevich I N, Voronov F F, Bokuta S A 1983 Naukova Dumka Kiev 43 60

    [34]

    郑寿红, 李 伟, 姜茗浩, 闫小童, 侯育花, 陶小马 2021 功能材料 52 06084Google Scholar

    Zheng S H, Li W, Jiang M H, Yan X T, Hou Y H, Tao X M 2021 Funct. Mater. 52 06084Google Scholar

    [35]

    Dominko R, Arcon I, Kodre A, Hanzel D, Gaberšček M 2009 J. Power Sources 189 51Google Scholar

    [36]

    Zhong G H, Li Y L, Yan P, Liu, Z, Xie M H, Lin H Q 2010 J. Phys. Chem. C 114 3693Google Scholar

    [37]

    Marianetti C A, Kotliar G, Ceder G 2004 Phy. Rev. Lett. 92 196405Google Scholar

    [38]

    Brese B N E, O’Keeffe M 1991 Acta Crystallogr. B47 192

  • [1] Yan Zhi, Fang Cheng, Wang Fang, Xu Xiao-Hong. First-principles calculations of structural and magnetic properties of SmCo3 alloys doped with transition metal elements. Acta Physica Sinica, 2024, 73(3): 037502. doi: 10.7498/aps.73.20231436
    [2] Yu Yue, Yang Heng-Yu, Zhou Wu-Xing, Ouyang Tao, Xie Guo-Feng. First-principles study of thermoelectric performance of monolayer Ge2X4S2 (X = P, As). Acta Physica Sinica, 2023, 72(7): 077201. doi: 10.7498/aps.72.20222244
    [3] Luan Li-Jun, He Yi, Wang Tao, Liu Zong-Wen. First-principles study of e interface interaction and photoelectric properties of the solar cell heterojunction CdS/CdMnTe. Acta Physica Sinica, 2021, 70(16): 166302. doi: 10.7498/aps.70.20210268
    [4] Liang Ting, Wang Yang-Yang, Liu Guo-Hong, Fu Wang-Yang, Wang Huai-Zhang, Chen Jing-Fei. First-principles investigations on gas adsorption properties of V-doped monolayer MoS2. Acta Physica Sinica, 2021, 70(8): 080701. doi: 10.7498/aps.70.20202043
    [5] Zhong Shu-Lin, Qiu Jia-Hao, Luo Wen-Wei, Wu Mu-Sheng. First-principles study of properties of rare-earth-doped LiFePO4. Acta Physica Sinica, 2021, 70(15): 158203. doi: 10.7498/aps.70.20210227
    [6] Wang Yan, Chen Nan-Di, Yang Chen, Zeng Zhao-Yi, Hu Cui-E, Chen Xiang-Rong. Thermoelectric transport properties of two-dimensional materials XTe2 (X = Pd, Pt) via first-principles calculations. Acta Physica Sinica, 2021, 70(11): 116301. doi: 10.7498/aps.70.20201939
    [7] Peng Lin-Feng, Zeng Zi-Qi, Sun Yu-Long, Jia Huan-Huan, Xie Jia. Facile synthesis and electrochemical properties of Na-rich anti-perovskite solid electrolytes. Acta Physica Sinica, 2020, 69(22): 228201. doi: 10.7498/aps.69.20201227
    [8] Hu Qian-Ku, Hou Yi-Ming, Wu Qing-Hua, Qin Shuang-Hong, Wang Li-Bo, Zhou Ai-Guo. Theoretical calculations of stabilities and properties of transition metal borocarbides TM3B3C and TM4B3C2 compound. Acta Physica Sinica, 2019, 68(9): 096201. doi: 10.7498/aps.68.20190158
    [9] Yan Xiao-Tong, Hou Yu-Hua, Zheng Shou-Hong, Huang You-Lin, Tao Xiao-Ma. First-principles study of effects of Ga, Ge and As doping on electrochemical properties and electronic structure of Li2CoSiO4 serving as cathode material for Li-ion batteries. Acta Physica Sinica, 2019, 68(18): 187101. doi: 10.7498/aps.68.20190503
    [10] Yang Xiu-Tao, Liang Zhong-Guan, Yuan Yu-Jia, Yang Jun-Liang, Xia Hui. Preparation and electrochemical performance of porous carbon nanosphere. Acta Physica Sinica, 2017, 66(4): 048101. doi: 10.7498/aps.66.048101
    [11] Bai Jing, Wang Xiao-Shu, Zu Qi-Rui, Zhao Xiang, Zuo Liang. Defect stabilities and magnetic properties of Ni-X-In (X= Mn, Fe and Co) alloys: a first-principle study. Acta Physica Sinica, 2016, 65(9): 096103. doi: 10.7498/aps.65.096103
    [12] Chen Chang, Ru Qiang, Hu She-Jun, An Bo-Nan, Song Xiong. Preparation and electrochemical properties of Co2SnO4/graphene composites. Acta Physica Sinica, 2014, 63(19): 198201. doi: 10.7498/aps.63.198201
    [13] Li Rong, Luo Xiao-Ling, Liang Guo-Ming, Fu Wen-Sheng. First-principles study of influence of dopants Fe on the dehydrogenation properties of VH2. Acta Physica Sinica, 2011, 60(11): 117105. doi: 10.7498/aps.60.117105
    [14] Bai Ying, Ding Ling-Hong, Zhang Wei-Feng. Investigation of electrochemical performances of ZnFe2O4 prepared by solid state and hydrothermal method. Acta Physica Sinica, 2011, 60(5): 058201. doi: 10.7498/aps.60.058201
    [15] Hou Xian-Hua, Yu Hong-Wen, Hu She-Jun. preparation and properties of Sn-Al thin-film electrode material for lithium ion batteries. Acta Physica Sinica, 2010, 59(11): 8226-8230. doi: 10.7498/aps.59.8226
    [16] Gu Mu, Lin Ling, Liu Bo, Liu Xiao-Lin, Huang Shi-Ming, Ni Chen. Fist-principle calculation for electronic structure of M’-GdTaO4. Acta Physica Sinica, 2010, 59(4): 2836-2842. doi: 10.7498/aps.59.2836
    [17] Tan Xing-Yi, Jin Ke-Xin, Chen Chang-Le, Zhou Chao-Chao. Electronic structure of YFe2B2by first-principles calculation. Acta Physica Sinica, 2010, 59(5): 3414-3417. doi: 10.7498/aps.59.3414
    [18] Wu Hong-Li, Zhao Xin-Qing, Gong Sheng-Kai. Effect of Nb doping on electronic structure of TiO2/NiTi interface: A first-principle study. Acta Physica Sinica, 2008, 57(12): 7794-7799. doi: 10.7498/aps.57.7794
    [19] Hou Qing-Yu, Zhang Yue, Chen Yue, Shang Jia-Xiang, Gu Jing-Hua. Effects of the concentration of oxygen vacancy of anatase on electric conducting performance studied by frist principles calculations. Acta Physica Sinica, 2008, 57(1): 438-442. doi: 10.7498/aps.57.438
    [20] Sun Bo, Liu Shao-Jun, Duan Su-Qing, Zhu Wen-Jun. First-principles calculations of structures, properties and high pressures effects of Fe. Acta Physica Sinica, 2007, 56(3): 1598-1602. doi: 10.7498/aps.56.1598
Metrics
  • Abstract views:  4079
  • PDF Downloads:  55
  • Cited By: 0
Publishing process
  • Received Date:  16 March 2022
  • Accepted Date:  05 May 2022
  • Available Online:  25 August 2022
  • Published Online:  05 September 2022

/

返回文章
返回