Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Temperature-dependent properties of metastable graphene oxide

Mo Jia-Wei Qiu Yin-Wei Yi Ruo-Bing Wu Jun Wang Zhi-Kun Zhao Li-Hua

Citation:

Temperature-dependent properties of metastable graphene oxide

Mo Jia-Wei, Qiu Yin-Wei, Yi Ruo-Bing, Wu Jun, Wang Zhi-Kun, Zhao Li-Hua
cstr: 32037.14.aps.68.20190670
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Monolayer of graphene oxide has great potential applications in ion and molecular screening, desalination and purification of water, gas separation, biosensing, proton conductors, lithium batteries, super capacitors and other fields, due to its excellent physical and chemical properties. However, the graphene oxide prepared by chemical and physical methods, such as the commonly used Hummers method is a metastable material. The transformation and regulation of the physical and chemical properties of the final morphology are essential, and systematic research is urgently needed. In this paper, the thermostat treatment method is used to control the metastable transformation of graphene oxide. The relationship of content, type, and morphology with temperature of oxygen-containing graphene oxide are detected by X-ray photoelectron absorption spectroscopy, Fourier infrared absorption spectroscopy, scanning electron microscope, etc.; and the effects of temperature on the stability of solution suspension stability, photon energy band and tensile strength of graphene oxide in the transformation process are analyzed by using Zeta potential, ultraviolet absorption spectrum, tensile force. The quantitative test results show that there exists a phenomenon in which the epoxy phase decreases, the hydroxyl group increases and the overall oxygen content decreases in the metastable transition process of graphene oxide, and the monolayer morphology of graphene oxide does not change significantly in this process. This structural transformation, however, greatly enhances the viscosity and hydrophilicity of the suspension, and remarkably reduces the energy band and considerably raises the tensile strength enhancement effect. When the transformation process is long enough, the hydrophilicity of the graphene oxide will decrease and precipitate. It is indicated that a further dehydration transition occurs between the hydroxyl groups. In addition, in the paper we also analyze the effect of constant temperature treatment time and concentration of suspension on this transformation process. The relevant research results are helpful in understanding the performance change of metastable graphene oxide suspension with temperature, and have certain reference value for the specific application of graphene oxide.
      Corresponding author: Zhao Li-Hua, lhzhao8160@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. U1832150) and the National College Students Innovation and Entrepreneurship Training Program of China (Grant No. 110-2013200055).
    [1]

    McAllister M J, Li J L, Adamson D H, Schniepp H C, Abdala A A, Liu J, Herrera-Alonso M, Milius D L, Car R, Prud'homme R K, Aksay I A 2007 Chem. Mater. 19 4396Google Scholar

    [2]

    刘学文, 朱重阳, 董辉, 徐峰, 孙立涛 2016 物理学报 65 118802Google Scholar

    Liu X W, Zhu C Y, Dong H, Xu F, Sun L T 2016 Acta Phys. Sin. 65 118802Google Scholar

    [3]

    林文强, 徐斌, 陈亮, 周峰, 陈均朗 2016 物理学报 65 133102Google Scholar

    Lin W Q, Xu B, Chen L, Zhou F, Chen J L 2016 Acta Phys. Sin. 65 133102Google Scholar

    [4]

    Li J, Lu C H, Yao Q H, Zhang X L, Liu J J, Yang H H, Chen G N 2011 Biosens. Bioelectron. 26 3894Google Scholar

    [5]

    Mattevi C, Eda G, Agnoli S, Miller S, Mkhoyan K A, Celik O, Mastrogiovanni D, Granozzi G, Garfunkel E, Chhowalla M 2009 Adv. Funct. Mater. 19 2577Google Scholar

    [6]

    Peper S, Telting-Diaz M, Almond P, Albrecht-Schmitt T, Bakker E 2002 Anal. Chem. 74 1327Google Scholar

    [7]

    Liu G, Jin W, Xu N 2016 Angew. Chem. Int. Ed. 55 13384Google Scholar

    [8]

    Joshi R K, Carbone P, Wang F C, Kravets V G, Su Y, Grigorieva I V, Wu H A, Geim A K, Nair R R 2014 Science 343 752Google Scholar

    [9]

    Chen L, Shi G, Shen J, Peng B, Zhang B, Wang Y, Bian F, Wang J, Li D, Qian Z, Xu G, Liu G, Zeng J, Zhang L, Yang Y, Zhou G, Wu M, Jin W, Li J, Fang H 2017 Nature 550 380Google Scholar

    [10]

    Pei S, Cheng H M 2012 Carbon 50 3210Google Scholar

    [11]

    Yang J, Shi G, Tu Y, Fang H 2014 Angew. Chem. Int. Ed. 53 10190Google Scholar

    [12]

    Kim S, Zhou S, Hu Y, Acik M, Chabal Y J, Berger C, de Heer W, Bongiorno A, Riedo E 2012 Nat. Mater. 11 544Google Scholar

    [13]

    Qian Z, Chen L, Li D Y, Peng B Q, Shi G S, Xu G, Fang H P, Wu M H 2017 Chin. Phys. B 2 6

    [14]

    Eigler S, Hirsch A 2014 Angew. Chem. Int. Ed. 53 7720Google Scholar

    [15]

    陈浩, 彭同江, 刘波, 孙红娟, 雷德会 2017 物理学报 66 080701Google Scholar

    Chen H, Peng T J, Liu B, Sun H J, Lei D H 2017 Acta Phys. Sin. 66 080701Google Scholar

    [16]

    Chen D, Feng H, Li J 2012 Chem. Rev. 112 6027Google Scholar

    [17]

    Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S T, Ruoff R S 2007 Carbon 45 1558Google Scholar

    [18]

    Neklyudov V V, Khafizov N R, Sedov I A, Dimiev A M 2017 Phys. Chem. Chem. Phys. 19 17000Google Scholar

    [19]

    Shulga Y M, Martynenko V M, Muradyan V E, Baskakov S A, Smirnov V A, Gutsev G L 2010 Chem. Phys. Lett. 498 287Google Scholar

    [20]

    Li J, Xiao G, Chen C, Li R, Yan D 2013 J. Mater. Chem. A 1 1481Google Scholar

    [21]

    Serpone N, Lawless D, Khairutdinov R 1995 J. Phys. Chem. 99 16646Google Scholar

  • 图 1  氧化石墨烯悬浮液在不同温度热处理后的状态和基团变化 (a)不同温度处理后的溶液状态; (b) XPS检测的C, O元素的原子数含量百分比; (c) C 1s精细谱及分峰拟合; (d)各基团的原子数含量百分比

    Figure 1.  State and changing of group of the graphene oxide suspension after heat treatment at different temperatures: (a) Solution state after different temperature treatment; (b) percentage of atomic content of C and O elements detected by XPS; (c) C 1s XPS spectra and peak fitting; (d) percentage of atomic content of each group.

    图 2  不同温度热处理后的形貌、红外光谱以及悬浮稳定性表征 (a) SEM图像, 三种温度处理后的氧化石墨烯单片层形貌; (b)多个平行样的红外吸收光谱; (c)三种温度处理后的氧化石墨烯悬浮液的Zeta电位

    Figure 2.  Morphology, FT-IR spectra and suspension stability characterization after heat treatment at different temperatures: (a) SEM images, namely, the morphology of monolayer of graphene oxide after three temperature treatments; (b) FT-IR spectra of multiple parallel samples; (c) Zeta potential basic of graphene oxide after three temperature treatments.

    图 3  化石墨烯在不同温度热处理后的性能变化 (a)紫外吸收光谱; (b)光子带隙; (c)应力-应变曲线, 虚线部分表示断裂位置; (d)拉伸强度

    Figure 3.  Performance change of graphene oxide after heat treatment at different temperatures: (a) UV-vis spectra; (b) photonic band; (c) stress-strain curve; (d) tensile strength.

    图 4  氧化石墨烯悬浮液在70 ℃热处理不同时间的性能变化 (a)不同时间(1, 3, 5, 10, 15 d)热处理的氧化石墨烯悬浮液, 分别滴涂制备的充分干燥的氧化石墨烯膜; (b)紫外吸收光谱; (c)光子带隙

    Figure 4.  Performance change of graphene oxide at 70 ℃ heat treatment for different time: (a) Dried graphene oxide film separately prepared by drop coating after graphene oxide heat treatment for different time (1, 3, 5, 10, 15 d); (b) UV-vis spectra; (c) photonic band.

    图 5  不同浓度的氧化石墨烯在70 ℃热处理的性能差异 (a)热处理前; (b)热处理后的氧化石墨烯悬浮液对比; (c)紫外吸收光谱; (d)光子带隙

    Figure 5.  Performance change of graphene oxide at 70 ℃ heat treatment for different concentrations: The image of graphene oxide suspension (a) before and (b) after heat treatment; (c) UV-vis spectra; (d) photonic band gap.

  • [1]

    McAllister M J, Li J L, Adamson D H, Schniepp H C, Abdala A A, Liu J, Herrera-Alonso M, Milius D L, Car R, Prud'homme R K, Aksay I A 2007 Chem. Mater. 19 4396Google Scholar

    [2]

    刘学文, 朱重阳, 董辉, 徐峰, 孙立涛 2016 物理学报 65 118802Google Scholar

    Liu X W, Zhu C Y, Dong H, Xu F, Sun L T 2016 Acta Phys. Sin. 65 118802Google Scholar

    [3]

    林文强, 徐斌, 陈亮, 周峰, 陈均朗 2016 物理学报 65 133102Google Scholar

    Lin W Q, Xu B, Chen L, Zhou F, Chen J L 2016 Acta Phys. Sin. 65 133102Google Scholar

    [4]

    Li J, Lu C H, Yao Q H, Zhang X L, Liu J J, Yang H H, Chen G N 2011 Biosens. Bioelectron. 26 3894Google Scholar

    [5]

    Mattevi C, Eda G, Agnoli S, Miller S, Mkhoyan K A, Celik O, Mastrogiovanni D, Granozzi G, Garfunkel E, Chhowalla M 2009 Adv. Funct. Mater. 19 2577Google Scholar

    [6]

    Peper S, Telting-Diaz M, Almond P, Albrecht-Schmitt T, Bakker E 2002 Anal. Chem. 74 1327Google Scholar

    [7]

    Liu G, Jin W, Xu N 2016 Angew. Chem. Int. Ed. 55 13384Google Scholar

    [8]

    Joshi R K, Carbone P, Wang F C, Kravets V G, Su Y, Grigorieva I V, Wu H A, Geim A K, Nair R R 2014 Science 343 752Google Scholar

    [9]

    Chen L, Shi G, Shen J, Peng B, Zhang B, Wang Y, Bian F, Wang J, Li D, Qian Z, Xu G, Liu G, Zeng J, Zhang L, Yang Y, Zhou G, Wu M, Jin W, Li J, Fang H 2017 Nature 550 380Google Scholar

    [10]

    Pei S, Cheng H M 2012 Carbon 50 3210Google Scholar

    [11]

    Yang J, Shi G, Tu Y, Fang H 2014 Angew. Chem. Int. Ed. 53 10190Google Scholar

    [12]

    Kim S, Zhou S, Hu Y, Acik M, Chabal Y J, Berger C, de Heer W, Bongiorno A, Riedo E 2012 Nat. Mater. 11 544Google Scholar

    [13]

    Qian Z, Chen L, Li D Y, Peng B Q, Shi G S, Xu G, Fang H P, Wu M H 2017 Chin. Phys. B 2 6

    [14]

    Eigler S, Hirsch A 2014 Angew. Chem. Int. Ed. 53 7720Google Scholar

    [15]

    陈浩, 彭同江, 刘波, 孙红娟, 雷德会 2017 物理学报 66 080701Google Scholar

    Chen H, Peng T J, Liu B, Sun H J, Lei D H 2017 Acta Phys. Sin. 66 080701Google Scholar

    [16]

    Chen D, Feng H, Li J 2012 Chem. Rev. 112 6027Google Scholar

    [17]

    Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S T, Ruoff R S 2007 Carbon 45 1558Google Scholar

    [18]

    Neklyudov V V, Khafizov N R, Sedov I A, Dimiev A M 2017 Phys. Chem. Chem. Phys. 19 17000Google Scholar

    [19]

    Shulga Y M, Martynenko V M, Muradyan V E, Baskakov S A, Smirnov V A, Gutsev G L 2010 Chem. Phys. Lett. 498 287Google Scholar

    [20]

    Li J, Xiao G, Chen C, Li R, Yan D 2013 J. Mater. Chem. A 1 1481Google Scholar

    [21]

    Serpone N, Lawless D, Khairutdinov R 1995 J. Phys. Chem. 99 16646Google Scholar

Metrics
  • Abstract views:  12175
  • PDF Downloads:  104
  • Cited By: 0
Publishing process
  • Received Date:  05 May 2019
  • Accepted Date:  26 May 2019
  • Available Online:  01 August 2019
  • Published Online:  05 August 2019
  • /

    返回文章
    返回