Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High-power wideband radio-frequency intensity modulated continuous wave laser

Cheng Li-Jun Yang Su-Hui Zhao Chang-Ming Zhang Hai-Yang

Citation:

High-power wideband radio-frequency intensity modulated continuous wave laser

Cheng Li-Jun, Yang Su-Hui, Zhao Chang-Ming, Zhang Hai-Yang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A high-power wideband radio-frequency (RF) intensity modulated continuous wave light source is demonstrated. The high-power dual-frequency light source is obtained via a dual-frequency laser signal seeding fiber power amplifier. A diode laser pumped dual-frequency laser is built as the seed and a diode laser pumped three-stage Yb3 + doped large mode area fiber power amplifier is used to enhance the output power to 50 W. In the dual-frequency seed laser, a coupled cavity composed of the Nd:YAG gain crystal and output coupler is used as the mode selector and enforces single longitude mode to oscillate. Two quarter wave plates are inserted in the laser cavity to lift the frequency degeneration of the two orthogonally polarized modes. By changing the angle between the fast axes of the two quarter wave plates, the frequency difference between the two orthogonally polarized modes can be tuned from 30 MHz to 1.5 GHz. The standard difference of beat frequency is 1.6144 MHz and stability is 1.52% when a frequency difference of output dual-frequency laser is 250 MHz. This stable dual-frequency seed signal is amplified via a diode pumped Yb3 +-doped fiber power amplifier. In order to suppress amplified spontaneous emission and other nonlinear effects, a three-stage fiber amplification system is used. The first stage is a diode pumped fiber (5 m, 6/125 m, NA = 0.13) power amplifier. The pump power is fixed at 600 mW. The input dual frequency signal is 3.2 mW, and it is amplified to several hundred mW by the first fiber power amplifier. The second fiber amplifier is a diode laser pumped fiber (5 m, 10/125 m, NA = 0.075/0.46) amplifier. The pump power is fixed at 10 W, and the dual frequency signal is amplified to sub watts after the second fiber amplifier. A 5 m large mode area fiber (25/250 m, NA=0.065/0.46) is used in the final amplification. A maximum amplified power of 50.2 W is obtained when the pump power is 70 W in the experiment. The signal-to-noise ratio of the beat note increases from 25 dB to 40 dB via amplification. The output power fluctuation of the amplified signal at 50 W is smaller than 0.1 W during 30 min. The RF frequency stability is well maintained during the amplification, and the beat-note frequency instability is 1.777 MHz. This high-power dual-frequency light source with wide beat note frequency bandwidth has potential applications in dual-frequency coherent lidar system for long distance ranging and imaging or underwater detections after the frequency has been doubled to 532 nm.
      Corresponding author: Yang Su-Hui, suhuiyang@bit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61275053, 61741502).
    [1]

    He Y, Wu J 1998 Laser Optoelectr. Prog. 35 29 (in Chinese) [何毅, 吴健 1998 激光与光电子学进展 35 29]

    [2]

    Li Z G, Sun Z Z, Zhao Z L, Zhu X P 2016 Laser Infrared 46 1467 (in Chinese) [李志刚, 孙泽中, 赵增亮, 竹孝鹏 2016 激光与红外 46 1467]

    [3]

    Zheng Z, Zhao C, Zhang H, Yang S, Zhang D, Yang H, Liu J 2016 Opt. Laser Tech. 80 169

    [4]

    Wang S, Yang S H, Wu X, Zhu Q H 2010 Chin. Phys. Lett. 27 084202

    [5]

    Pellen F, Jezequel V, Zion G, Jeune B L 2012 Appl. Opt. 51 7690

    [6]

    Brunel M, Amon A, Vallet M 2005 Opt. Lett. 30 2418

    [7]

    Maxin J, Molin S, Pillet G, Morvan L 2011 IEEE Photon. Conference 58 479

    [8]

    Xing J H, Jiao M X 2015 Acta Photon. Sin. 44 0214003 (in Chinese) [邢俊红, 焦明星 2015 光子学报 44 0214003]

    [9]

    Hu M, Zhang F, Zhang X, Zheng Y Y, Sun X, Xu Y X, Xu W Z, Ge J H, Xiang Z 2014 Acta Opt. Sin. 34 1114003 (in Chinese) [胡淼, 张飞, 张翔, 郑尧元, 孙骁, 徐亚希, 许伟忠, 葛剑虹, 项震 2014 光学学报 34 1114003]

    [10]

    He T, Yang S, Zhao C, Zhang H, Liang Y, Kang Y 2015 Laser Phys. Lett. 12 035101

    [11]

    Du W B, Leng J Y, Zhu J J, Zhou P, Xu X J, Shu B H 2012 Acta Phys. Sin. 61 114203 (in Chinese) [杜文博, 冷进勇, 朱家健, 周朴, 许晓军, 舒柏宏 2012 物理学报 61 114203]

    [12]

    Huang L, Li L, Ma P, Wang X, Zhou P 2016 Opt. Express 24 26722

    [13]

    Li J, Yang S, Zhao C, Zhang H, Xie W 2011 Appl. Opt. 50 1329

    [14]

    Keller U, Knox W H, Roskos H 1990 Opt. Lett. 15 1377

    [15]

    Draegert D 1971 IEEE J. Quantum Elect. 7 300

    [16]

    Tang C L, Statz H, Demars G 1963 J. Appl. Phys. 34 2289

    [17]

    Cheng L J, Yang S H, Zhao C M, Zhang H Y 2017 Acta Opt. Sin. 37 0714002 (in Chinese) [程丽君, 杨苏辉, 赵长明, 张海洋 2017 光学学报 37 0714002]

    [18]

    Wiesenfeld K, Bracikowski C, James G, Roy R 1990 Phys. Rev. Lett. 65 1749

    [19]

    Park J D, Mckay A M, Dawes J M 2009 Opt. Express 17 6053

    [20]

    Leng J Y, Wu W M, Chen S P, Hou J, Xu X J 2011 Acta Opt. Sin. 31 0606007 (in Chinese) [冷进勇, 吴武明, 陈胜平, 侯静, 许晓军 2011 光学学报 31 0606007]

  • [1]

    He Y, Wu J 1998 Laser Optoelectr. Prog. 35 29 (in Chinese) [何毅, 吴健 1998 激光与光电子学进展 35 29]

    [2]

    Li Z G, Sun Z Z, Zhao Z L, Zhu X P 2016 Laser Infrared 46 1467 (in Chinese) [李志刚, 孙泽中, 赵增亮, 竹孝鹏 2016 激光与红外 46 1467]

    [3]

    Zheng Z, Zhao C, Zhang H, Yang S, Zhang D, Yang H, Liu J 2016 Opt. Laser Tech. 80 169

    [4]

    Wang S, Yang S H, Wu X, Zhu Q H 2010 Chin. Phys. Lett. 27 084202

    [5]

    Pellen F, Jezequel V, Zion G, Jeune B L 2012 Appl. Opt. 51 7690

    [6]

    Brunel M, Amon A, Vallet M 2005 Opt. Lett. 30 2418

    [7]

    Maxin J, Molin S, Pillet G, Morvan L 2011 IEEE Photon. Conference 58 479

    [8]

    Xing J H, Jiao M X 2015 Acta Photon. Sin. 44 0214003 (in Chinese) [邢俊红, 焦明星 2015 光子学报 44 0214003]

    [9]

    Hu M, Zhang F, Zhang X, Zheng Y Y, Sun X, Xu Y X, Xu W Z, Ge J H, Xiang Z 2014 Acta Opt. Sin. 34 1114003 (in Chinese) [胡淼, 张飞, 张翔, 郑尧元, 孙骁, 徐亚希, 许伟忠, 葛剑虹, 项震 2014 光学学报 34 1114003]

    [10]

    He T, Yang S, Zhao C, Zhang H, Liang Y, Kang Y 2015 Laser Phys. Lett. 12 035101

    [11]

    Du W B, Leng J Y, Zhu J J, Zhou P, Xu X J, Shu B H 2012 Acta Phys. Sin. 61 114203 (in Chinese) [杜文博, 冷进勇, 朱家健, 周朴, 许晓军, 舒柏宏 2012 物理学报 61 114203]

    [12]

    Huang L, Li L, Ma P, Wang X, Zhou P 2016 Opt. Express 24 26722

    [13]

    Li J, Yang S, Zhao C, Zhang H, Xie W 2011 Appl. Opt. 50 1329

    [14]

    Keller U, Knox W H, Roskos H 1990 Opt. Lett. 15 1377

    [15]

    Draegert D 1971 IEEE J. Quantum Elect. 7 300

    [16]

    Tang C L, Statz H, Demars G 1963 J. Appl. Phys. 34 2289

    [17]

    Cheng L J, Yang S H, Zhao C M, Zhang H Y 2017 Acta Opt. Sin. 37 0714002 (in Chinese) [程丽君, 杨苏辉, 赵长明, 张海洋 2017 光学学报 37 0714002]

    [18]

    Wiesenfeld K, Bracikowski C, James G, Roy R 1990 Phys. Rev. Lett. 65 1749

    [19]

    Park J D, Mckay A M, Dawes J M 2009 Opt. Express 17 6053

    [20]

    Leng J Y, Wu W M, Chen S P, Hou J, Xu X J 2011 Acta Opt. Sin. 31 0606007 (in Chinese) [冷进勇, 吴武明, 陈胜平, 侯静, 许晓军 2011 光学学报 31 0606007]

  • [1] Zhao Wei, Fu Shi-Jie, Sheng Quan, Xue Kai, Shi Wei, Yao Jian-Quan. Suppression effect of auxiliary laser on stimulated Raman scattering effect of high-power Yb-doped fiber laser amplifier. Acta Physica Sinica, 2024, 73(20): 204201. doi: 10.7498/aps.73.20240895
    [2] Xi Xiao-Ming, Yang Bao-Lai, Wang Peng, Zhang Han-Wei, Wang Xiao-Lin, Han Kai, Wang Ze-Feng, Xu Xiao-Jun, Chen Jin-Bao. Over 10-kW fiber laser spectral beam combination based on dichromatic mirrors. Acta Physica Sinica, 2023, 72(18): 184203. doi: 10.7498/aps.72.20230657
    [3] Tao Meng-Meng, Wang Ya-Min, Wu Hao-Long, Li Guo-Hua, Wang Sheng, Tao Bo, Ye Jing-Feng, Feng Guo-Bin, Ye Xi-Sheng, Chen Wei-Biao. Hyperspectral absorption of water around 2 μm based on a boradband tunable, narrow linewidth Tm-doped fiber laser. Acta Physica Sinica, 2022, 71(11): 114203. doi: 10.7498/aps.71.20212127
    [4] Zhang Ji-Ye, Zhang Jian-Wei, Zeng Yu-Gang, Zhang Jun, Ning Yong-Qiang, Zhang Xing, Qin Li, Liu Yun, Wang Li-Jun. Design of gain region of high-power vertical external cavity surface emitting semiconductor laser and its fabrication. Acta Physica Sinica, 2020, 69(5): 054204. doi: 10.7498/aps.69.20191787
    [5] Sun Rui, Chen Chen, Ling Wei-Jun, Zhang Ya-Ni, Kang Cui-Ping, Xu Qiang. Watt-level passively Q-switched mode-locked Tm: LuAG laser with graphene oxide saturable absorber. Acta Physica Sinica, 2019, 68(10): 104207. doi: 10.7498/aps.68.20182224
    [6] Wang Ze-Hui, Xiao Qi-Rong, Wang Xue-Jiao, Yi Yong-Qing, Pang Lu, Pan Rong, Huang Yu-Sheng, Tian Jia-Ding, Li Dan, Yan Ping, Gong Ma-Li. 3000 W tandem pumped all-fiber laser based on domestic fiber. Acta Physica Sinica, 2018, 67(2): 024205. doi: 10.7498/aps.67.20171676
    [7] Xiong Meng-Jie, Li Jin-Yan, Luo Xing, Shen Xiang, Peng Jing-Gang, Li Hai-Qing. Experimental and numerical study of tuneable supercontinuum generation in new kind of highly birefringent photonic crystal fiber. Acta Physica Sinica, 2017, 66(9): 094204. doi: 10.7498/aps.66.094204
    [8] Zhang Li-Meng, Hu Ming-Lie, Gu Cheng-Lin, Fan Jin-Tao, Wang Qing-Yue. High power red to mid-infrared laser source from intracavity sum frequency optical parametric oscillator pumped by femtosecond fiber laser. Acta Physica Sinica, 2014, 63(5): 054205. doi: 10.7498/aps.63.054205
    [9] Zheng Di, Pan Wei, Yan Lian-Shan, Luo Bin, Zou Xi-Hua, Liu Xin-Kai, Yi An-Lin. Widely tunable frequency-doubling microwaves generated using Brillouin-assisted carrier phase shift. Acta Physica Sinica, 2014, 63(15): 154214. doi: 10.7498/aps.63.154214
    [10] Yuan Zhong-Cai, Shi Jia-Ming. Theoretical and numerical studies on interactions between high-power microwave and plasma. Acta Physica Sinica, 2014, 63(9): 095202. doi: 10.7498/aps.63.095202
    [11] Jiang Man, Xiao Hu, Zhou Pu, Wang Xiao-Lin, Liu Ze-Jin. High power and low quantum-defect Yb-doped fiber amplifier based on tandem pumping. Acta Physica Sinica, 2013, 62(4): 044210. doi: 10.7498/aps.62.044210
    [12] Dong Xiao-Lin, Xiao Hu, Ma Yan-Xing, Zhou Pu, Guo Shao-Feng. High power polarization-maintaining master oscillator power amplifier fiber laser in all-fiber format. Acta Physica Sinica, 2012, 61(6): 064207. doi: 10.7498/aps.61.064207
    [13] Wu Yang, Xu Zhou, Xu Yong, Jin Xiao, Chang An-Bi, Li Zheng-Hong, Huang Hua, Liu Zhong, Luo Xiong, Ma Qiao-Sheng, Tang Chuan-Xiang. Experimental study on a high power microwave amplifier driven by low rf power. Acta Physica Sinica, 2011, 60(4): 044102. doi: 10.7498/aps.60.044102
    [14] Hao Yong-Qin, Feng Yuan, Wang Fei, Yan Chang-Ling, Zhao Ying-Jie, Wang Xiao-Hua, Wang Yu-Xia, Jiang Hui-Lin, Gao Xin, Bo Bao-Xue. 808nm vertical-cavity surface-emitting laser with large aperture. Acta Physica Sinica, 2011, 60(6): 064201. doi: 10.7498/aps.60.064201
    [15] Xie Shi-Yong, Lu Yuan-Fu, Bo Yong, Cui Qian-Jin, Xu Yi-Ting, Xu Jia-Lin, Peng Qin-Jun, Cui Da-Fu, Xu Zu-Yan. High power tunable single-frequency 1064 nm quasi-continuous-wave laser oscillator-amplifier system. Acta Physica Sinica, 2009, 58(7): 4659-4663. doi: 10.7498/aps.58.4659
    [16] Liu Tao, Gu Wan-Yi, Shi Pei-Ming, Yu Song, Zhang Hua. Broadband tunable pulses in quasi-phase-matched crystal based optical parametric amplification. Acta Physica Sinica, 2009, 58(4): 2482-2487. doi: 10.7498/aps.58.2482
    [17] Zhao Zhen-Yu, Duan Kai-Liang, Wang Jian-Ming, Zhao Wei, Wang Yi-Shan. Experimental study of characteristics of high power photonic crystal fiber amplifier. Acta Physica Sinica, 2008, 57(10): 6335-6339. doi: 10.7498/aps.57.6335
    [18] Xu Fan, Zhang Xin-Liang, Liu De-Ming, Huang De-Xiu. Tunable ultra-short optical pulse source based on reflective semiconductor fiber ring laser. Acta Physica Sinica, 2006, 55(1): 211-216. doi: 10.7498/aps.55.211
    [19] Li Hui-Qing, Zhang Jie, Cui Da-Fu, Xu Zu-Yan, Ning Yong-Qiang, Yan Chang-Ling, Qin Li, Liu Yun, Wang Li-Jun, Cao Jian-Lin. Optimal designs for high-power vertical cavity surface emitting lasers. Acta Physica Sinica, 2004, 53(9): 2986-2990. doi: 10.7498/aps.53.2986
    [20] Fang Jin-Yong, Ning Hui, Zhang Shi-Long, Qiao Deng-Jiang. Production of beat waves using S-band klystron amplifier. Acta Physica Sinica, 2003, 52(4): 911-913. doi: 10.7498/aps.52.911
Metrics
  • Abstract views:  7207
  • PDF Downloads:  159
  • Cited By: 0
Publishing process
  • Received Date:  11 September 2017
  • Accepted Date:  11 October 2017
  • Published Online:  05 February 2018

/

返回文章
返回