Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design of gain region of high-power vertical external cavity surface emitting semiconductor laser and its fabrication

Zhang Ji-Ye Zhang Jian-Wei Zeng Yu-Gang Zhang Jun Ning Yong-Qiang Zhang Xing Qin Li Liu Yun Wang Li-Jun

Citation:

Design of gain region of high-power vertical external cavity surface emitting semiconductor laser and its fabrication

Zhang Ji-Ye, Zhang Jian-Wei, Zeng Yu-Gang, Zhang Jun, Ning Yong-Qiang, Zhang Xing, Qin Li, Liu Yun, Wang Li-Jun
PDF
HTML
Get Citation
  • The vertical external cavity surface emitting laser (VECSEL) is one of the hottest research fields of semiconductor lasers, due to its high power and good beam quality. However, there are few reports about how to systematically design the active region of VECSEL. In this paper, the gain design of quantum wells, which are the most important region within the VECSEL, is carried out. To achieve low power consumption under high temperature condition, epitaxial structure of the VECSEL is optimized by using the commercial software PICS3D. Firstly, the relationship between the structure of quantum well and the gain is simulated by the k·p method. Then, the gain spectra of quantum wells at different carrier densities and temperatures are compared with each other, and the optimal composition and thickness of quantum well are thus determined. The temperature drift coefficient is 0.36 nm/K, obtained by simulating the drift of the gain peak wavelength at the working temperature. Finally, the gain spectra of quantum wells with five different barriers are compared with each other. The slight blue shift of the gain peak in the quantum well with five different barriers accommodates the different emission thermal drifts of the quantum well at high temperature operation. With the GaAsP barriers on both sides of quantum well the gain characteristics of quantum wells can be improved efficiently. The designed structure is deposited by the MOCVD system. According to the reflection spectrum of the gain chip, measured by ellipsometer, the stop-band over 100 nm is centered at the about 970 nm wavelength, confirming accurate growth of the VECSEL. The 808 nm pump laser is focused on the surface of VECSEL chip at an incident angle from 30° to 50°. The VECSEL light-light characteristics are tested under the output coupling mirror with different reflectivity. The output power of VECSEL with a 97.7% reflectance output coupling mirror reaches 9.82 W at the pumping power of 35 W, without saturating the power curve. By using the external mirrors with different reflectivity, there appears the wavelength shift with the pumping power changing from 0.216 nm/W to 0.16 nm/W. Thus, the internal heating effects are different for VECSEL with different mirrors. The divergence angles at two orthogonal directions are 9.2° and 9.0°, respectively. And the circle profile of optical field shows good symmetry.
      Corresponding author: Zhang Jian-Wei, zjw1985@ciomp.ac.cn
    [1]

    王立军, 宁永强, 秦莉, 佟存柱, 陈泳屹 2015 发光学报 36 1Google Scholar

    Wang L J, Ning Y Q, Qin L, Tong C Z, Chen Y Y 2015 Chin. J. Lumin. 36 1Google Scholar

    [2]

    Hall R N, Fenner G E, Kingsley J D, Soltys T J, CarlsonR O 1962 Phys. Rev. Lett. 9 366Google Scholar

    [3]

    Soda H, Iga K, Kitahara C, Suematsu Y 1979 Jpn. J. Appl. Phys. 18 2329Google Scholar

    [4]

    Tian Z N, Wang L J, Chen Q D, Jiang T, Qin L, Wang LJ, Sun H B 2013 Opt. Lett. 38 5414Google Scholar

    [5]

    崔锦江, 宁永强, 姜琛昱, 王帆, 高静, 张星, 王贞福, 武晓东, 檀慧明 2011 中国激光 38 0102002Google Scholar

    Cui J J, Ning Y Q, Jiang C Y, Wang F, Gao J, Zhang X, Wang Z F, Wu X D, Tan X H 2011 Chin. J. Lasers 38 0102002Google Scholar

    [6]

    Kuznetsov M, Hakimi F, Sprague R, Mooradian A 1997 IEEE J. Sel. Top. Quantum Electron. 9 1063Google Scholar

    [7]

    Hein A, Demaria F, Kern A, Menzel S, Rinaldi F, Rösch R, Unger P 2011 IEEE Photonics Technol. Lett. 23 179Google Scholar

    [8]

    Zhang P, Jiang M H, Men Y B, Zhu R J, Liang Y P, Zhang Y 2015 Opt. Quantum Electron. 47 423Google Scholar

    [9]

    Tilma B W, Mangold M, Zaugg C A, Link S M, Waldburger D, Klenner A, Mayer A S, Gini E, Golling M, Keller U 2015 Light Sci. Appl. 4 e310Google Scholar

    [10]

    Tropper A C, Hoogland S 2006 Prog. Quantum Electron. 30 1Google Scholar

    [11]

    Rahimi-Iman A 2016 J. Opt. 18 093003Google Scholar

    [12]

    Yoo J, Kim K, Lee S, Lim S, Kim G, Kim J, Cho S, Lee J, Kim T, Park Y 2006 Appl. Phys. Lett. 89 131125Google Scholar

    [13]

    Rudin B, Rutz A, Hoffmann M, Maas D J H C, Bellancourt A R, Gini E, Südmeyer T, Keller U 2008 Opt. Lett. 33 2719Google Scholar

    [14]

    Mereuta A, Nechay K, Caliman A, Suruceanu G, Rudra A, Gallo P, Guina M, Kapon E 2019 IEEE J. Sel. Top. Quantum Electron. 25 1700605Google Scholar

    [15]

    Broda A, Kuz′micz A, Rychlik G, Chmielewski K, Wójcik-Jedlin′ska A, Sankowska I, Gołaszewska-Malec K, Michalak K, Muszalski J 2017 Opti. Quantum Electron. 49 287Google Scholar

    [16]

    Guoyu H, Kriso C, Zhang F, Wichmann M, Stolz W, Fedorova K A, Rahimi-Iman A 2019 Opt. Lett. 44 4000Google Scholar

    [17]

    邱小浪, 陈雪花, 朱仁江, 张鹏, 郭于鹤洋, 宋晏蓉 2019 中国激光 46 14Google Scholar

    Qiu X L, Chen X H, Zhu R J, Zhang P, Guo Y H Y, Song Y R 2019 Chin. J. Lasers 46 14Google Scholar

    [18]

    邱小浪, 王爽爽, 张晓健, 朱仁江, 张鹏, 郭于鹤洋, 宋晏蓉 2019 物理学报 68 114204Google Scholar

    Qiu X L, Wang X X, Zhang X J, Zhu R J, Zhang P, Guo Y H Y, Song Y R 2019 Acta Phys. Sin. 68 114204Google Scholar

    [19]

    Kouznetsov D, Bisson J F, Ueda K 2009 Opt. Mater. 31 754Google Scholar

    [20]

    Chang C S, Chuang S L 1995 IEEE J. Sel. Top. Quantum Electron. 1 218Google Scholar

    [21]

    Corzine S W, Geels R S, Scott J W, Yan R H, Coldren L A 1989 IEEE J. Quantum Electron. 25 1513Google Scholar

    [22]

    Zhang J, Ning Y, Zeng Y, Zeng Y, Zhang J, Zhang J, Fu X, Tong C, Wang L 2013 Laser Phys. Lett. 10 045802Google Scholar

    [23]

    朱仁江, 潘英俊, 张鹏, 戴特力, 范嗣强, 梁一平 2014 红外与毫米波学报 33 272Google Scholar

    Zhu R J, Pan Y J, Zhang P, Tai T L, Fan S Q, Liang Y P 2014 J. Infrared Millim. Waves 33 272Google Scholar

    [24]

    Laurain A, Schelle M, Wang T L, Hader J, Moloney J V, Koch S W, Heinen B, Koch M, Kunert B, Stolz W 2012 High- Power Lasers 2012: Technology and Systems (Edinburgh: Society of Photo-Optical Instrumentation Engineers) p85470 I-1

  • 图 1  (a) VECSEL系统工作原理图; (b) 增益芯片内各层折射率及光场分布

    Figure 1.  (a) Schematic diagram of the VECSEL system; (b) distributions of the refractive index of each layer and the optical field within the gain chip.

    图 2  (a) 室温下InGaAs量子阱的发光波长为970, 975, 980 nm时, 量子阱中In组分与厚度的关系; (b) 增益峰值在980 nm InGaAs量子阱增益光谱对比; (c) 对应980 nm波长的InGaAs量子阱的价带结构(HH1, 第一重空穴; LH1, 第一轻空穴);

    Figure 2.  (a) Relationships between the In content and thickness of quantum wells when its emitting wavelength is 970, 975, 980 nm; (b) the gain spectra of different quantum wells with the same gain peak wavelength of 980 nm; (c) the valence subband structures of InGaAs QWs corresponding to a wavelength of 980 nm (HH1, the first heavy hole subband; LH1, the first light hole subband.).

    图 3  (a) InGaAs量子阱的峰值增益随载流子浓度的变化关系(增益谱峰值波长位于980 nm); (b) 不同InGaAs量子阱的材料增益随工作温度变化

    Figure 3.  (a) The change of gain peak with the carrier density within quantum wells when the gain peak wavelength is 980 nm; (b) the change of material gain with the operating temperature.

    图 4  (a) 5 nm厚度的InGaAs量子阱的增益光谱随工作温度的变化; (b) 增益峰值波长随工作温度的变化

    Figure 4.  (a) The gain spectra and (b) the gain peak wavelength of 5 nm InGaAs quantum well at different opera-ting temperatures.

    图 5  (a) 5种不同量子阱/势垒层结构的增益光谱对比; (b) 5种不同量子阱/势垒层结构的增益谱峰值随载流子浓度的变化关系

    Figure 5.  (a) The gain spectra of InGaAs quantum well with different barrier layers; (b) the gain peak changing with the carrier density for different structures.

    图 6  所制备的增益芯片对不同入射角度入射光的反射光谱

    Figure 6.  The measured reflection spectra of the gain chip when the optical incident angle is 0°, 40°, and 70°.

    图 7  外腔镜的反射率分别为96.3%, 97.7%, 99.1%时 (a) VECSEL系统的输出功率随着抽运功率的变化曲线, (b) 激光波长随着抽运功率的变化曲线

    Figure 7.  (a) The output power of VECSEL and (b) the lasing wavelength changing with the pump power, with the output mirror reflectivity of 99.1%, 97.7%, and 96.3%.

    图 8  VECSEL系统输出的激光光束在两个正交方向上的发散角, 插图为激光光斑二维彩图

    Figure 8.  The divergence angles of VECSEL along the orthogonal direction, inserted is the measured 2D optical spot pattern.

    表 1  模拟的5种发光区材料结构

    Table 1.  Simulated material structures of 5 kinds of luminous zone.

    1Al0.06Ga0.94As barrier/InGaAs QW/
    Al0.06Ga0.94As barrier
    2GaAs barrier/InGaAs QW/GaAs barrier
    3GaAsP barrier/InGaAs QW/GaAsP barrier
    4GaAsP/GaAs barrier/InGaAs QW/GaAs barrier/GaAsP
    5GaAs barrier/InGaAs QW/GaAsP barrier
    DownLoad: CSV
  • [1]

    王立军, 宁永强, 秦莉, 佟存柱, 陈泳屹 2015 发光学报 36 1Google Scholar

    Wang L J, Ning Y Q, Qin L, Tong C Z, Chen Y Y 2015 Chin. J. Lumin. 36 1Google Scholar

    [2]

    Hall R N, Fenner G E, Kingsley J D, Soltys T J, CarlsonR O 1962 Phys. Rev. Lett. 9 366Google Scholar

    [3]

    Soda H, Iga K, Kitahara C, Suematsu Y 1979 Jpn. J. Appl. Phys. 18 2329Google Scholar

    [4]

    Tian Z N, Wang L J, Chen Q D, Jiang T, Qin L, Wang LJ, Sun H B 2013 Opt. Lett. 38 5414Google Scholar

    [5]

    崔锦江, 宁永强, 姜琛昱, 王帆, 高静, 张星, 王贞福, 武晓东, 檀慧明 2011 中国激光 38 0102002Google Scholar

    Cui J J, Ning Y Q, Jiang C Y, Wang F, Gao J, Zhang X, Wang Z F, Wu X D, Tan X H 2011 Chin. J. Lasers 38 0102002Google Scholar

    [6]

    Kuznetsov M, Hakimi F, Sprague R, Mooradian A 1997 IEEE J. Sel. Top. Quantum Electron. 9 1063Google Scholar

    [7]

    Hein A, Demaria F, Kern A, Menzel S, Rinaldi F, Rösch R, Unger P 2011 IEEE Photonics Technol. Lett. 23 179Google Scholar

    [8]

    Zhang P, Jiang M H, Men Y B, Zhu R J, Liang Y P, Zhang Y 2015 Opt. Quantum Electron. 47 423Google Scholar

    [9]

    Tilma B W, Mangold M, Zaugg C A, Link S M, Waldburger D, Klenner A, Mayer A S, Gini E, Golling M, Keller U 2015 Light Sci. Appl. 4 e310Google Scholar

    [10]

    Tropper A C, Hoogland S 2006 Prog. Quantum Electron. 30 1Google Scholar

    [11]

    Rahimi-Iman A 2016 J. Opt. 18 093003Google Scholar

    [12]

    Yoo J, Kim K, Lee S, Lim S, Kim G, Kim J, Cho S, Lee J, Kim T, Park Y 2006 Appl. Phys. Lett. 89 131125Google Scholar

    [13]

    Rudin B, Rutz A, Hoffmann M, Maas D J H C, Bellancourt A R, Gini E, Südmeyer T, Keller U 2008 Opt. Lett. 33 2719Google Scholar

    [14]

    Mereuta A, Nechay K, Caliman A, Suruceanu G, Rudra A, Gallo P, Guina M, Kapon E 2019 IEEE J. Sel. Top. Quantum Electron. 25 1700605Google Scholar

    [15]

    Broda A, Kuz′micz A, Rychlik G, Chmielewski K, Wójcik-Jedlin′ska A, Sankowska I, Gołaszewska-Malec K, Michalak K, Muszalski J 2017 Opti. Quantum Electron. 49 287Google Scholar

    [16]

    Guoyu H, Kriso C, Zhang F, Wichmann M, Stolz W, Fedorova K A, Rahimi-Iman A 2019 Opt. Lett. 44 4000Google Scholar

    [17]

    邱小浪, 陈雪花, 朱仁江, 张鹏, 郭于鹤洋, 宋晏蓉 2019 中国激光 46 14Google Scholar

    Qiu X L, Chen X H, Zhu R J, Zhang P, Guo Y H Y, Song Y R 2019 Chin. J. Lasers 46 14Google Scholar

    [18]

    邱小浪, 王爽爽, 张晓健, 朱仁江, 张鹏, 郭于鹤洋, 宋晏蓉 2019 物理学报 68 114204Google Scholar

    Qiu X L, Wang X X, Zhang X J, Zhu R J, Zhang P, Guo Y H Y, Song Y R 2019 Acta Phys. Sin. 68 114204Google Scholar

    [19]

    Kouznetsov D, Bisson J F, Ueda K 2009 Opt. Mater. 31 754Google Scholar

    [20]

    Chang C S, Chuang S L 1995 IEEE J. Sel. Top. Quantum Electron. 1 218Google Scholar

    [21]

    Corzine S W, Geels R S, Scott J W, Yan R H, Coldren L A 1989 IEEE J. Quantum Electron. 25 1513Google Scholar

    [22]

    Zhang J, Ning Y, Zeng Y, Zeng Y, Zhang J, Zhang J, Fu X, Tong C, Wang L 2013 Laser Phys. Lett. 10 045802Google Scholar

    [23]

    朱仁江, 潘英俊, 张鹏, 戴特力, 范嗣强, 梁一平 2014 红外与毫米波学报 33 272Google Scholar

    Zhu R J, Pan Y J, Zhang P, Tai T L, Fan S Q, Liang Y P 2014 J. Infrared Millim. Waves 33 272Google Scholar

    [24]

    Laurain A, Schelle M, Wang T L, Hader J, Moloney J V, Koch S W, Heinen B, Koch M, Kunert B, Stolz W 2012 High- Power Lasers 2012: Technology and Systems (Edinburgh: Society of Photo-Optical Instrumentation Engineers) p85470 I-1

  • [1] Xi Xiao-Ming, Yang Bao-Lai, Wang Peng, Zhang Han-Wei, Wang Xiao-Lin, Han Kai, Wang Ze-Feng, Xu Xiao-Jun, Chen Jin-Bao. Over 10-kW fiber laser spectral beam combination based on dichromatic mirrors. Acta Physica Sinica, 2023, 72(18): 184203. doi: 10.7498/aps.72.20230657
    [2] Yu Hong-Yan, Yao Shun, Zhang Hong-Mei, Wang Qing, Zhang Yang, Zhou Guang-Zheng, Lü Zhao-Chen, Cheng Li-Wen, Lang Lu-Guang, Xia Yu, Zhou Tian-Bao, Kang Lian-Hong, Wang Zhi-Yong, Dong Guo-Liang. Design and fabrication of 940 nm vertical-cavity surface-emitting lasers. Acta Physica Sinica, 2019, 68(6): 064207. doi: 10.7498/aps.68.20181822
    [3] Sun Rui, Chen Chen, Ling Wei-Jun, Zhang Ya-Ni, Kang Cui-Ping, Xu Qiang. Watt-level passively Q-switched mode-locked Tm: LuAG laser with graphene oxide saturable absorber. Acta Physica Sinica, 2019, 68(10): 104207. doi: 10.7498/aps.68.20182224
    [4] Zhou Guang-Zheng, Yao Shun, Yu Hong-Yan, Lü Zhao-Chen, Wang Qing, Zhou Tian-Bao, Li Ying, Lan Tian, Xia Yu, Lang Lu-Guang, Cheng Li-Wen, Dong Guo-Liang, Kang Lian-Hong, Wang Zhi-Yong. Optimized design and epitaxy growth of high speed 850 nm vertical-cavity surface-emitting lasers. Acta Physica Sinica, 2018, 67(10): 104205. doi: 10.7498/aps.67.20172550
    [5] Wang Ze-Hui, Xiao Qi-Rong, Wang Xue-Jiao, Yi Yong-Qing, Pang Lu, Pan Rong, Huang Yu-Sheng, Tian Jia-Ding, Li Dan, Yan Ping, Gong Ma-Li. 3000 W tandem pumped all-fiber laser based on domestic fiber. Acta Physica Sinica, 2018, 67(2): 024205. doi: 10.7498/aps.67.20171676
    [6] Li Jian-Jun. Design of active region for GaAsP/AlGaAs tensile strain quantum well laser diodes near 800 nm wavelength. Acta Physica Sinica, 2018, 67(6): 067801. doi: 10.7498/aps.67.20171816
    [7] Cheng Li-Jun, Yang Su-Hui, Zhao Chang-Ming, Zhang Hai-Yang. High-power wideband radio-frequency intensity modulated continuous wave laser. Acta Physica Sinica, 2018, 67(3): 034203. doi: 10.7498/aps.67.20172017
    [8] Yuan Zhong-Cai, Shi Jia-Ming. Theoretical and numerical studies on interactions between high-power microwave and plasma. Acta Physica Sinica, 2014, 63(9): 095202. doi: 10.7498/aps.63.095202
    [9] Yang Shuang-Bo. Effect of temperature and external magnetic field on the structure of electronic state of the Si-uniformlly-doped GaAs quantum well. Acta Physica Sinica, 2014, 63(5): 057301. doi: 10.7498/aps.63.057301
    [10] Lei Xiao-Li, Wang Da-Wei, Liang Shi-Xiong, Wu Zhao-Xin. Wavefunction and Fourier coefficients of excitons in quantum wells: computation and application. Acta Physica Sinica, 2012, 61(5): 057803. doi: 10.7498/aps.61.057803
    [11] Li Li, Liu Hong-Xia, Yang Zhao-Nian. Threshold-voltage and hole-sheet-density model of quantum well Si/SiGe/Si p field effect transistor. Acta Physica Sinica, 2012, 61(16): 166101. doi: 10.7498/aps.61.166101
    [12] Su An, Gao Ying-Jun. Light propagation characteristics of one-dimensional photonic crystal with double-barrier quantum well. Acta Physica Sinica, 2012, 61(23): 234208. doi: 10.7498/aps.61.234208
    [13] Chen Ai-Xi, Chen Yuan, Deng Li, Kuang Yun-Feng. Spontaneously generated coherence induced transparency in an asymmetric semiconductor quantum well. Acta Physica Sinica, 2012, 61(21): 214204. doi: 10.7498/aps.61.214204
    [14] Hao Yong-Qin, Feng Yuan, Wang Fei, Yan Chang-Ling, Zhao Ying-Jie, Wang Xiao-Hua, Wang Yu-Xia, Jiang Hui-Lin, Gao Xin, Bo Bao-Xue. 808nm vertical-cavity surface-emitting laser with large aperture. Acta Physica Sinica, 2011, 60(6): 064201. doi: 10.7498/aps.60.064201
    [15] Li Long-Long, Xu Wen, Zeng Zhi. Formalism of the transfer matrix and its application to Ⅲ/Ⅴ semicondutor quantum well systems. Acta Physica Sinica, 2009, 58(13): 266-S271. doi: 10.7498/aps.58.266
    [16] Zhao Zhen-Yu, Duan Kai-Liang, Wang Jian-Ming, Zhao Wei, Wang Yi-Shan. Experimental study of characteristics of high power photonic crystal fiber amplifier. Acta Physica Sinica, 2008, 57(10): 6335-6339. doi: 10.7498/aps.57.6335
    [17] Wang Ke, Zheng Wan-Hua, Ren Gang, Du Xiao-Yu, Xing Ming-Xin, Chen Liang-Hui. Design and optimization of photonic crystal coupling layer for bi-color quantum well infrared photodetectors. Acta Physica Sinica, 2008, 57(3): 1730-1736. doi: 10.7498/aps.57.1730
    [18] Li Hui-Qing, Zhang Jie, Cui Da-Fu, Xu Zu-Yan, Ning Yong-Qiang, Yan Chang-Ling, Qin Li, Liu Yun, Wang Li-Jun, Cao Jian-Lin. Optimal designs for high-power vertical cavity surface emitting lasers. Acta Physica Sinica, 2004, 53(9): 2986-2990. doi: 10.7498/aps.53.2986
    [19] . Acta Physica Sinica, 2002, 51(2): 367-371. doi: 10.7498/aps.51.367
    [20] Chen Gui-Bin, Lu Wei, Liao Zhong-Lin, Li Zhi-Feng, Chai Wei-Ying, Shen Xue-Chu, Chen Chang-Ming, Zhu De-Zhang, Hu Jun, Li Ming-Qian. . Acta Physica Sinica, 2002, 51(3): 659-662. doi: 10.7498/aps.51.659
Metrics
  • Abstract views:  11203
  • PDF Downloads:  306
  • Cited By: 0
Publishing process
  • Received Date:  25 November 2019
  • Accepted Date:  31 December 2019
  • Published Online:  05 March 2020

/

返回文章
返回