-
In recent years, high power fiber laser has received great attention, leading to wide applications in numerous fields such as industry, biology and relevant research. Nevertheless, the output power of typical diode pumped fiber laser is limited by the thermal effect and brightness of pump source. Owing to the low quantum deficit, the tandem pumping employing ytterbium-doped fiber lasers (YDFLs) as the pumping source can effectively reduce the thermal issue and achieve high power output. With the much lower absorption coefficient at 1018 nm than at 976 nm, longer gain fiber is necessary in tandem pumped configuration to sufficiently absorb pump light, which in turn induces a more severe nonlinear effect such as the stimulated Raman scattering, bringing in more challenges in laser configuration design. In this paper, we demonstrate an all-fiber laser under master oscillator power amplifier configuration based on tandem pumping with domestic gain fiber produced by China Electronics Technology Group Corporation No. 46 Research Institute. The diameters of the core and inner cladding of the Yb3+ doped double cladding fiber are 25 m and 250 m, respectively. The modified chemical vapor deposition method with gas-solution co-doping method is adopted so that the fiber has a more uniform distribution of Yb ions, larger absorption cross section and higher absorption coefficient (0.41 dB/m@1018 nm). In the amplifier stage, a 40-m-long gain fiber is pumped by fourteen 1018 nm fiber lasers with a maximum total output power of 3511 W. A 67.8 W 1080 nm seed is amplified to 3079 W with a corresponding slope efficiency of 85.9%. The beam quality factor M2 is measured to be 2.14. In addition, no stimulated Raman scattering is found in output spectrum and the 3 dB band width of output laser is measured to be 1.4 nm. To the best of our knowledge, this marks the highest result ever reported for tandem pumping based on domestic gain fiber. Taking stimulated Raman scattering into account, the rate equations are built to calculate the properties and power evolution in the fiber amplifier. The numerical results are in good agreement with the experiment results. Besides, based on heat conduction equation, heat power density in the fiber core is analyzed, showing that the tandem pumping has great advantages in heat management and a huge potential to reach a higher power compared with the method of direct pumping. The theoretical and experimental results show that with ever-maturing fiber manufacturing technology, domestic fiber is capable of withstanding laser power as high as 3 kilowatts. Meanwhile, domestic fiber may achieve a higher output power by increasing the pump power, optimizing the gain fiber length and improving the cooling condition.
-
Keywords:
- fiber laser /
- tandem pumping /
- domestic fiber /
- high power
[1] Jeong Y, Sahu J K, Payne D N, Nilsson J 2004 Opt. Express 12 6088
[2] Fang Q, Shi W, Qin Y G, Meng X J, Zhang Q H 2014 Laser Phys. Lett. 11 105102
[3] Beier F, Hupel C, Nold J, Kuhn S, Hein S, Ihring J, Sattler B, Haarlammert N, Schreiber T, Eberhardt R, Tnnermann A 2016 Opt. Express 24 6011
[4] Yan P, Yin S P, He J W, Fu C, Wang Y P, Gong M L 2011 IEEE Photon. Tech. L. 23 697
[5] Khitrov V, Minelly J D, Tumminelli R, Petit V, Pooler E S 2014 Proc. SPIE San Francisco, California, United States, March 12, 2014 p89610V
[6] Beier F, Hupel C, Kuhn S, Hein S, Nold J, Proske F, Sattler B, Liem A, Jauregui C, Limpert J 2017 Opt. Express 25 14892
[7] Richardson D J, Nilsson J, Clarkson W A 2010 J. Opt. Soc. Am. B 27 B63
[8] Yan P, Wang X J, Li D, Huang Y S, Sun J Y, Xiao Q R, Gong M L 2017 Opt. Lett. 42 1193
[9] Codemard C A, Sahu J K, Nilsson J 2010 IEEE J. Quantum Elect. 46 1860
[10] Wu W M, Xiao H, Xu J M, Leng J Y, Zhou P, Guo S F 2011 Laser Optoelectr. Prog. 48 11 (in Chinese)[吴武明, 肖虎, 许将明, 冷进勇, 周朴, 郭少锋 2011 激光与光电子学进展 48 11]
[11] Panbiharwala Y, Yang P, Nilsson J, Srinivasan B 2016 13th International Conference on Fiber Optics and Photonics Kanpur, India, December 4-8, 2016 Tu2E.3
[12] Zervas M N, Codemard C A 2014 IEEE J. Sel. Top. Quant. 20 219
[13] Zhu J J, Zhou P, Ma Y X, Xu X J, Liu Z J 2011 Opt. Express 19 18645
[14] Ferin A, Abramov M, O'Connor M, Fomin V, Gapontsev V 2009 Conference on Lasers and Electro-Optics Baltimore, Maryland, United States, May 31-June 5, 2009 CThA3
[15] Ferin A, Gapontsev V, Fomin V, Abramov A, Abramov M, Mochalov D 2012 6th International Symposium on High-Power Fiber Lasers and Their Applications St.Petersburg, Russia, June 25-29, 2012 TuSY1-12
[16] Xiao H, Leng J Y, Zhang H W, Huang L J, Xu J M, Zhou P 2015 Appl. Opt. 54 8166
[17] Yang H N, Zhao W, Si J H, Zhao B Y, Zhu Y G 2016 J. Opt. 18 125801
[18] Zhou P, Xiao H, Leng J Y, Xu J M, Chen Z L, Zhang H W, Liu Z J 2017 JOSA B 34 A29
[19] Wang Y S, Sun Y H, Ma Y, Li T L, Gao Q S, Tang C, Zhang K 2014 Chin. J. Lasers 42 69 (in Chinese)[王岩山, 孙殷宏, 马毅, 李腾龙, 高清松, 唐淳, 张凯 2014 中国激光 42 69]
[20] Zhang H W, Xiao H, Zhou P, Wang X L, Xu X J 2014 Opt. Express 22 10248
[21] Xiao Q R, Yan P, Li D, Sun J Y, Wang X J, Huang Y S, Gong M L 2016 Opt. Express 24 6758
[22] Churkin D V, Babin S A, Eltaher A E, Harper P, Kablukov S I, Karalekas V, Aniacastan J D, Podivilov E V, Turitsyn S K 2010 Phys. Rev. A 82 033828
[23] Wang X J, Xiao Q R, Yan P, Chen X, Li D, Du C, Mo Q, Yi Y Q, Pan R, Gong M L 2015 Acta Phys. Sin. 64 164204 (in Chinese)[王雪娇, 肖起榕, 闫平, 陈霄, 李丹, 杜城, 莫琦, 衣永青, 潘蓉, 巩马理 2015 物理学报 64 164204]
[24] Yang W Q, Hou J, Song R, Liu Z J 2011 Acta Phys. Sin. 60 084210 (in Chinese)[杨未强, 侯静, 宋锐, 刘泽金 2011 物理学报 60 084210]
[25] Yan P, Wang X J, Huang Y S, Fu C, Sun J Y, Xiao Q R, Li D, Gong M L 2017 Chin. Phys. B 26 336
[26] Zhu H T, Lou Q H, Zhou J, Qi Y F, Dong J X, Wei Y R 2008 Acta Phys. Sin. 57 4966 (in Chinese)[朱洪涛, 楼祺洪, 周军, 漆云凤, 董景星, 魏运荣 2008 物理学报 57 4966]
[27] Lapointe M, Chatigny S, Pich M, Cain-Skaff M, Maran J 2009 Proc. SPIE San Jose, California, United States, February 19, 2009 71951U
[28] Fan Y Y, He B, Zhou J, Zheng J T, Liu H K, Wei Y R, Dong J X, Lou Q H 2011 Opt. Express 19 15162
-
[1] Jeong Y, Sahu J K, Payne D N, Nilsson J 2004 Opt. Express 12 6088
[2] Fang Q, Shi W, Qin Y G, Meng X J, Zhang Q H 2014 Laser Phys. Lett. 11 105102
[3] Beier F, Hupel C, Nold J, Kuhn S, Hein S, Ihring J, Sattler B, Haarlammert N, Schreiber T, Eberhardt R, Tnnermann A 2016 Opt. Express 24 6011
[4] Yan P, Yin S P, He J W, Fu C, Wang Y P, Gong M L 2011 IEEE Photon. Tech. L. 23 697
[5] Khitrov V, Minelly J D, Tumminelli R, Petit V, Pooler E S 2014 Proc. SPIE San Francisco, California, United States, March 12, 2014 p89610V
[6] Beier F, Hupel C, Kuhn S, Hein S, Nold J, Proske F, Sattler B, Liem A, Jauregui C, Limpert J 2017 Opt. Express 25 14892
[7] Richardson D J, Nilsson J, Clarkson W A 2010 J. Opt. Soc. Am. B 27 B63
[8] Yan P, Wang X J, Li D, Huang Y S, Sun J Y, Xiao Q R, Gong M L 2017 Opt. Lett. 42 1193
[9] Codemard C A, Sahu J K, Nilsson J 2010 IEEE J. Quantum Elect. 46 1860
[10] Wu W M, Xiao H, Xu J M, Leng J Y, Zhou P, Guo S F 2011 Laser Optoelectr. Prog. 48 11 (in Chinese)[吴武明, 肖虎, 许将明, 冷进勇, 周朴, 郭少锋 2011 激光与光电子学进展 48 11]
[11] Panbiharwala Y, Yang P, Nilsson J, Srinivasan B 2016 13th International Conference on Fiber Optics and Photonics Kanpur, India, December 4-8, 2016 Tu2E.3
[12] Zervas M N, Codemard C A 2014 IEEE J. Sel. Top. Quant. 20 219
[13] Zhu J J, Zhou P, Ma Y X, Xu X J, Liu Z J 2011 Opt. Express 19 18645
[14] Ferin A, Abramov M, O'Connor M, Fomin V, Gapontsev V 2009 Conference on Lasers and Electro-Optics Baltimore, Maryland, United States, May 31-June 5, 2009 CThA3
[15] Ferin A, Gapontsev V, Fomin V, Abramov A, Abramov M, Mochalov D 2012 6th International Symposium on High-Power Fiber Lasers and Their Applications St.Petersburg, Russia, June 25-29, 2012 TuSY1-12
[16] Xiao H, Leng J Y, Zhang H W, Huang L J, Xu J M, Zhou P 2015 Appl. Opt. 54 8166
[17] Yang H N, Zhao W, Si J H, Zhao B Y, Zhu Y G 2016 J. Opt. 18 125801
[18] Zhou P, Xiao H, Leng J Y, Xu J M, Chen Z L, Zhang H W, Liu Z J 2017 JOSA B 34 A29
[19] Wang Y S, Sun Y H, Ma Y, Li T L, Gao Q S, Tang C, Zhang K 2014 Chin. J. Lasers 42 69 (in Chinese)[王岩山, 孙殷宏, 马毅, 李腾龙, 高清松, 唐淳, 张凯 2014 中国激光 42 69]
[20] Zhang H W, Xiao H, Zhou P, Wang X L, Xu X J 2014 Opt. Express 22 10248
[21] Xiao Q R, Yan P, Li D, Sun J Y, Wang X J, Huang Y S, Gong M L 2016 Opt. Express 24 6758
[22] Churkin D V, Babin S A, Eltaher A E, Harper P, Kablukov S I, Karalekas V, Aniacastan J D, Podivilov E V, Turitsyn S K 2010 Phys. Rev. A 82 033828
[23] Wang X J, Xiao Q R, Yan P, Chen X, Li D, Du C, Mo Q, Yi Y Q, Pan R, Gong M L 2015 Acta Phys. Sin. 64 164204 (in Chinese)[王雪娇, 肖起榕, 闫平, 陈霄, 李丹, 杜城, 莫琦, 衣永青, 潘蓉, 巩马理 2015 物理学报 64 164204]
[24] Yang W Q, Hou J, Song R, Liu Z J 2011 Acta Phys. Sin. 60 084210 (in Chinese)[杨未强, 侯静, 宋锐, 刘泽金 2011 物理学报 60 084210]
[25] Yan P, Wang X J, Huang Y S, Fu C, Sun J Y, Xiao Q R, Li D, Gong M L 2017 Chin. Phys. B 26 336
[26] Zhu H T, Lou Q H, Zhou J, Qi Y F, Dong J X, Wei Y R 2008 Acta Phys. Sin. 57 4966 (in Chinese)[朱洪涛, 楼祺洪, 周军, 漆云凤, 董景星, 魏运荣 2008 物理学报 57 4966]
[27] Lapointe M, Chatigny S, Pich M, Cain-Skaff M, Maran J 2009 Proc. SPIE San Jose, California, United States, February 19, 2009 71951U
[28] Fan Y Y, He B, Zhou J, Zheng J T, Liu H K, Wei Y R, Dong J X, Lou Q H 2011 Opt. Express 19 15162
Catalog
Metrics
- Abstract views: 7486
- PDF Downloads: 433
- Cited By: 0