Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Abnormal viscosity changes in high-temperature metallic melts

Shang Ji-Xiang Zhao Yun-Bo Hu Li-Na

Citation:

Abnormal viscosity changes in high-temperature metallic melts

Shang Ji-Xiang, Zhao Yun-Bo, Hu Li-Na
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The viscosity of high-temperature metallic melt, which is an important index for evaluating dynamics of liquid melt, is one of the basic physical properties. It not only influences the mold-filling capacity of melting metal in traditional casting techniques, but also exhibits more distinct influence on the fabrication of advanced material, such as metallic glass. According to the variation tendency of viscosity with temperature in alloy melt, the fragility of superheated melt could be obtained, which has proved to correlate with the ability of alloy to form glass. Besides, the viscosity of alloy well above the liquidus temperature also plays a key role in probing into the characteristic of liquid-liquid phase transition, the fragile-to-strong transition phenomenon, how the potential energy landscape evolves during cooling, etc. It has been generally accepted that the viscosity of metallic melt at high temperatures increases with temperature decreasing and could be fitted by an Arrhenius curve in the whole temperature range. However, recently more and more studies show that the viscosity of metallic melt cannot be fitted by only one Arrhenius curve. Instead, there exists at least one specific temperature below which the viscosity data begins to deviate from the Arrhenius curve at high temperature during cooling. These data could be described by another Arrhenius curve. In order to in depth understand this phenomenon, in this paper we summarize the viscosity data of different metallic melts in the literature. On the basis of introducing the method of detecting high-temperature melt viscosity, we discuss comprehensively the changing tendency of viscosity with temperature and the characteristics of abnormal viscosity changes in pure metal, binary and multivariate alloys well above the liquidus temperature. It is found that the abnormal viscosity changes generally occur in alloys that could form the types of intermetallic compounds. The abnormal viscosity change in metallic melt is accompanied with exothermic or endothermic effect, depending on alloy system, and reflects the existence of liquid-liquid transition well above the liquidus temperature. Besides, such an abnormal change of viscosity influences the ability to form metallic glass liquids. Although the abnormal dynamic change of metallic melt hints the existence of complexity of structural change in liquid during cooling, what is the key factor underlying this phenomenon remains a mystery. By combining the advanced experimental techniques such as high-energy X-ray diffraction and neutron scattering with the computer simulation method, this problem may be understood further. Besides, the relation between viscosity abnormity and the phase diagram is another problem that deserves to be noticed in the future.
      Corresponding author: Hu Li-Na, hulina0850@sina.com
    • Funds: Project supported by National Science and Technology Major Project, China (Grant No. 2016YFB0300500) and National Natural Science Foundation of China (Grant No. 51571131).
    [1]

    Han X F 2005 M. S. Dissertation (Jinan:Shandong University) (in Chinese)[韩秀峰 2005 硕士学位论文 (济南:山东大学)]

    [2]

    Angell C A 1985 J. Non-Cryst. Solids 73 1

    [3]

    Bian X F, Sun B A, Hu L N, Jia Y B 2005 Phys. Lett. A 335 61

    [4]

    Meng Q G, Zhou J K, Zheng H X, Li J G 2006 Scr. Mater. 54 777

    [5]

    Hu L N, Bian X F 2003 Chin. Sci. Bull. 48 2393 (in Chinese)[胡丽娜, 边秀房 2003 科学通报 48 2393]

    [6]

    Hu L N, Zhang C Z, Yue Y Z, Bian X F 2010 Chin. Sci. Bull. 55 115 (in Chinese)[胡丽娜, 张春芝, 岳远征, 边秀房 2010 科学通报 55 115]

    [7]

    Books R F, Dinsdale A T, Quested P N 2005 Meas. Sci. Technol. 16 354

    [8]

    Dinsdale A T, Quested P N 2004 J. Mater. Sci. 39 7221

    [9]

    Torklep K, Oye H A 1979 J. Phys. E 12 875

    [10]

    Sato Y, Kameda Y, Nagasawa T, Sakamoto T, Moriguchi S, Yamamura T, Waseda Y 2003 J. Cryst. Growth 249 404

    [11]

    Kehr M, Hoyer W, Egry I 2007 Int. J. Thermophys. 28 1017

    [12]

    Nunes V M B, Santos F J V, de Castro C A N 1998 Int. J. Thermophys. 19 427

    [13]

    Schenck H, Frohberg M G, Hoffmann K 1963 Steel Res. Int. 34 93

    [14]

    Emadi D, Gruzleski J E, Toguri J M 1993 Metall. Trans. B 24 1055

    [15]

    Xu Y P, Zhao X L, Yan T L 2017 Chin. Phys. B 26 036601

    [16]

    Wu Y Q, Bian X F, Mao T, Li X L, Li T B, Wang C D 2006 Phys. Lett. A 361 265

    [17]

    Sun C, Geng H, Liu J, Gneg H, Yang Z 2004 Phys. Meas. 1 16

    [18]

    Wang C Z 2017 M. S. Dissertation (Jinan:Shandong University) (in Chinese)[王春震 2017 硕士学位论文 (济南:山东大学)]

    [19]

    Guo H D 2008 M. S. Dissertation (Harbin:Harbin Institute of Technology) (in Chinese)[郭海东 2008 硕士学位论文(哈尔滨:哈尔滨工业大学)]

    [20]

    Sun C J, Geng H R, Zhang N, Teng X Y, Ji L L 2008 Mater. Lett. 62 73

    [21]

    Mao T, Bian X F, Morioka S, Wu Y Q, Li X L, L X Q 2007 Phys. Lett. 366 155

    [22]

    Sun M H, Geng H R, Bian X F, Liu Y 2000 Acta Metal. Sin. 36 1134 (in Chinese)[孙民华, 耿浩然, 边秀房, 刘燕 2000 金属学报 36 1134]

    [23]

    Wang L, Bian X F, Liu J T 2004 Phys. Lett. A 326 429

    [24]

    Ofte D, Wittenberg L J 1963 Trans. Metall. Soc. Aime. 227 706

    [25]

    Rothwell E 1961 J. Inst. Metals 90 389

    [26]

    Gebhardt E, Kostlin K 1957 Z. Metallkd. 48 636

    [27]

    Schenck H, Frohberg M G, Hoffmann K 1963 Arch. Eisenhuettenw. 34 93

    [28]

    Cavalier G 1963 Compt. Rend. 256 1308

    [29]

    Kaplun A B, Avaliani M 1977 High Temp. 15 259

    [30]

    Nikolaev B, Vollmann J 1996 J. Non-Cryst. Solids 208 145

    [31]

    Martin-Garin L, Martin-Garin R, Despre P 1978 J. Less Common. Met. 59 1

    [32]

    Zhao X, Wang C Z, Zheng H J, Tian Z A, Hu L N 2017 Phys. Chem. Chem. Phys. 19 15962

    [33]

    Zhao Y, Hou X X, Bian X F 2008 Mater. Lett. 62 3542

    [34]

    Zhou C, Hu L N, Sun Q J, Bian X F, Yue Y Z 2013 Appl. Phys. 103 171904

    [35]

    Ning S, Bian X F, Ren Z F 2010 Phys. B:Condens. Matter 405 3633

    [36]

    Mao T, Bian X F, Xue X Y, Zhang Y N, Guo J, Sun B A 2007 Phys. B:Phys. Condens. Matter 387 1

    [37]

    Konstantinova N Y, Popel' P S, Yagodin D A 2009 High Temp. 47 336

    [38]

    Inoue A, Takeuchi A 2010 Int. J. Appl. Glass Sci. 1 273

    [39]

    Wang L, Liu J T 2004 Phys. Lett. A 328 241

    [40]

    Zheng H J, Hu L N, Zhao X, Wang C Z, Sun Q J, Wang T, Hui X D, Yue Y Z, Bian X F 2017 J. Non-Cryst. Solids 471 120

    [41]

    Zhang F, Du Y, Liu S H, Jie W Q 2015 Comput. Coupling Phase Diagrams Thermochem. 49 79

    [42]

    Jia R, Bian X F, Lu X Q, Song K K, Li X L 2010 Phys. Mech. Astron. 53 390

    [43]

    Gancarz T, Gasior W 2016 Fluid Phase Equilib. 418 57

    [44]

    Liu Y H, Lu X W, Bai C G, Lai P S, Wang J S 2015 J. Ind. Eng. Chem. 30 106

    [45]

    Xiong L H, Lou H B, Wang X D, Debela T T, Cao Q P, Zhang D X, Wang S Y, Wang C Z, Jiang J Z 2014 Acta Mater. 68 1

    [46]

    Xiong L H, Chen K, Ke F S, Lou H B, Yue G Q, Shen B, Dong F, Wang S Y, Chen L Y, Wang C Z, Ho K M, Wang X D, Lai L H, Xiao T Q, Jiang J Z 2015 Acta Mater. 92 109

    [47]

    Xiong L H, Yoo H, Lou H B, Wang X D, Cao Q P, Zhang D X, Cao Q P, Zhang D X, Jian J Z, Xie H L, Xiao T Q, Jeon S, Lee G M 2015 J. Phys.:Condens. Matter 27 035102

    [48]

    Xiong L H, Guo F M, Wang X D, Cao Q P, Zhang D X, Ren Y, Jiang J Z 2017 J. Non-Cryst. Solids 459 160

    [49]

    Xiong L H, Wang X D, Cao Q P, Zhang D X, Xie H L, Xiao T Q, Jiang J Z 2017 J. Phys.:Condens. Matter 29 035101

    [50]

    Su Y, Wang X D, Yu Q, Cao Q P, Ruett U, Zhang D X, Jiang J Z 2018 J. Phys.:Condens. Matter 30 015402

    [51]

    Wang C W, Hu L N, Chen W, Tong X, Zhou C, Sun Q J, Hui X D, Yue Y Z 2014 J. Phys. Chem. 141 164507

    [52]

    Hu L N, Zhou C, Zhang C Z, Yue Y Z 2013 J. Phys. Chem. 138 174508

    [53]

    Sun Q J, Hu L N, Zhou C, Zheng H J, Yue Y Z 2015 J. Phys. Chem. Lett. 143 164504

    [54]

    Sun Q J, Zhou C, Yue Y Z, Hu L N 2014 J. Phys. Chem. Lett. 5 1170

    [55]

    Iida T, Roderick I L, 1993 The Properties of Liquid Metals (Oxford:University Press) pp147-199

    [56]

    Gui M C 1994 Ph. D. Dissertation (Harbin:Harbin Institute of Technology) (in Chinese)[桂满昌 1994 博士学位论文 (哈尔滨:哈尔滨工业大学)]

    [57]

    Iidia T, Ueda M, Morita Z 1976 Tetsu to Hagane 62 1169

    [58]

    Morita Z, Iida T, Ueda M 1997 Inst. Phys. Conf. Ser. 30 600

    [59]

    Djemili B, Martin-Garin L, Hicter P 1980 J. Phys. Colloq. C8 41 363

    [60]

    Enskog D 1922 Arkiv. Mth. Astron. Fys. 16 16

    [61]

    Tham M K, Gubbins K E 1971 J. Chem. Phys. 55 268

  • [1]

    Han X F 2005 M. S. Dissertation (Jinan:Shandong University) (in Chinese)[韩秀峰 2005 硕士学位论文 (济南:山东大学)]

    [2]

    Angell C A 1985 J. Non-Cryst. Solids 73 1

    [3]

    Bian X F, Sun B A, Hu L N, Jia Y B 2005 Phys. Lett. A 335 61

    [4]

    Meng Q G, Zhou J K, Zheng H X, Li J G 2006 Scr. Mater. 54 777

    [5]

    Hu L N, Bian X F 2003 Chin. Sci. Bull. 48 2393 (in Chinese)[胡丽娜, 边秀房 2003 科学通报 48 2393]

    [6]

    Hu L N, Zhang C Z, Yue Y Z, Bian X F 2010 Chin. Sci. Bull. 55 115 (in Chinese)[胡丽娜, 张春芝, 岳远征, 边秀房 2010 科学通报 55 115]

    [7]

    Books R F, Dinsdale A T, Quested P N 2005 Meas. Sci. Technol. 16 354

    [8]

    Dinsdale A T, Quested P N 2004 J. Mater. Sci. 39 7221

    [9]

    Torklep K, Oye H A 1979 J. Phys. E 12 875

    [10]

    Sato Y, Kameda Y, Nagasawa T, Sakamoto T, Moriguchi S, Yamamura T, Waseda Y 2003 J. Cryst. Growth 249 404

    [11]

    Kehr M, Hoyer W, Egry I 2007 Int. J. Thermophys. 28 1017

    [12]

    Nunes V M B, Santos F J V, de Castro C A N 1998 Int. J. Thermophys. 19 427

    [13]

    Schenck H, Frohberg M G, Hoffmann K 1963 Steel Res. Int. 34 93

    [14]

    Emadi D, Gruzleski J E, Toguri J M 1993 Metall. Trans. B 24 1055

    [15]

    Xu Y P, Zhao X L, Yan T L 2017 Chin. Phys. B 26 036601

    [16]

    Wu Y Q, Bian X F, Mao T, Li X L, Li T B, Wang C D 2006 Phys. Lett. A 361 265

    [17]

    Sun C, Geng H, Liu J, Gneg H, Yang Z 2004 Phys. Meas. 1 16

    [18]

    Wang C Z 2017 M. S. Dissertation (Jinan:Shandong University) (in Chinese)[王春震 2017 硕士学位论文 (济南:山东大学)]

    [19]

    Guo H D 2008 M. S. Dissertation (Harbin:Harbin Institute of Technology) (in Chinese)[郭海东 2008 硕士学位论文(哈尔滨:哈尔滨工业大学)]

    [20]

    Sun C J, Geng H R, Zhang N, Teng X Y, Ji L L 2008 Mater. Lett. 62 73

    [21]

    Mao T, Bian X F, Morioka S, Wu Y Q, Li X L, L X Q 2007 Phys. Lett. 366 155

    [22]

    Sun M H, Geng H R, Bian X F, Liu Y 2000 Acta Metal. Sin. 36 1134 (in Chinese)[孙民华, 耿浩然, 边秀房, 刘燕 2000 金属学报 36 1134]

    [23]

    Wang L, Bian X F, Liu J T 2004 Phys. Lett. A 326 429

    [24]

    Ofte D, Wittenberg L J 1963 Trans. Metall. Soc. Aime. 227 706

    [25]

    Rothwell E 1961 J. Inst. Metals 90 389

    [26]

    Gebhardt E, Kostlin K 1957 Z. Metallkd. 48 636

    [27]

    Schenck H, Frohberg M G, Hoffmann K 1963 Arch. Eisenhuettenw. 34 93

    [28]

    Cavalier G 1963 Compt. Rend. 256 1308

    [29]

    Kaplun A B, Avaliani M 1977 High Temp. 15 259

    [30]

    Nikolaev B, Vollmann J 1996 J. Non-Cryst. Solids 208 145

    [31]

    Martin-Garin L, Martin-Garin R, Despre P 1978 J. Less Common. Met. 59 1

    [32]

    Zhao X, Wang C Z, Zheng H J, Tian Z A, Hu L N 2017 Phys. Chem. Chem. Phys. 19 15962

    [33]

    Zhao Y, Hou X X, Bian X F 2008 Mater. Lett. 62 3542

    [34]

    Zhou C, Hu L N, Sun Q J, Bian X F, Yue Y Z 2013 Appl. Phys. 103 171904

    [35]

    Ning S, Bian X F, Ren Z F 2010 Phys. B:Condens. Matter 405 3633

    [36]

    Mao T, Bian X F, Xue X Y, Zhang Y N, Guo J, Sun B A 2007 Phys. B:Phys. Condens. Matter 387 1

    [37]

    Konstantinova N Y, Popel' P S, Yagodin D A 2009 High Temp. 47 336

    [38]

    Inoue A, Takeuchi A 2010 Int. J. Appl. Glass Sci. 1 273

    [39]

    Wang L, Liu J T 2004 Phys. Lett. A 328 241

    [40]

    Zheng H J, Hu L N, Zhao X, Wang C Z, Sun Q J, Wang T, Hui X D, Yue Y Z, Bian X F 2017 J. Non-Cryst. Solids 471 120

    [41]

    Zhang F, Du Y, Liu S H, Jie W Q 2015 Comput. Coupling Phase Diagrams Thermochem. 49 79

    [42]

    Jia R, Bian X F, Lu X Q, Song K K, Li X L 2010 Phys. Mech. Astron. 53 390

    [43]

    Gancarz T, Gasior W 2016 Fluid Phase Equilib. 418 57

    [44]

    Liu Y H, Lu X W, Bai C G, Lai P S, Wang J S 2015 J. Ind. Eng. Chem. 30 106

    [45]

    Xiong L H, Lou H B, Wang X D, Debela T T, Cao Q P, Zhang D X, Wang S Y, Wang C Z, Jiang J Z 2014 Acta Mater. 68 1

    [46]

    Xiong L H, Chen K, Ke F S, Lou H B, Yue G Q, Shen B, Dong F, Wang S Y, Chen L Y, Wang C Z, Ho K M, Wang X D, Lai L H, Xiao T Q, Jiang J Z 2015 Acta Mater. 92 109

    [47]

    Xiong L H, Yoo H, Lou H B, Wang X D, Cao Q P, Zhang D X, Cao Q P, Zhang D X, Jian J Z, Xie H L, Xiao T Q, Jeon S, Lee G M 2015 J. Phys.:Condens. Matter 27 035102

    [48]

    Xiong L H, Guo F M, Wang X D, Cao Q P, Zhang D X, Ren Y, Jiang J Z 2017 J. Non-Cryst. Solids 459 160

    [49]

    Xiong L H, Wang X D, Cao Q P, Zhang D X, Xie H L, Xiao T Q, Jiang J Z 2017 J. Phys.:Condens. Matter 29 035101

    [50]

    Su Y, Wang X D, Yu Q, Cao Q P, Ruett U, Zhang D X, Jiang J Z 2018 J. Phys.:Condens. Matter 30 015402

    [51]

    Wang C W, Hu L N, Chen W, Tong X, Zhou C, Sun Q J, Hui X D, Yue Y Z 2014 J. Phys. Chem. 141 164507

    [52]

    Hu L N, Zhou C, Zhang C Z, Yue Y Z 2013 J. Phys. Chem. 138 174508

    [53]

    Sun Q J, Hu L N, Zhou C, Zheng H J, Yue Y Z 2015 J. Phys. Chem. Lett. 143 164504

    [54]

    Sun Q J, Zhou C, Yue Y Z, Hu L N 2014 J. Phys. Chem. Lett. 5 1170

    [55]

    Iida T, Roderick I L, 1993 The Properties of Liquid Metals (Oxford:University Press) pp147-199

    [56]

    Gui M C 1994 Ph. D. Dissertation (Harbin:Harbin Institute of Technology) (in Chinese)[桂满昌 1994 博士学位论文 (哈尔滨:哈尔滨工业大学)]

    [57]

    Iidia T, Ueda M, Morita Z 1976 Tetsu to Hagane 62 1169

    [58]

    Morita Z, Iida T, Ueda M 1997 Inst. Phys. Conf. Ser. 30 600

    [59]

    Djemili B, Martin-Garin L, Hicter P 1980 J. Phys. Colloq. C8 41 363

    [60]

    Enskog D 1922 Arkiv. Mth. Astron. Fys. 16 16

    [61]

    Tham M K, Gubbins K E 1971 J. Chem. Phys. 55 268

  • [1] Yang Zhi-Gang, Liu Ying-Chao, Zhang Shi-Qing, Luo Rui-Jian, Zhao Xu-Qian, Lian Jia-Rong, Qu Jun-Le. Fluorescence lifetime imaging of dynamics of mitochondrial and nucleolar microenvironment during stimuli response in living cells. Acta Physica Sinica, 2024, 73(7): 078702. doi: 10.7498/aps.73.20231990
    [2] Ying Yao-Jun, Li Hai-Bin. Dynamics of Bose-Einstein condensation in an asymmetric double-well potential. Acta Physica Sinica, 2023, 72(13): 130303. doi: 10.7498/aps.72.20230419
    [3] Jiang Shuang-Shuang, Zhu Li, Liu Si-Nan, Yang Zhan-Zhan, Lan Si, Wang Yin-Gang. Densification and heterogeneity enhancement of Fe-based metallic glass under local plastic flow. Acta Physica Sinica, 2022, 71(5): 058101. doi: 10.7498/aps.71.20211304
    [4] Densification and heterogeneity enhancement of a Fe-based metallic glass under local plastic flow. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211304
    [5] Zhang Ying, Zheng Yu, He Mao-Gang. Improvement of dynamic light scattering method for measurement of particle diameter and liquid viscosity. Acta Physica Sinica, 2018, 67(16): 167801. doi: 10.7498/aps.67.20180271
    [6] Wang Jun-Qiang, Ouyang Su. Extended elastic model for flow of metallic glasses. Acta Physica Sinica, 2017, 66(17): 176102. doi: 10.7498/aps.66.176102
    [7] Ma Jiang, Yang Can, Gong Feng, Wu Xiao-Yu, Liang Xiong. Thermoplastic forming of bulk metallic glasses. Acta Physica Sinica, 2017, 66(17): 176404. doi: 10.7498/aps.66.176404
    [8] Hu Li-Na, Zhao Xi, Zhang Chun-Zhi. Fragile-to-strong transition in metallic glass-forming liquids. Acta Physica Sinica, 2017, 66(17): 176403. doi: 10.7498/aps.66.176403
    [9] Yuan Chen-Chen. Bonding nature and the origin of ductility of metallic glasses. Acta Physica Sinica, 2017, 66(17): 176402. doi: 10.7498/aps.66.176402
    [10] Guo Gu-Qing, Wu Shi-Yang, Cai Guang-Bo, Yang Liang. Identifying icosahedron-like clusters in metallic glasses. Acta Physica Sinica, 2016, 65(9): 096402. doi: 10.7498/aps.65.096402
    [11] Wu Fei-Fei, Yu Peng, Bian Xi-Lei, Tan Jun, Wang Jian-Guo, Wang Gang. Correlation between fracture mechanism and fracture toughness in metallic glasses. Acta Physica Sinica, 2014, 63(5): 058101. doi: 10.7498/aps.63.058101
    [12] An Bao-Lin, Lin Hong, Liu Qiang, Duan Yuan-Yuan. Viscosity measurements using a cylindrical resonator. Acta Physica Sinica, 2013, 62(17): 175101. doi: 10.7498/aps.62.175101
    [13] Yu Yu-Ying, Xi Feng, Dai Cheng-Da, Cai Ling-Cang, Tan Hua, Li Xue-Mei, Hu Chang-Ming. Plastic behavior of Zr51Ti5Ni10Cu25Al9 metallic glass under planar shock loading. Acta Physica Sinica, 2012, 61(19): 196202. doi: 10.7498/aps.61.196202
    [14] Chen Yan, Jiang Min-Qiang, Dai Lan-Hong. Temperature-dependent yield asymmetry between tension and compression in metallic glasses. Acta Physica Sinica, 2012, 61(3): 036201. doi: 10.7498/aps.61.036201
    [15] Han Guang, Qiang Jian-Bing, Wang Qing, Wang Ying-Min, Xia Jun-Hai, Zhu Chun-Lei, Quan Shi-Guang, Dong Chuang. Electrochemical potential equilibrium of electrons in ideal metallic glasses based on the cluster-resonance model. Acta Physica Sinica, 2012, 61(3): 036402. doi: 10.7498/aps.61.036402
    [16] Xu Chun-Long, Hou Zhao-Yang, Liu Rang-Su. Simulation study on thermodynamic, dynamic and structural transition mechanisms during the formation of Ca70Mg30 metallic glass. Acta Physica Sinica, 2012, 61(13): 136401. doi: 10.7498/aps.61.136401
    [17] Wei Hong-Qing, Li Xiang-An, Long Zhi-Lin, Peng Jian, Zhang Ping, Zhang Zhi-Chun. Correlations between viscosity and glass-forming ability in bulk amorphous alloys. Acta Physica Sinica, 2009, 58(4): 2556-2564. doi: 10.7498/aps.58.2556
    [18] Wang Zhen-Yu, Yang Yuan-Sheng, Tong Wen-Hui, Li Hui-Qiang, Hu Zhuang-Qi. A new model for calculating critical cooling rates of alloy systems based on viscosity calculation. Acta Physica Sinica, 2007, 56(3): 1543-1548. doi: 10.7498/aps.56.1543
    [19] Fu Wen-Yu, Hou Xi-Miao, He Li-Xia, Zheng Zhi-Gang. Dynamics and statistics in few-body hard-ball systems. Acta Physica Sinica, 2005, 54(6): 2552-2556. doi: 10.7498/aps.54.2552
    [20] Tong Cun-Zhu, Zheng Pjing, Bai Hai-Yang, Chen Zhao-Jia, Luo Jian-Lin, Zhang Jie, Lin De-Hua, Wang Wei-Hua. . Acta Physica Sinica, 2002, 51(7): 1559-1563. doi: 10.7498/aps.51.1559
Metrics
  • Abstract views:  7994
  • PDF Downloads:  412
  • Cited By: 0
Publishing process
  • Received Date:  22 December 2017
  • Accepted Date:  23 March 2018
  • Published Online:  20 May 2019

/

返回文章
返回