Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of organic cations on performance of halide perovskite solar cell

Zhang Ao Chen Yun-Lin Yan Jun Zhang Chun-Xiu

Citation:

Effects of organic cations on performance of halide perovskite solar cell

Zhang Ao, Chen Yun-Lin, Yan Jun, Zhang Chun-Xiu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The halide perovskite solar cells employing CH3NH3PbX3 (X=Cl-, Br-, I-) and CH3NH3PbI3-xClx as light absorbers each have shown a rapid rise in power conversion efficiency (PCE) from 3.8% to 22.1% in recent years. The excellent photovoltaic performance is attributed to good optical and electrical properties such as appropriate bandgap, large absorption coefficient, high carrier mobility, long carrier lifetime and long carrier diffusion length. However, the physical mechanism of high PCE for halide perovskite solar cells is still unclear. The Gaussian 09 software is utilized to optimize the geometries of isolated CH3NH3+ and CH3NH3 at a B3 LYP/6-311++G(d, p) level, and the Multiwfn software is used to visualize the electrostatic potentials (ESPs) of CH3NH3+ and CH3NH3. Based on the ESPs of CH3NH3+ and CH3NH3, it is found that the CH3NH3+ has a strong electrophilic character, however, the NH3- side and CH3- side of CH3NH3 have weak nucleophilic and electrophilic character, respectively. So the electrostatic characteristics of CH3NH3+ and CH3NH3 are significantly different. The strong electrostatic repulsive interaction between two neighboring CH3NH3+ radicals plays an important role in structural phase transition of CH3NH3PbI3 material. At room temperature, the CH3NH3+ in the inorganic cage is activated and disordered, and has a strong electrophilic character. Due to these characteristics of CH3NH3+, the interfacial electrons at TiO2/CH3NH3PbI3 heterojunction are combined with CH3NH3+ to form CH3NH3 in the inorganic[PbI3]- framework. The CH3NH3 at the heterojunction under the built-in electric field is more easily oriented than CH3NH3+. Two initial geometrical configurations for CH3NH3+:CH3NH3 and CH3NH3:CH3NH3 dimers are optimized by using Gaussian 09 at an MP2/Aug-cc-PVTZ level. On the basis of the electrostatic characteristic of CH3NH3+:CH3NH3 dimer, the interfacial electrons at TiO2/CH3NH3PbI3 heterojunction are easily injected into the CH3NH3PbI3 material, which leads to the strong polarization of CH3NH3PbI3 material at the heterojunction. From the ESP of optimized CH3NH3:CH3NH3 dimer, it is found that the weak electrostatic field of the inorganic framework, parallel to C-N axis, is induced by the CH3NH3 orientational order, which is made for improving the photogenerated electron-hole pair separation and carrier transport. The TiO2/CH3NH3PbI3 heterojunction has more advantage than traditional p-n junction because of no consumption of carrier for CH3NH3PbI3 material in the process of forming built-in electric field. The physical mechanism is the origin of high PCE for CH3NH3PbI3 solar cells. According to the experimental results and first-principle calculations, we can draw an important conclusion that the electrostatic characteristics of organic CH3NH3+ cations in the inorganic[PbI3]- framework result in the high performances of halide perovskite solar cells.
      Corresponding author: Chen Yun-Lin, ylchen@bjtu.edu.cn
    • Funds: Project supported by the Ph. D. Programs Foundation of Ministry of Education of China (Grant No. 20130009110008), and Beijing Municipal Education Commission Project, China (Grant No. KM201210015008), and Byyc (Grant No. 201316-007).
    [1]

    Boix P P, Nonomura K, Mathews N, Mhaisalkar S G 2014 Mater. Today 17 16

    [2]

    Kazim S, Nazeeruddin M K, Gratzel M, Ahmad S 2014 Angew. Chem. Int. Ed. 53 2

    [3]

    Gao P, Grätzel M, Nazeeruddin M K 2014 Energy Environ. Sci. 7 2448

    [4]

    Tanaka K, Takahashi T, Ban T, Kondo T, Uchida K, Miura N 2003 Solid State Commun. 127 619

    [5]

    Li M H, Shen P S, Wang K C, Guoabc T F, Chen P 2015 J. Mater. Chem. A 3 9011

    [6]

    Akihiro K, Kenjiro T, Yasuo S, Tsutomu M 2009 J. Am. Chem. Soc. 131 6050

    [7]

    Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T, Wojciechowski K, Zhang W 2014 J. Phys. Chem. Lett. 5 1511

    [8]

    Zhang Y, Liu M, Eperon G E, Leijtens T, McMeekin D P, Saliba M, Zhang W, de Bastiani M, Petrozza A, Herz L, Johnston M B, Lin H, Snaith H 2015 Mater. Horiz. 2 315

    [9]

    Fan Z, Xiao J X, Sun K, Chen L, Hu Y T, Ouyang J Y, Ong K P, Zeng K Y, Wang J 2015 J. Phys. Chem. Lett. 6 1155

    [10]

    Motta C, El-Mellouhi E, Kais S, Tabet N, Alharbi F, Sanvito S 2015 Nat. Commun. 6 7026

    [11]

    Ma J, Wang L W 2015 Nano Lett. 15 248

    [12]

    Baikie T, Fang Y, Kadro J, Schreyer M, Wei F, Mhaisalkar S, Graetzel M, White T 2013 J. Mater. Chem. A 1 5628

    [13]

    Lee J H, Lee J H, Kong E H, Jang H M 2016 Sci. Rep. 6 21687

    [14]

    Brown B, Hess D, Desai V, Deen M J 2006 Electrochem. Soc. Interf. 15 28

    [15]

    Zheng F, Takenaka H, Wang F, Koocher N Z, Rappe A M 2015 J. Phys. Chem. Lett. 6 31

    [16]

    Wang Y, Xia Z, Liu L, Xu W, Yuan Z, Zhang Y, Sirringhaus H, Lifshitz Y, Lee S T, Bao Q, Sun B 2017 Adv. Mater. 18 1606370

    [17]

    Onoda-Yamamuro N, Matsuoand T, Suga H 1992 J. Phys. Chem. Solids 53 935

    [18]

    Wasylishen R, Knop O, Macdonald J 1985 Solid State Commun. 56 581

    [19]

    Frost J M, Butler K T, Brivio F, Hendon C H, Schilfgaarde M V, Walsh A 2014 Nano Lett. 14 2584

    [20]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr J A, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas O, Foresman J B, Ortiz J V, Cioslowski J, Fox D J 2009 Gaussian 09 (Revision C.01 Gaussian, Inc. Wallingford, CT)

    [21]

    Lu T, Chen F W 2012 J. Comput. Chem. 33 580

    [22]

    Poglitsch A, Weber D 1987 J. Chem. Phys. 87 637

    [23]

    Wang W Z, Ji B M, Zhang Y 2009 J. Phys. Chem. A 113 8132

    [24]

    Li Q Z, Jing B, Li R, Liu Z B, Li W Z, Luan F, Cheng J B, Gong B A, Sun J Z 2011 Phys. Chem. Chem. Phys. 13 2266

    [25]

    Mosconi E, Amat A, Nazeeruddin M K, Gratzel M, Angelis F D 2013 J. Phys. Chem. C 117 13902

    [26]

    Liu C, Zhang Y M, Zhang Y M, L H L 2013 Chin. Phys. B 22 406

    [27]

    Guan H, L H L, Guo H, Zhang Y M, Zhang Y M, Wu L F 2015 Chin. Phys. B 24 126701

    [28]

    Cai L, Zhong M 2016 Acta Phys. Sin. 65 237902 (in Chinese)[柴磊, 钟敏 2016 物理学报 65 237902]

  • [1]

    Boix P P, Nonomura K, Mathews N, Mhaisalkar S G 2014 Mater. Today 17 16

    [2]

    Kazim S, Nazeeruddin M K, Gratzel M, Ahmad S 2014 Angew. Chem. Int. Ed. 53 2

    [3]

    Gao P, Grätzel M, Nazeeruddin M K 2014 Energy Environ. Sci. 7 2448

    [4]

    Tanaka K, Takahashi T, Ban T, Kondo T, Uchida K, Miura N 2003 Solid State Commun. 127 619

    [5]

    Li M H, Shen P S, Wang K C, Guoabc T F, Chen P 2015 J. Mater. Chem. A 3 9011

    [6]

    Akihiro K, Kenjiro T, Yasuo S, Tsutomu M 2009 J. Am. Chem. Soc. 131 6050

    [7]

    Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T, Wojciechowski K, Zhang W 2014 J. Phys. Chem. Lett. 5 1511

    [8]

    Zhang Y, Liu M, Eperon G E, Leijtens T, McMeekin D P, Saliba M, Zhang W, de Bastiani M, Petrozza A, Herz L, Johnston M B, Lin H, Snaith H 2015 Mater. Horiz. 2 315

    [9]

    Fan Z, Xiao J X, Sun K, Chen L, Hu Y T, Ouyang J Y, Ong K P, Zeng K Y, Wang J 2015 J. Phys. Chem. Lett. 6 1155

    [10]

    Motta C, El-Mellouhi E, Kais S, Tabet N, Alharbi F, Sanvito S 2015 Nat. Commun. 6 7026

    [11]

    Ma J, Wang L W 2015 Nano Lett. 15 248

    [12]

    Baikie T, Fang Y, Kadro J, Schreyer M, Wei F, Mhaisalkar S, Graetzel M, White T 2013 J. Mater. Chem. A 1 5628

    [13]

    Lee J H, Lee J H, Kong E H, Jang H M 2016 Sci. Rep. 6 21687

    [14]

    Brown B, Hess D, Desai V, Deen M J 2006 Electrochem. Soc. Interf. 15 28

    [15]

    Zheng F, Takenaka H, Wang F, Koocher N Z, Rappe A M 2015 J. Phys. Chem. Lett. 6 31

    [16]

    Wang Y, Xia Z, Liu L, Xu W, Yuan Z, Zhang Y, Sirringhaus H, Lifshitz Y, Lee S T, Bao Q, Sun B 2017 Adv. Mater. 18 1606370

    [17]

    Onoda-Yamamuro N, Matsuoand T, Suga H 1992 J. Phys. Chem. Solids 53 935

    [18]

    Wasylishen R, Knop O, Macdonald J 1985 Solid State Commun. 56 581

    [19]

    Frost J M, Butler K T, Brivio F, Hendon C H, Schilfgaarde M V, Walsh A 2014 Nano Lett. 14 2584

    [20]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr J A, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas O, Foresman J B, Ortiz J V, Cioslowski J, Fox D J 2009 Gaussian 09 (Revision C.01 Gaussian, Inc. Wallingford, CT)

    [21]

    Lu T, Chen F W 2012 J. Comput. Chem. 33 580

    [22]

    Poglitsch A, Weber D 1987 J. Chem. Phys. 87 637

    [23]

    Wang W Z, Ji B M, Zhang Y 2009 J. Phys. Chem. A 113 8132

    [24]

    Li Q Z, Jing B, Li R, Liu Z B, Li W Z, Luan F, Cheng J B, Gong B A, Sun J Z 2011 Phys. Chem. Chem. Phys. 13 2266

    [25]

    Mosconi E, Amat A, Nazeeruddin M K, Gratzel M, Angelis F D 2013 J. Phys. Chem. C 117 13902

    [26]

    Liu C, Zhang Y M, Zhang Y M, L H L 2013 Chin. Phys. B 22 406

    [27]

    Guan H, L H L, Guo H, Zhang Y M, Zhang Y M, Wu L F 2015 Chin. Phys. B 24 126701

    [28]

    Cai L, Zhong M 2016 Acta Phys. Sin. 65 237902 (in Chinese)[柴磊, 钟敏 2016 物理学报 65 237902]

  • [1] Wang Na, Xu Hui-Fang, Yang Qiu-Yun, Zhang Mao-Lian, Lin Zi-Jing. First-principles study of strain-tunable charge carrier transport properties and optical properties of CrI3 monolayer. Acta Physica Sinica, 2022, 71(20): 207102. doi: 10.7498/aps.71.20221019
    [2] Qin Jing-Yun, Shu Qun-Wei, Yuan Yi, Qiu Wei, Xiao Li-Hua, Peng Ping, Lu Guo-Song. First-principles investigation on electronic structure and solar radiation shielding performance of Tl0.33WO3. Acta Physica Sinica, 2020, 69(4): 047102. doi: 10.7498/aps.69.20191577
    [3] Fu Xian-Kai, Chen Wan-Qi, Jiang Zhong-Sheng, Yang Bo, Zhao Xiang, Zuo Liang. First-principles investigation on elastic, electronic, and optical properties of Ti3O5. Acta Physica Sinica, 2019, 68(20): 207301. doi: 10.7498/aps.68.20190664
    [4] Luo Zui-Fen, Cen Wei-Fu, Fan Meng-Hui, Tang Jia-Jun, Zhao Yu-Jun. First-principles study of electronic and optical properties of BiTiO3. Acta Physica Sinica, 2015, 64(14): 147102. doi: 10.7498/aps.64.147102
    [5] Shi Yu, Bai Yang, Mo Li-Bin, Xiang Qing-Yun, Huang Ya-Li, Cao Jiang-Li. First-principles calculation for hydrogen-doped hematite. Acta Physica Sinica, 2015, 64(11): 116301. doi: 10.7498/aps.64.116301
    [6] Zhou Peng-Li, Shi Ru-Qian, He Jing-Fang, Zheng Shu-Kai. First principle study on B-Al co-doped 3C-SiC. Acta Physica Sinica, 2013, 62(23): 233101. doi: 10.7498/aps.62.233101
    [7] Yang Chun-Yan, Zhang Rong, Zhang Li-Min, Ke Xiang-Wei. Electronic structure and optical properties of 0.5NdAlO3-0.5CaTiO3 from first-principles calculation. Acta Physica Sinica, 2012, 61(7): 077702. doi: 10.7498/aps.61.077702
    [8] Song Qing-Gong, Liu Li-Wei, Zhao Hui, Yan Hui-Yu, Du Quan-Guo. First-principles study on the electronic structure and optical properties of YFeO3. Acta Physica Sinica, 2012, 61(10): 107102. doi: 10.7498/aps.61.107102
    [9] Ru Qiang, Li Yan-Ling, Hu She-Jun, Peng Wei, Zhang Zhi-Wen. The investigation of lithium insertion mechanism for Sn3InSb4 alloy based on first-principle calculation. Acta Physica Sinica, 2012, 61(3): 038210. doi: 10.7498/aps.61.038210
    [10] Chen Yu-Hong, Du Rui, Zhang Zhi-Long, Wang Wei-Chao, Zhang Cai-Rong, Kang Long, Luo Yong-Chun. First principles study of H2 molecule adsorption on Li3 N(110) surfaces. Acta Physica Sinica, 2011, 60(8): 086801. doi: 10.7498/aps.60.086801
    [11] He Jian-Ping, Lü Wen-Zhong, Wang Xiao-Hong. First-principles study of ordered structures in Ba0.5Sr0.5TiO3. Acta Physica Sinica, 2011, 60(9): 097102. doi: 10.7498/aps.60.097102
    [12] Li Ai-Hong, Mu Yan-Qing, Yang Wei-Ming, Hou Hua, Han Pei-De, Zhang Su-Ying, Huang Zhi-Wei, Zhao Yu-Hong. First principles study on substitution behavior and alloying effects of Nb in Ni3Al. Acta Physica Sinica, 2011, 60(4): 047103. doi: 10.7498/aps.60.047103
    [13] Deng Yang, Wang Ru-Zhi, Xu Li-Chun, Fang Hui, Yan Hui. Pressure induced band-gap changes in (Ba0.5Sr0.5)TiO3 (BST) from first-principles calculations. Acta Physica Sinica, 2011, 60(11): 117309. doi: 10.7498/aps.60.117309
    [14] Zhang Yi-Jun, Yan Jin-Liang, Zhao Gang, Xie Wan-Feng. First-principles calculation and experimental study of Si-doped β-Ga2O3. Acta Physica Sinica, 2011, 60(3): 037103. doi: 10.7498/aps.60.037103
    [15] Li Shi-Na, Liu Yong. First-principles calculation of elastic and thermodynamic properties of copper nitride. Acta Physica Sinica, 2010, 59(10): 6882-6888. doi: 10.7498/aps.59.6882
    [16] Sun Yuan, Huang Zu-Fei, Fan Hou-Gang, Ming Xing, Wang Chun-Zhong, Chen Gang. First-principles investigation on the role of ions in ferroelectric transition of BiFeO3. Acta Physica Sinica, 2009, 58(1): 193-200. doi: 10.7498/aps.58.193.1
    [17] Zhu Guo-Liang, Shu Da, Dai Yong-Bing, Wang Jun, Sun Bao-De. First principles study on substitution behaviour of Si in TiAl3. Acta Physica Sinica, 2009, 58(13): 210-S215. doi: 10.7498/aps.58.210
    [18] Ni Jian-Gang, Liu Nuo, Yang Guo-Lai, Zhang Xi. First-principle study on electronic structure of BaTiO3 (001) surfaces. Acta Physica Sinica, 2008, 57(7): 4434-4440. doi: 10.7498/aps.57.4434
    [19] Yu Xiao, Luo Xiao-Guang, Chen Gui-Feng, Shen Jun, Li Yang-Xian. First principle calculation of structural, elastic and electronic properties of XHfO3(X=Ba, Sr). Acta Physica Sinica, 2007, 56(9): 5366-5370. doi: 10.7498/aps.56.5366
    [20] Zhao Zong-Yan, Liu Qing-Ju, Zhang Jin, Zhu Zhong-Qi. First-principles study of 3d transition metal-doped anatase. Acta Physica Sinica, 2007, 56(11): 6592-6599. doi: 10.7498/aps.56.6592
Metrics
  • Abstract views:  7406
  • PDF Downloads:  354
  • Cited By: 0
Publishing process
  • Received Date:  31 January 2018
  • Accepted Date:  15 March 2018
  • Published Online:  20 May 2019

/

返回文章
返回