-
With energy-saving and emission-reduction have become the theme of today's social development, the theoretical design and research of novel transparent heat insulation materials for windows, which can save energy and improve the comprehensive utilization efficiency of solar energy, are particularly crucial. In this paper, a calculation method based on DFT(density functional theory) is used to study the lattice parameters (the geometric structure of h-WO3 crystal was optimized by calculation) electronic band structure, formation energy, and optical properties of pure hexagonal phase tungsten trioxide(h-WO3) before and after doping with Tl. The calculated results indicate that the lattice volume increases and the total system energy decreases to a negative value after Tl-doped h-WO3, while the system has better stability; The electron band structure changes greatly after doping, but the material still maintains n-type conductivity. In the meantime, the optical properties of the material also changed, h-WO3 had no near-infrared absorption performance before Tl-doping, and Tl0.33WO3 after Tl-doped had strong near-infrared absorption performance. On this basis, the solar radiation shielding performance of h-WO3 before and after Tl doping has been studied. The results show that pure h-WO3 has no solar radiation shielding performance, while Tl0.33WO3 thin films after Tl-doped h-WO3 have high transparency in visible light region and strong absorption in near infrared radiation. The calculation results provide a theoretical basis for the application of transparent thermal insulating material for windows of Tl-doped h-WO3. -
Keywords:
- first-principles /
- Tl-doped /
- h-WO3 /
- optical properties
[1] Saito M 1997 Convertec 25 7
[2] Muromachi T, Tsujino T, Kamitani K, Maeda K 2006 J. Sol-Gel Sci. Technol. 40 267Google Scholar
[3] Xiao L H, Su Y C, Qiu W, Liu Y K, Ran J Y, Wu J M, Lu F H, Shao F, Tang D S, Peng P 2016 Ceram. Int. 42 14278Google Scholar
[4] Xiao L H, Su Y C, Ran J Y, Liu Y K, Qiu W, Wu J M, Lu F H, Shao F, Tang D S, Peng P 2016 J. Appl. Phys. 119 164903Google Scholar
[5] Xiao L H, Su Y C, Chen H Y, Liu S, Jiang M, Peng P, Liu S 2011 Appl. Phys. Lett. 99 061906Google Scholar
[6] Xiao L H, Su Y C, Qiu W, Ran J Y, Liu Y K, Wu J M, Lu F H, Shao F, Peng P 2016 Appl. Phys. Lett. 109 193906Google Scholar
[7] Takeda H, Adachi K 2007 J. Am. Ceram. Soc. 90 4059
[8] Yao Y, Zhang L, Chen Z, Cao C, Gao Y, Luo H 2018 Ceram. Int. 44 13469Google Scholar
[9] Mattox T M, Bergerud A, Agrawal A, Milliron D. J 2014 Chem. Mater. 26 1779Google Scholar
[10] Guo C S, Yin S, Yan M., Sato T 2011 J. Mater. Chem 21 5099Google Scholar
[11] Guo C S, Yin S, Sato T 2012 J. Am. Ceram. Soc. 95 1634Google Scholar
[12] Guo C S, Yin S, Dong Q 2013 J. Nanosci. Nanotechnol. 13 3236Google Scholar
[13] Adachi K, Asahi T 2012 J. Mater. Res. 27 965Google Scholar
[14] Yu Z Y, Yao Y J, Yao J N, Zhang L M, Chen Z, Gao Y F, Luo H J 2017 J. Mater. Chem. A 5 6019Google Scholar
[15] Lee J S, Liu H C, Peng G D, Tseng Y 2017 J. Cryst. Growth 465 27Google Scholar
[16] Yang C X, Chen J F, Zeng X F, Cheng D J, Cao D P 2014 Ind. Eng. Chem. Res. 53 17981Google Scholar
[17] Yang C X, Chen J F, Zeng X F, Cheng D J, Huang H F, Cao D P 2016 Nanotechnology 27 075203Google Scholar
[18] Lee Y, Lee T, Jang W, Soon A 2016 Chem. Mater. 28 4528Google Scholar
[19] Yoshio S, Adachi K 2018 Mater. Res. Express 6 026548Google Scholar
[20] Xu Q Y, Xiao L H, Ran J Y, Tursun R, Zhou G D, Deng L L, Tang D S, Shu Q W, Qin J Y, Lu G S, Peng P 2018 J. Appl. Phys. 124 193102Google Scholar
[21] McColm I J, Steadman R, Wilson S J 1978 J. Solid State Chem. 23 33Google Scholar
[22] Gao T, Jelle B P 2013 J. Phys. Chem. C 117 13753Google Scholar
[23] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter. 14 2717Google Scholar
[24] Perdew J P, Chevary J A, Vosko S H, Jackson K A, PedersonM R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671
[25] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar
[26] He Y, Wu Z, Fu L, Li C, Miao Y, Cao L, Fan H, Zou B 2003 Chem. Mater. 15 4039Google Scholar
[27] Bechinger C, Wirth E, Leiderer P 1996 Appl. Phys. Lett. 68 2834Google Scholar
[28] Barton D G, Shtein M, Wilson R D, Soled S L, Iglesia E 1999 J. Phys. Chem. B 103 630Google Scholar
[29] Gonzalez-Borrero P P, Sato F, Medina A N, Baesso M L, Bento A C, Baldissera G, Persson C, Niklasson G A, Granqvist C G, Ferreira da Silva A 2010 Appl. Phys. Lett. 96 061909Google Scholar
[30] Liu J X, Ando Y, Dong X L, Shi F, Yin S, Adachi K, Chonan T, Tanaka A, Sato T, 2010 J. Solid State Chem. 183 2456Google Scholar
[31] Dostal A, Kauschka G, Reddy S J, Scholz F 1996 J. Electroanal. Chem. 406 155Google Scholar
[32] Gerand B, Novogorocki G, Guenot J, Figlarz M, 1979 J. Solid State Chem. 29 429Google Scholar
[33] Migas D B, Shaposhnikov V L, Rodin V N, Borisenko V E 2010 J. Appl. Phys. 108 093713Google Scholar
[34] 徐金荣, 王影, 朱兴凤, 李平, 张莉 2012 物理学报 61 207103Google Scholar
Xu J R, Wang Y, Zhu X F, Li P, Zhang L 2012 Acta Phys. Sin. 61 207103Google Scholar
[35] 周诗文, 彭平, 陈文钦, 庾名槐, 郭惠, 袁珍 2019 物理学报 68 037101Google Scholar
Zhou S W, Peng P, Chen W Q, Yu M, H, Guo H, Yuan Z 2019 Acta Phys. Sin. 68 037101Google Scholar
[36] Granqvist C G 2012 Sol. Energy Mater. Sol. Cells 99 1Google Scholar
[37] Kamal H, Akl A A, Abdel-Hady K 2004 Physica B 349 192Google Scholar
[38] 沈学础 1992 半导体光学性质 (北京: 科学出版社) 第 24 页
Shen X C 1992 Optical Property of Semiconductor (Beijing: Science Press) p24 (in Chinese)
[39] 褚君浩 2005 窄禁带半导体物理学 (北京: 科学出版社) 第 165 页
Chu J H 2005 Physics of Narrow Gap Semiconductors (Beijing: Science Press) (in Chinese)
[40] Guo C S, Yin S, Huang L J, Yang L, Sato T 2011 Chem. Commun. 47 8853Google Scholar
-
表 1 Tl掺杂六方相WO3前、后的晶格参数、带隙与形成能
Table 1. Lattice parameters, band gap and formation energy of pure h-WO3 before and after Tl-doped
-
[1] Saito M 1997 Convertec 25 7
[2] Muromachi T, Tsujino T, Kamitani K, Maeda K 2006 J. Sol-Gel Sci. Technol. 40 267Google Scholar
[3] Xiao L H, Su Y C, Qiu W, Liu Y K, Ran J Y, Wu J M, Lu F H, Shao F, Tang D S, Peng P 2016 Ceram. Int. 42 14278Google Scholar
[4] Xiao L H, Su Y C, Ran J Y, Liu Y K, Qiu W, Wu J M, Lu F H, Shao F, Tang D S, Peng P 2016 J. Appl. Phys. 119 164903Google Scholar
[5] Xiao L H, Su Y C, Chen H Y, Liu S, Jiang M, Peng P, Liu S 2011 Appl. Phys. Lett. 99 061906Google Scholar
[6] Xiao L H, Su Y C, Qiu W, Ran J Y, Liu Y K, Wu J M, Lu F H, Shao F, Peng P 2016 Appl. Phys. Lett. 109 193906Google Scholar
[7] Takeda H, Adachi K 2007 J. Am. Ceram. Soc. 90 4059
[8] Yao Y, Zhang L, Chen Z, Cao C, Gao Y, Luo H 2018 Ceram. Int. 44 13469Google Scholar
[9] Mattox T M, Bergerud A, Agrawal A, Milliron D. J 2014 Chem. Mater. 26 1779Google Scholar
[10] Guo C S, Yin S, Yan M., Sato T 2011 J. Mater. Chem 21 5099Google Scholar
[11] Guo C S, Yin S, Sato T 2012 J. Am. Ceram. Soc. 95 1634Google Scholar
[12] Guo C S, Yin S, Dong Q 2013 J. Nanosci. Nanotechnol. 13 3236Google Scholar
[13] Adachi K, Asahi T 2012 J. Mater. Res. 27 965Google Scholar
[14] Yu Z Y, Yao Y J, Yao J N, Zhang L M, Chen Z, Gao Y F, Luo H J 2017 J. Mater. Chem. A 5 6019Google Scholar
[15] Lee J S, Liu H C, Peng G D, Tseng Y 2017 J. Cryst. Growth 465 27Google Scholar
[16] Yang C X, Chen J F, Zeng X F, Cheng D J, Cao D P 2014 Ind. Eng. Chem. Res. 53 17981Google Scholar
[17] Yang C X, Chen J F, Zeng X F, Cheng D J, Huang H F, Cao D P 2016 Nanotechnology 27 075203Google Scholar
[18] Lee Y, Lee T, Jang W, Soon A 2016 Chem. Mater. 28 4528Google Scholar
[19] Yoshio S, Adachi K 2018 Mater. Res. Express 6 026548Google Scholar
[20] Xu Q Y, Xiao L H, Ran J Y, Tursun R, Zhou G D, Deng L L, Tang D S, Shu Q W, Qin J Y, Lu G S, Peng P 2018 J. Appl. Phys. 124 193102Google Scholar
[21] McColm I J, Steadman R, Wilson S J 1978 J. Solid State Chem. 23 33Google Scholar
[22] Gao T, Jelle B P 2013 J. Phys. Chem. C 117 13753Google Scholar
[23] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter. 14 2717Google Scholar
[24] Perdew J P, Chevary J A, Vosko S H, Jackson K A, PedersonM R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671
[25] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar
[26] He Y, Wu Z, Fu L, Li C, Miao Y, Cao L, Fan H, Zou B 2003 Chem. Mater. 15 4039Google Scholar
[27] Bechinger C, Wirth E, Leiderer P 1996 Appl. Phys. Lett. 68 2834Google Scholar
[28] Barton D G, Shtein M, Wilson R D, Soled S L, Iglesia E 1999 J. Phys. Chem. B 103 630Google Scholar
[29] Gonzalez-Borrero P P, Sato F, Medina A N, Baesso M L, Bento A C, Baldissera G, Persson C, Niklasson G A, Granqvist C G, Ferreira da Silva A 2010 Appl. Phys. Lett. 96 061909Google Scholar
[30] Liu J X, Ando Y, Dong X L, Shi F, Yin S, Adachi K, Chonan T, Tanaka A, Sato T, 2010 J. Solid State Chem. 183 2456Google Scholar
[31] Dostal A, Kauschka G, Reddy S J, Scholz F 1996 J. Electroanal. Chem. 406 155Google Scholar
[32] Gerand B, Novogorocki G, Guenot J, Figlarz M, 1979 J. Solid State Chem. 29 429Google Scholar
[33] Migas D B, Shaposhnikov V L, Rodin V N, Borisenko V E 2010 J. Appl. Phys. 108 093713Google Scholar
[34] 徐金荣, 王影, 朱兴凤, 李平, 张莉 2012 物理学报 61 207103Google Scholar
Xu J R, Wang Y, Zhu X F, Li P, Zhang L 2012 Acta Phys. Sin. 61 207103Google Scholar
[35] 周诗文, 彭平, 陈文钦, 庾名槐, 郭惠, 袁珍 2019 物理学报 68 037101Google Scholar
Zhou S W, Peng P, Chen W Q, Yu M, H, Guo H, Yuan Z 2019 Acta Phys. Sin. 68 037101Google Scholar
[36] Granqvist C G 2012 Sol. Energy Mater. Sol. Cells 99 1Google Scholar
[37] Kamal H, Akl A A, Abdel-Hady K 2004 Physica B 349 192Google Scholar
[38] 沈学础 1992 半导体光学性质 (北京: 科学出版社) 第 24 页
Shen X C 1992 Optical Property of Semiconductor (Beijing: Science Press) p24 (in Chinese)
[39] 褚君浩 2005 窄禁带半导体物理学 (北京: 科学出版社) 第 165 页
Chu J H 2005 Physics of Narrow Gap Semiconductors (Beijing: Science Press) (in Chinese)
[40] Guo C S, Yin S, Huang L J, Yang L, Sato T 2011 Chem. Commun. 47 8853Google Scholar
Catalog
Metrics
- Abstract views: 9383
- PDF Downloads: 150
- Cited By: 0